

Studies of marine diesel engine exhaust gas treatment

Dr Ewa Anna Zwolińska

Pollution Control Technologies Laboratory
Institute of Nuclear Chemistry and Technology

Sources

Health and environmental effects

Power Plants

Respiratory diseases

Acid rain

Marine Transport

Smog

Diesel Engines

Eutrophication of lakes

Emission Control Areas

SO₂ and NO_x regulations

Diesel engine exhaust gas composition	
NOx	50-1500 ppm
SO ₂	Proportional to sulphur content in fuel; 500-2000 ppm
НС	50-500 ppm
СО	100-1000 ppm

Exhaust gases vs regulations

Removal of NO_x and SO₂

Methods for NO_x and SO₂ removal

Primary methods

Secondary methods

NO_x and SO₂ removal methods

Removal of one of the pollutants

Removal methods of SO₂ and NO_x

Removal of different pollutants simultaneously Selective Catalytic Reduction -SCR

Selective Non-Catalytic Reduction -SNCŘ

Electrochemical catalytic cells

Adsorption

Wet Scrubbing

Electron Beam

Other methods based on plasma: corona discharge, dieselectroc barier discharge, radiofrequency discharge

NO_x and SO₂ removal methods

Removal of one of

Removal methods of SO₂ and NO_x

the pollutants

Removal of different pollutants simultaneously Selective Catalytic Reduction -SCR

Selective Non-Catalytic Reduction -SNCŘ

Electrochemical catalytic cells

Adsorption

Wet Scrubbing

Electron Beam

Other methods based on plasma: corona discharge, dieselectroc barier discharge, radiofrequency discharge

NO_x and SO₂ removal with Electron Beam

Main reactions, which occur during NO_x removal:

$$NO + O(^{3}P) + M \rightarrow NO_{2} + M$$

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$

$$NO + O_3 + M \rightarrow NO_2 + O_2 + M$$

$$NO + HO_2 \cdot + M \rightarrow NO_2 + \cdot OH + M$$

$$NO_2 + \cdot OH + M \rightarrow HNO_3 + M$$

By-product production:

$$HNO_3 + NH_3 \rightarrow NH_4NO_3$$

Main reactions, which occur during SO₂ removal:

1) Radiation-induced pathway:

$$SO_2 + \cdot OH + M \rightarrow HSO_3 + M$$

$$HSO_3 + O_2 \rightarrow SO_3 + HO_2$$

$$SO_3 + H_2O \rightarrow H_2SO_4$$

$$H_2SO_4 + 2 NH_3 \rightarrow (NH_4)_2SO_4$$

2) Thermal pathway:

$$SO_2 + 2 NH_3 \rightarrow (NH_3)_2 SO_2$$

$$(NH_3)_2SO_2 (O_2, H_2O) \rightarrow (NH_4)_2SO_4$$

Absorption methods for NOx and SO₂ removal

Hybrid technology

Diesel exhaust gases

Electron Beam

Wet Scrubbing

Clean gases

Aim of the research

Installation

Scheme of the Electron Beam Flue Gas Treatment technology (Basfar et al., 2008).

1-Liquid fuel, 2-Oil Burner, 3-Filters for PM and soot, 4-orifice, 5-dosage of water vapour, 6-gas sampling point-process inlet, 7-ammonia injection, 8-process vessel, 9-electron beam accelerator, 10-retention chamber, 11-bag filter, 12-gas sampling point-process outlet, 13-induced-draugh fan, 14-stack, 15-concrete shielding wall, 16-concrete shielding door, 17-NO cylinder, 18-SO₂ cylinder, 19-scrubber

Hybrid technology – NaCl solution

-20% -40% 150

Time (minutes)

100

200

Average NO_x removal efficiency:

- •11,3% ± 1,2% for electron beam,
- 23,6% ± 1,3% for wet scrubbing
- 35,3% ± 3,3% for hybrid technology

Hybrid technology - NaOH solution

ARIES

Hybrid technology - NaOH solution

Average NO_x removal efficiency:

- •11,3% ± 1,2% for electron beam,
- •24,0% ± 3,8% for wet scrubbing
- •34,7% ± 2,3% for hybrid technology

Hybrid technology – NaCl + NaClO₂ solution

Dose (kGy)

- NO_x removal efficiency depends on oxidant concentration
- During the process the NO_x removal efficiency decreases

Hybrid technology–NaCl + NaClO₂ solution

Average NO_x removal efficiency:

•11,3% ± 1,2% for electron beam,
•61,7% ± 19,1% for wet scrubbing
•81,1% ± 19,5% for hybrid technology

Hybrid technology- NaCl + H₂O₂

Average NO_x removal efficiency:

•11,3% ± 1,2% for Electron Beam,
•40,9% ± 4,0% for Wet Scrubbing
•51,1% ± 2,7% for Hybrid technology

Comparison

Hybrid technology- NaCl solution uS

Minutes

Analysis of the exhaust scrubbing solutions

$$4ClO_2^- + 2H_3O^+ \rightarrow 2ClO_2 + ClO_3^- + 3H_2O + Cl^-$$

Conclusions

- Best results were obtained for the wet scrubbing solution with the addition of buffered NaClO₂
- The instalation should work in "hybrid" or "closed loop" system concerning postprocess liquid
- Obtained results comply with the new regulations
- Both pollutants are removed simultaneously
- There is a need for continous development of the method
 - Addition of water droplets?
 - Possible problems with titanium window?
 - Reduction of reagents usage?

Acknowledgement

- Aries Accelerator Reasearch and Innovation for European Science and Society, WP3
 - This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871
- NCBR and NCN "TANGO 2". Agreement number TANGO2/341079/NCBR/2017, "Plasma technology to remove NO_x from off-gases"
- INCT Polish ministerial statutory funding, task 4.3

Thank you for your attention!

