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Why?

origin of mass generation and confinement?

need to understand spectrum and interactions!

q

q

q

q q

q
q

q

g
g

g
q

q

q

if it only were that simple... 
we don’t measure quarks and gluons, but hadrons

mesons
baryons
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pentaquarks??

glueballs?
hybrids? tetraquarks?
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The hadron zoo

Mesons Baryons
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Light baryons
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Extraction of resonances? Gluon exchange vs.
flavor dependence?

Nature of Roper?

qqq vs. quark-diquark?

“Quark core” vs. 
chiral dynamics?

Admixture of multiquarks?

Hybrid baryons?
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Outline

)
− −

DSEs, BSEs and their applications to mesons & baryons

Nucleon resonances in Compton scattering,
transition form factors 

Baryon spectrum: light and strange baryons,
quark-diquark vs. three-quark structure

Outlook: resonances & multiquark states
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Hadrons in QCD

Lattice: extract baryon poles from (gauge-invariant) two-point correlators:
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Hadrons in QCD

Lattice: extract baryon poles from (gauge-invariant) two-point correlators:

Alternative: extract gauge-invariant baryon poles from gauge-�xed quark 6-point function:

Bethe-Salpeter wave function:
residue at pole, contains all information about baryon
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QCD’s n-point functions

DSEs = quantum equations of motion:  
derived from path integral, relate n-point functions

Γ−e=

Some Reviews:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),

Alkofer, von Smekal, Phys. Rept. 353 (2001)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
Prog. Part. Nucl. Phys. 91 (2016),  1606.09602 [hep-ph]

S−e]ψ,A¯ψ,[D
∫

in�nitely many coupled equations

reproduce perturbation theory,
but nonperturbative-1

=
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= ++

++ +

+

QCD’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig

a
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[

x4d
∫

=

=

S

g g g 2
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systematic truncations:
neglect higher n-point functions 
to obtain closed system
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QCD’s n-point functions

Quark propagator

Dynamical chiral 
symmetry breaking 
generates ‘constituent-
quark masses’

Agreement between lattice, 
DSE & FRG within reach
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→ see talks by Cristina & Richard

Huber, EPJ C77 (2017),
Cyrol, Mitter, Pawlowski,  PRD 97 (2018), . . .
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DSEs ⟶ Hadrons? 

Bethe-Salpeter approach: 
use scattering equation

Homogeneous BSE for BS wave function:

𝑃�           −𝑚�

𝐺 𝐾 𝐺= +

𝐾=

K G+G=G 0 G0

still exact - to begin with, kernel is black box

but can be derived together with QCD’s n-point functions.
Important to preserve symmetries!  
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DSEs ⟶ Hadrons? 

Bethe-Salpeter approach: 
use scattering equation

Homogeneous BSE for BS wave function             . . .  or BS amplitude:

𝑃�           −𝑚�

𝐺 𝐾 𝐺= +

𝐾= 𝐾=

K G+G=G 0 G0

still exact - to begin with, kernel is black box

but can be derived together with QCD’s n-point functions.
Important to preserve symmetries!  
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Mesons

Meson Bethe-Salpeter equation in QCD:

Depends on QCD’s n-point functions, satisfy DSEs:

Kernel derived in accordance with chiral symmetry:
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Mesons

Meson Bethe-Salpeter equation in QCD:

Depends on QCD’s n-point functions, satisfy DSEs:

Kernel derived in accordance with chiral symmetry:
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Quark propagator has complex 
singularities: no physical threshold

Rainbow-ladder:
effective gluon exchange

Maris,  Tandy, PRC 60 (1999),  
Qin et al., PRC 84 (2011)
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Williams, Fischer, Heupel,
PRD 93 (2016)

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, PPNP 91 (2016)

see also Chang, Roberts,  
PRL 103 (2009),  PRC 85 (2012)

Fischer, Kubrak, Williams,  EPJ A 51 (2015)

GE, Fischer, Weil, Williams,  
PLB 774 (2017)

Mesons

Pion is Goldstone 
boson: 𝑚�� ~ 𝑚�

Light meson spectrum beyond rainbow-ladder

Charmonium spectrum Pion transition form factor
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Baryons

Covariant Faddeev equation for baryons:

3-gluon diagram vanishes ⇒ 3-body effects small?

Lorentz-invariant
dressing functions

Dirac-Lorentz
tensors carry

  OAM: s, p, d,...

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Sanchis-Alepuz, Williams,  PLB 749 (2015)

++= +

+ ++

2-body kernels same as for mesons, 
no further approximations:

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602
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Form factors

Consistent derivation of current 
matrix elements & scattering amplitudes

2 Excited-QCD printed on April 17, 2014

           
 

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+
[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since
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We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k
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(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν
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sates the problem since g1, g2, g7, g8 do not need to vanish
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k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

)2Q(F
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]Q/,µγ[m4
i)2Q(2F+µγ)2Q(1F )ip(u)fp(ūe= ( )

q
q

q

𝑄

−e

Q�
Q�

 Re
Im

quark-photon vertex preserves em. gauge invariance, 
dynamically generates VM poles:

rainbow-ladder 
topologies (1st line):

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

+  ++

+  +++  +++  ++

J
µ

Kvinikhidze, Blankleider,  PRC 60 (1999),  
GE, Fischer,  PRD 85 (2012) & PRD 87 (2013) 
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Form factors

Nucleon em. form factors
from three-quark equation 
GE,  PRD 84 (2011)

similar: 𝑁 → 𝛥𝛾 transition,
axial & pseudoscalar FFs,
octet & decuplet em. FFs
Review:  GE,  Sanchis-Alepuz, Williams, 
Fischer, Alkofer, PPNP 91 (2016), 1606.09602

“Quark core without pion cloud”

Large 

Electric proton form factor 
at large momenta  Eichmann,  PRD 84 (2011)

Difference likely due to
two-photon corrections

Rosenbluth method suggested 
/  = const., in agreement 

with perturbative scaling

Polarization experiments at JLAB 
showed falloff in / , 
with possible zero crossing 

Faddeev result consistent with data:
OAM in nucleon amplitude

Underway: investigate two-photon effects
via Compton scattering amplitude

Guichon, Vanderhaeghen, PRL 91 (2003) 
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two-photon corrections
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with perturbative scaling

Polarization experiments at JLAB 
showed falloff in / , 
with possible zero crossing 

Faddeev result consistent with data:
OAM in nucleon amplitude

Underway: investigate two-photon effects
via Compton scattering amplitude
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Scattering amplitudes

Scattering amplitudes from quark level:

Hadronic light-by-light scattering 
Nucleon
Compton
scattering

𝜋𝜋 scattering

GE, Fischer,  PRD 85 (2012) & 
PRD 87 (2013),  GE,  FBS 57 (2016)

DSE: Bicudo, Cotanch, 
Llanes-Estrada, Maris, 
Ribeiro, Szczepaniak, 
PRD 65 (2002),

Cotanch, Maris,  
PRD 66 (2002)

CST: Biernat, Pena, 
Ribeiro, Stadler, Gross, 
PRD 90 (2014)

Goecke, Fischer, Williams,  PLB 704 (2011),   
GE, Fischer, Heupel,  PRD 92 (2015)

Colangelo,
PoS Kaon (2008)

Colangelo,
PoS Kaon (2008)

t
channel

u
channel

s
channel

 = 0

 = 1

 = 0  =
 0

 = 4

 =
 4

Universal band

ChPT tree, 1 loop, 2 loops
ChPT + dispersion theory (2001)

DIRAC (2005)
NA48 K -> 3 π  (2005)
E865 isospin corrected
NA48 isospin-corrected

MILC (2004) 
NPLQCD (2005) 
Del Debbio (2007) 
ETM (2007) 

DSE (rainbow-ladder)
0.16

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.18 0.20 0.22 0.24 0.26
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The role of diquarks

− −

All diquark properties are calculated,
Bethe-Salpeter amplitudes:

1.5
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+−0 −−1 ++0 −+1 ++1 +0 +1 −0 −1 −1
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Mesons and ‘diquarks’ closely related: 
after taking traces, only factor 1/2 remains 
⇒ diquarks ‘less bound’ than mesons

⇔

⇔

Pseudoscalar & vector mesons
already good in rainbow-ladder

Scalar & axialvector diquarks
sufficient for nucleon and 𝛥 

Scalar & axialvector mesons
too light, repulsion beyond RL

Pseudoscalar & vector diquarks
important for remaining channels

𝐾= 𝐾=
2
1
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Baryon spectrum

)
− −

Quark-diquark with reduced pseudoscalar + vector diquarks:    GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Current-quark mass 𝑚� set by 𝑚�

𝜂 doesn’t change much

Scale 𝛬 set by 𝑓�

c adjusted to 𝜌�𝑎� splitting
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Strange baryons
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Strange baryons
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Strange baryons
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Strange baryons
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    Ω → Δ    
Σ, Ξ → N + Δ 
     Λ → N + singlets

Strange baryons similar to light baryons:

Roper, Δ(1600), Λ(1405), Λ(1520):
additional dynamics?

→ rich spectrum!

GE, Fischer,  in preparation
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The role of diquarks?

𝑎

𝑠

Doublet: 

Singlet: symmetric variable,
carries overall scale:

Mandelstam plane, 
outside: diquark poles!

Lorentz invariants can be grouped into
multiplets of the permutation group S3:
GE, Fischer, Heupel,  PRD 92 (2015)

Second doublet:

3

2M
+3

2p+2
2p+1

2p∼0S

]

ω+ 2x
)δω+ 2δx3 (

√
−

[

0S
1∼0D

]

ω−x
)δω−δx3 (

√
−

[

0S
√
1∼1D

Baryons

Covariant Faddeev equation for baryons:

3-gluon diagram vanishes 3-body effects small?

Lorentz-invariant
dressing functions

Dirac-Lorentz
tensors carry

  OAM: s, p, d,...

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Sanchis-Alepuz, Williams,  PLB 749 (2015)

++= +

+ ++

2-body kernels same as for mesons, 
no further approximations:

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602

αβγδ)p, q, P(iτ)P·P, q·q, p·, p2, q2p(if
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), ,(if 0S →   full result as before

), ,(if 0S →   same ground-state spectrum,
but diquark poles switched off!
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Scattering amplitudes

Nucleon
Compton
scattering
GE, Fischer,  PRD 85 (2012) & 
PRD 87 (2013),  GE,  FBS 57 (2016)

TPE corrections to form factors

𝛥

Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Griesshammer, McGovern, Phillips, Feldman,
Prog. Part. Nucl. Phys. 67 (2012)
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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4.2.4 Leading-order structure contributions and polarisabilities

It is gratifying that the basic low-energy theorems of Eq. (2.3) are reproduced in this EFT, but our
interest is in the predictions made by the theory for the structure-dependent amplitudes, including the
static polarisabilities αE1, βM1 and the γ’s. As just described, the leading-order HBχPT Compton-
scattering amplitude is simply the Thomson term. At NLO—O(P 3)—there are the spin-dependent
Born contributions described above, but there are also contributions from pion loops [182], specifically
the diagrams depicted in Fig. 4.3. Individually these diagrams are divergent and violate the LETs, but

t

Figure 4.3: (Colour online) O(P 3) loop diagrams in HBχPT; all orderings of vertices and crossed as
well as direct photons are implied. Vertices (shown without dots) are all from the LO Lagrangian, that

is, L(1)
πN for the nucleonic coupling and L(2)

π for the γπ couplings. These also count as ε3 and e2δ2.

the sum is finite and leaves the Born contributions intact. Thus the sum of the loop diagrams contributes
only to the structure parts of the six amplitudes and hence vanishes quadratically for A1 and A2 as
ω → 0 and as the third power of ω for A3−6. The coefficients of these terms are the polarisabilities,
and at this order they are the same for both the proton and neutron. The results, first calculated by
Bernard et al. [98, 182], are

αE1 = 10βM1 =
10αEMg

2
A

192πmπf 2
π

= 12.5 , γE1E1 = 5γM1M1 = −5γM1E2 = −5γE1M2 = − 5αEMg
2
A

96π2m2
πf

2
π

= −5.6.

(4.13)
It should be stressed that up to third order the full amplitudes, as well as the polarisabilities, are

entirely predicted in terms of the well-known quantities mπ, fπ and gA; there are no free parameters. Of
course, the best method to analyse experiments for extracting even αE1 and βM1 is the subject of this
review, but nonetheless, the many attempts made in the past to measure these quantities all come out
close to these values for both the proton and neutron; in particular, the order-of-magnitude difference
between αE1 and βM1 and their nearly isoscalar nature is not easily understood in most models. This
has long been lauded as a stunning early success of HBχPT. (As the spin polarisabilities are less well
known, it is harder to judge these predictions; see Section 4.3.)

There are a number of caveats, however. Even strictly within HBχPT, one would expect higher-
order corrections to be of order P/Λχ—around 20% if the scale of the expansion were Λχ ∼ mρ. There
is also good reason to expect that for βM1 (as well as γM1M1), the scale is actually set by the much
smaller ∆-nucleon mass difference M∆ −MN. Furthermore, in a relativistic framework, the predictions
from the diagrams in Fig. 4.3 are substantially smaller: α

(p)
E1 = 6.8, β

(p)
M1 = −1.8 [183, 184]. But, before

dismissing the success of third-order HBχPT as a fluke, we should step back and remember that the
calculation gives us full amplitudes as a function of ω, not merely the static polarisabilities. As will
be shown in more detail subsequently, the full third-order cross section extends the region in which
data can be well described substantially beyond that where the Petrun’kin cross section (Born plus
static scalar polarisabilities) is valid. In particular, it reproduces the pronounced cusp at the photopion
threshold which is seen at forward scattering angles (see Fig. 3.1). Beyond that point, the data show a
huge rise in the cross section which is obviously due to the ∆(1232) (see Fig. 3.2), and one could not
expect a theory without the ∆(1232) to work in that region.

For completeness, we should mention that a handful of calculations of polarisabilities have been
done in the framework of SU(3)×SU(3) chiral perturbation theory, involving kaons as well as pions and
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all the octet baryons. Bernard et al. calculated the spin-independent static polarisabilities in HBχPT
[185] and showed that for nucleons the effect of kaon loops was small (see also Butler and Savage [186]);
Vijaya Kumar et al. found a similar result for γ0 [187]. Dynamical polarisabilities αE1(ω) and βM1(ω)
have also been calculated at NLO in a covariant framework by Aleksejevs and Barkanova [188].

4.2.5 Structure beyond leading order

Although the ability of third-order HBχPT to qualitatively describe low-energy data is encouraging,
the lack of any free parameters limits its use as a tool to extract more information from those data.
This situation changes at fourth order, because at that order we can construct Lagrangian terms like
ψ†F µνFµνψ which are multiplied by new, undetermined LECs. Such terms give rise to photon-nucleon
seagull diagrams which contribute terms proportional to ω2 to the amplitudes A1 and A2 [189]. In the
enumeration of Ref. [181], there are actually six such terms (numbers 89-94) but in the photon-nucleon

sector only four independent combinations of LECs enter, which we can call δα
(p)
E1, δα

(n)
E1, δβ

(p)
M1 and δβ

(n)
M1

(see L(4)
πN, Eq. (4.11), and Fig. 4.4). These are contributions to the spin-independent polarisabilities

of the proton and neutron which come from non-chiral physics—for example, quark substructure, or
resonances, according to perspective, and they obviously encode the leading effects of a ∆(1232) pole.
In addition, at fourth order a new set of πN diagrams has to be included. Finally, all the N2LO terms
in the expansion of the relativistic Born contributions to A1 and A2 are also generated via fourth-order
seagulls and diagrams like those of Fig. 4.4 with either one vertex taken from L(2)

πN or with an NLO
nucleon propagator.

Figure 4.4: (Colour online) O(P 4) diagrams in HBχPT; vertices labelled as in Figs 4.2 and 4.3 with

the addition of a (magenta) diced dot for the fourth-order counterterms δα
(p)
E1 etc. of L(4)

πN. All orderings
of vertices and crossed as well as direct photons are implied. Omitted are all diagrams obtained from
those in Fig. 4.3 by substituting an NLO vertex or propagator for an LO one. These also count as ε4

and e2δ4, though the final diagram is included at one order lower if polarisabilities are fit.

Of the loop diagrams, many are 1/MN corrections to the diagrams of Fig. 4.3 (no new LECs enter
in these). However, there are also two new types of diagrams—those with magnetic-moment couplings
as well as a pion loop, and those with a pion-nucleon seagull, as shown in Fig. 4.4. In the former, the
only new LECs are the well-known proton and neutron anomalous magnetic moments. In the latter,
however, the three πN LECs c1, c2 and c3 enter.

This time, the sum of all loop diagrams does make a O(ω) contribution to the Born terms. The
contributions are exactly those which are needed to replace the chiral-limit κ(0) with the correction that
shifts κ to its experimental value at this order. In the expansion of the γN vertex, this shift comes
from a diagram in which the photon couples to a pion loop, as in the third diagram of Fig. 4.4, but in
Compton scattering this is not the only diagram which gives δκ corrections to the Born term, nor is such
a correction the only contribution from this diagram [190–192]. The O(ω2) piece of the sum of all fourth-
order loop diagrams produces a logarithmically divergent result for the spin-independent polarisabilities.
These divergences are cancelled by the divergent parts of δα

(p)
E1 etc. to leave a finite but undetermined

total fourth-order contribution to the spin-independent polarisabilities [189]. By contrast, the O(ω3)
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E.g. Jones-Scadron current 
cannot be used offshell:

∑ 𝑁, 𝑁*, 𝛥, . . .

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities

)′k(u
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Nucleon resonances

Pascalutsa, Timmermans, PRC 60 (1999)

GE, Ramalho,  in preparation
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+ +

=

=

em gauge invariance: 

spin-3/2 gauge invariance: 

invariance under 
point transformations:

no kinematic dependencies,
“minimal” basis

Need em. transition FFs

But vertices are half offshell:
need ‘consistent couplings’

Most general offshell vertices
satisfying these constraints:

∑ 𝑁, 𝑁*, 𝛥, . . .

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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Nucleon resonances
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Nucleon resonances
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Example: 
N(1535) helicity amplitudes

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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)2Q(2/1A )2Q(2/1S
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PDG

CLAS data

MAID
 

userweb.jlab.org/~mokeev/resonance_electrocouplings

Tiator, Drechsel, Kamalov, Vanderhaeghen,  EPJ 198 (2011)

∑ 𝑁, 𝑁*, 𝛥, . . .

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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Nucleon resonances
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Example: 
N(1535) helicity amplitudes

N(1535) transition FFs:
no kinematic constraints

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities

)2Q(1F )2Q(2F−

)2Q(2/1A )2Q(2/1S

]2[GeV2Q]2[GeV2Q

]2[GeV2Q]2[GeV2Q

PDG

CLAS data

MAID
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Example: 
N(1535) helicity amplitudes

N(1535) transition FFs:
no kinematic constraints

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities

)2Q(1F )2Q(2F−

)2Q(2/1A )2Q(2/1S

]2[GeV2Q]2[GeV2Q

]2[GeV2Q]2[GeV2Q
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CLAS data
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20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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N(1440)

20

JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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∆(1620)
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JP = 1
2

+ 3
2
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2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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∆(1232)
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JP = 1
2

+ 3
2

+ 1
2

− 3
2

−

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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Nucleon resonances
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N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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Nucleon resonances
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N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

∆(1910) ∆(1232) ∆(1620) ∆(1700)

∆(1600) ∆(1900) ∆(1940)

∆(1920)

TABLE X: Two- to four-star nucleon and ∆ resonances below
2 GeV for JP = 1

2

±
and 3

2

±
[? ]. The four-star resonances

are shown in bold font and the two-star resonances in gray.
In a spectroscopic notation they are labelled by the incoming
partial wave L2I,2J in elastic πN scattering; from left to right:
P11, P13, S11, D13 for the nucleon resonances with I = 1

2
and

P31, P33, S31, D33 for the ∆ resonances with I = 3
2
.

a0 for Q2 = 0 and a2 for Q2 → ∞. Naturally, the above
form has several shortcomings: we discard logarithmic
corrections, there are no particle production cuts, and
there is only one ρ pole which appears on the real axis
(although this can easily be remedied by introducing a
width). Moreover, the perturbative multipole behavior
does not necessarily imply the same power for the ρ pole,
because the microscopic implementation of gauge invari-
ance implies that vector-meson poles are additive con-
tributions to form factors [? ]. In any case, the above
parametrization should be good enough to provide rough
estimates which capture the dominant features for space-
like momenta, in particular in the low- and intermediate
region of Q2 where experimental data exist.

In the following we discuss the resonance transition
form factors one by one. Because their properties are es-
sentially determined by the spin and not the isospin, we
first consider the states with JP = 1/2± which include
both N and ∆ states. In these cases there are two tran-
sition form factors, the Dirac-like FR

1 (Q2) and Pauli-like
FR
2 (Q2) form factor. We plot them in Fig. ?? for each res-

onance discussed below, together with the corresponding
helicity amplitudes S1/2(Q

2) and A1/2(Q
2) for compari-

son. The relations between the form factors and helicity
amplitudes can be found in Eqs. (E8–E9). The bands in
the plots represent our parametrizations and the dashed
lines are the MAID parametrizations [? ]. The parame-
ters for each form factor are collected in Table ??.

N(1440): The Roper resonance is an excited state in
the JP = 1/2+ and I = 1/2 channel. As such, FR

2 (Q2)
has a zero crossing at intermediate Q2 which is also re-
covered in several theoretical calculations [? ? ? ].
As noted below Eq. (94), the standard definition of the
Dirac-like form factor F ∗

1 (Q2) has a kinematic zero at
Q2 = 0 whereas FR

1 (Q2) does not. Although this prop-
erty is implemented in the MAID fit, the derivative of
F ∗
1 (Q2) is negative which also implies a negative value

for FR
1 (0). We suspect this to be an artifact of the MAID

parametrization and work instead under the assumption
that FR

1 (0), which is positive at larger Q2, should rise
monotonically towards the ρ−meson pole.

N(1535): The parity partner of the nucleon is the
ground state in the JP = 1/2− and I = 1/2 channel
and so we expect a monotonous behavior for both form
factors. However, as noted in Ref. [? ], FR

2 (Q2) is neg-
ative, quickly falls off with Q2 and is compatible with
zero above Q2 ∼ 2 GeV2. Model calculations typically
(?) exhibit a positive value for FR

2 (Q2) but they also do
not include the ρ pole. This could suggest cancellation
effects between the vector-meson pole contributions and
the remainder which is constrained by gauge invariance,
or also large meson-cloud contributions at low Q2. In any
case, the experimental data for both form factors can still
be parametrized (?) by the form (138) and the result is
shown in Fig. ??.

N(1650): The first excited state in the JP = 1/2−

and I = 1/2 channel should mirror the properties of the
Roper resonance in the sense that FR

2 (Q2) should have a
zero crossing at intermediate Q2. However, it does not...?

∆(1620): The ground state in the JP = 1/2− and
I = 3/2 channel shares the overall properties of its isospin
partner N(1535).

Next, we discuss the JP = 3/2± resonances. They are
determined by three transition form factors FR

i (Q2) or,
equivalently, the helicity amplitudes A3/2(Q

2), A1/2(Q
2)

and S1/2(Q
2) whose relations with the form factors are

given in Eqs. (E13–E14).

∆(1232): The ∆ resonance is the lowest-lying nucleon
resonance. Here ...

∆(1600):

N(1720):

N(1520):

N(1700):

∆(1700):

[Remark: if FR
2 is negative for all (or most) of the

J = 3/2 resonances, I suggest we redefine it in the end –
there’s no need for the minus in the definition (130).]

B. Compton form factors

C. Polarizabilities
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Kinematics

Tarrach, Nuovo Cim. A28 (1975)

GE, Ramalho,
in preparation

=

= + + . . .

. . .

. . .

. . .

+ +

+ + + +

+ +

=

=

CFFs free of kinematics

systematic derivation

similar to Tarrach basis

18 CFFs 18 Compton tensors,
form minimal basis4 kinematic

variables:

= )ip(u)′p, Q,Q(i
µνX)fp(u) ¯, ω, λ−, η+η(ic

=1i

18∑

6

n Basis element

2 X1 = F1,6

2 X2 = 1
2
F1,1

4 X3 = F1,2

4 X4 = F2,6

4 X5 = F1,9

2 X6 = 1
4
G1,1

3 X7 = 1
λω

G1,24

5 X8 = ω
λ
G1,23

5 X9 = ω
λ
G1,25

n Basis element

3 X10 = F1,21 − 1
4
F1,34 + 2F1,6

3 X11 = F6,33 +
1
4
F2,33

3 X12 = F1,33

5 X13 = F2,33

5 X14 = F1,27 + 2F1,22

3 X15 = 1
λ2 F9,33

5 X16 = 1
λ2 F10,33

4 X17 = F1,23

6 X18 = F1,24

TABLE I: Transverse basis for the nucleon Compton ampli-
tude. The Fi,j and Gi,j are defined in Eq. (27) and the explicit
expressions for the first few tensors are given in Eq. (29).

The derivation of the 18 transverse tensors is straight-
forward and sketched in App. B. One starts from a set
of 32 linearly independent elementary tensors, the Kµν

i
in Table XII, and applies the constraints (24) such that
no kinematic singularities are introduced. In practice
this means eliminating 14 CFFs without any division by
kinematic factors, i.e., without introducing denominators
that depend on η+, η−, λ2, ω2, etc. Fortunately, in the
case of Compton scattering this is possible and thus the
procedure automatically generates a minimal basis.

The resulting 18 transverse basis elements Xµν
i are

lengthy combinations of the Kµν
i and given in Table XIII,

but they can be written in a compact way using the def-
initions

tµαβA = δµβAα − δµαAβ ,

εµαβA = γ5 εµαβλAλ .
(26)

These are the lowest-dimensional Lorentz tensors that
are linear in the momenta and transverse without intro-
ducing kinematic singularities. tµαβA is transverse to the

momentum Aµ and εµαβA is transverse in all Lorentz in-

dices: Aµ tµαβA = 0, Aµ εµαβA = 0, etc. With their help we
define Compton basis tensors of the form

Fµν
i,j =

1

2m2
tµαρQ′ tνβσQ

{
Kαβ

i , Kρσ
j

}
,

Gµν
i,j =

1

2m2
(tµαρQ′ ενβσQ + εµαρQ′ tνβσQ )

{
Kαβ

i , Kρσ
j

} (27)

which are dimensionless and manifestly transverse with
respect to Q′µ and Qν . They define our transverse basis
in Table I, with the Kµν

i given in Table XII.
To arrive at more explicit expressions, we further define

tµνAB = tµανA Bα = A · B δµν − BµAν ,

εµνAB = εµανA Bα = γ5 εµναβAαBβ
(28)

where Aµ, Bµ stand for the four-vectors pµ, Qµ and Q′µ.
These expressions are quadratic in the momenta and also

manifestly transverse: tµνAB = tνµBA is transverse to Aµ

and Bν whereas εµνAB = ενµBA is transverse to A and B
in both Lorentz indices. With their help the Compton
tensors in Table I take the form

Xµν
1 =

1

m4
tµαQ′p tανpQ ,

Xµν
2 =

1

m2
tµνQ′Q ,

Xµν
3 =

1

m4
tµαQ′Q′ tανQQ ,

Xµν
4 =

1

m6
tµαQ′Q′ pαpβ tβνQQ ,

Xµν
5 =

λ

m4

(
tµαQ′Q′ tανpQ + tµαQ′p tανQQ

)
,

Xµν
6 =

1

m2
εµνQ′Q ,

Xµν
7 =

1

im3

(
tµαQ′Q′ εανγQ − εµαQ′γ tανQQ

)
,

Xµν
8 =

ω

im3

(
tµαQ′Q′ εανγQ + εµαQ′γ tανQQ

)
,

(29)

etc. For Xµν
7 and Xµν

8 we have extended the defini-
tion (28) to also include γ−matrices (see Eq. (A13) for
the definition of the triple commutator):

εµνγA = γ5 εµναβγαAβ = 1
6 [γµ, γν , /A] = 1

4

{
[γµ, γν ], /A

}
.

Note that the denominators of Xµν
7,8,9,15,16 in Table I

do not lead to kinematic singularities because they are
matched by corresponding factors from the Kµν

i which
enter in Eq. (27).

By construction, all basis elements Xµν
i and Kµν

i are
even under photon crossing and charge conjugation, i.e.,
they satisfy the requirements of Eq. (22):

Xµν
i (p, Q′, Q)

!
= Xνµ

i (p, −Q, −Q′) ,

Xµν
i (p, Q′, Q)

!
= C Xνµ

i (−p, −Q, −Q′)TCT .
(30)

The systematic (anti-) symmetrization and use of com-
mutators ensure that all tensors are either even or odd
under these operations, and with appropriate prefactors
λ, ω and λω they become symmetric. Because these are
also the symmetries of the Compton amplitude, the re-
sulting CFFs are even in λ and ω so that they can depend
on these variables only quadratically. Bose symmetry
and charge conjugation amount to a permutation-group
symmetry S2 ×S2 and therefore the CFFs corresponding
to Table I are permutation-group singlets.

For a given tensor Xµν
i in Table I, the number n counts

the powers in the photon momenta. It can be read off
from the definitions (27) and the Kµν

i in Table XII: each
four-momentum Q′µ, Qµ as well as the Lorentz invariant
λ contribute n = 1, whereas ω, η+ and η− contribute
n = 2. In principle this is useful for the construction
of minimal bases, which are characterized by the lowest
overall photon momentum powers [6]: collect all linearly
independent tensors with n = 2, then proceed to n = 3,

const.=Udet,jXijU=i
′X

...

TPE

𝜔
𝜂₋

𝜂₊

VCS

GP

RCS

𝜔
𝜂₋

𝜂₊

𝜔
𝜂₋

𝜂₊

FW
D

N*

𝜔
𝜂₋

𝜂₊

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

2m2

2′Q+2Q
=+η

2m2

2′Q−2Q
=ω

2m

Q·p−=λ

2m

′Q·Q
=−η
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Lorentz-invariant
dressing functions

Dirac-Lorentz
tensors carry

  OAM: s, p, d,...

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Sanchis-Alepuz, Williams,  PLB 749 (2015)

++= +

+ ++

2-body kernels same as for mesons, 
no further approximations:

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602
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Spin polarizabilities:

Scalar polarizabilities:

7

etc. For example, for Compton scattering on a scalar
particle, which only involves the tensors Xµν

1...5, the min-
imality is tied to the alignment n = {2, 2, 4, 4, 4}. On
the one hand, it is not possible to find more than two
tensors with n = 2 unless one divides by kinematic vari-
ables, which leads to kinematic singularities in the basis
elements. On the other hand, replacing tensors in the
set by others with higher n introduces kinematic singu-
larities in the CFFs, because those higher momentum
powers must be matched by respective denominators in
the CFFs. For example, in Tarrach’s original basis [5]
the following tensor with n = 6 appears:

Fµν
1,10 =

λω

m4

(
tµαQ′Q′ tανpQ − tµαQ′p tανQQ

)
. (31)

Noting that the resulting basis is not minimal, it is subse-
quently exchanged with Xµν

4 = Fµν
2,6, which is still linearly

independent but has only n = 4. (In Tarrach’s notation,
Xµν

4 is proportional to τµν
19 and the bracket above is iden-

tical to −τµν
5 , cf. Table XIV.) Thus, one can construct

different transverse bases but only those that are free of
kinematic singularities and satisfy n = {2, 2, 4, 4, 4} are
minimal and guarantee the absence of kinematic depen-
dencies in the CFFs.

Unfortunately, for the tensors Xµν
6...18 the counting is

obscured by the contraction with the onshell spinors,
i.e., the positive-energy projectors in Eq. (5). The cor-
responding Gordon identities can raise the photon mo-
mentum powers so that the definition of n is no longer
meaningful. Scalar Compton scattering is an exception
because the first five tensors do not involve γ−matrices
and can be pulled out from Λ+(pf ) . . . Λ+(pi).

In any case, the Xi basis in Table I is minimal because
no division is necessary in its derivation (cf. App. B).
This property is signalled by the fact that all CFFs that
we give later in Tables IV, VI and IX are free of kine-
matic singularities and no kinematic factors appear in
their denominators. Any basis transformation whose de-
terminant is a constant preserves this property, i.e.

X ′
i = Uij Xj , det U = const., (32)

because otherwise the transformation would become sin-
gular in specific kinematic limits. The standard example
of a minimal basis is Tarrach’s (modified) basis [5] which
is given in Table XIV.

We have constructed the Xi basis in Table I to facili-
tate the physical interpretation:

• X1 and X2 are the Compton tensors that survive
for a pointlike scalar particle (cf. Sec. III);

• X1 and X10 are the tensors for a pointlike fermion,
such as the electron in tree-level QED (see Table IV
and the remark in Sec. IVC);

• X2 and X3 are the tensors for a scalar t−channel
exchange, i.e., the CFFs c2 and c3 have scalar poles
(cf. Sec. II in Ref. [6]);

• X6 is the tensor for pseudoscalar t−channel ex-
change and therefore c6 contains the pion pole.

C. Kinematic limits

We conclude this section with a brief discussion of the
various kinematic limits. As is well known [? ? ? ], the
18 CFFs in general kinematics collapse into four CFFs
in the forward limit, six CFFs in RCS and 12 CFFs in
VCS. With the notation in Table I and Eq. (29) these
properties are comparatively easy to derive.

In the RCS limit both photons are real (η+ = ω = 0).
In that case all instances of tµαQ′Q′ and tανQQ, which up to

factors Q′2 and Q2 are the transverse projectors, vanish
after contraction with the transverse polarization vectors:

ε∗µ(Q′) tµαQ′Q′ = Q′2 ε∗α(Q′)
Q′2=0−−−−→ 0 ,

tανQQ εν(Q) = Q2 εα(Q)
Q2=0−−−−→ 0 .

(33)

For example, one can see from Eq. (29) that the tensors
X3, X4, X5, X7 and X8 vanish in RCS. In total only
six tensors are non-zero, namely X1, X2, X6, X10, X11

and X12, and thus the RCS amplitude is described by
the corresponding six CFFs which depend on η− and λ2.
Their relations with the RCS amplitudes Ai defined in
Refs. [7, 8] can be found in Table XVI in the appendix.
In the limit η− → 0 and λ → 0 they are related with the
nucleon’s static polarizabilities: the electric and magnetic
polarizabilities α and β,

[
α + β

β

]
= −αem

m3

[
c1
c2

]
, (34)

and the four spin polarizabilities




γE1E1

γM1M1

γE1M2

γM1E2


 =

αem

2m4




c6 + 4c11 − 4c12
−c6 − 2c10 + 4c12

c6 + 2c10
−c6


 . (35)

The forward polarizability γ0 and so-called pion polariz-
ability γπ are their linear combinations

[
γ0
γπ

]
= −2αem

m4

[
c11

c6 + c10 + c11 − 2c12

]
. (36)

The magnitudes of the CFFs in this limit can be re-
constructed from the experimental results for the polar-
izabilities as well as from ChPT and dispersion relations;
see e.g. Table 8 in Ref. [9] and Table 4.2 in [4] for com-
pilations. For example, the O(p3) ChPT calculations for
the polarizabilities [10, 11] yield

[
c1
c2

]
= −C πmgA

4mπ

[
11

1

]
,




c6
c10
c11
c12


 = C m2

m2
π




12 − gA
gA

−gA
0


 ,

(37)
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etc. For example, for Compton scattering on a scalar
particle, which only involves the tensors Xµν

1...5, the min-
imality is tied to the alignment n = {2, 2, 4, 4, 4}. On
the one hand, it is not possible to find more than two
tensors with n = 2 unless one divides by kinematic vari-
ables, which leads to kinematic singularities in the basis
elements. On the other hand, replacing tensors in the
set by others with higher n introduces kinematic singu-
larities in the CFFs, because those higher momentum
powers must be matched by respective denominators in
the CFFs. For example, in Tarrach’s original basis [5]
the following tensor with n = 6 appears:

Fµν
1,10 =

λω

m4

(
tµαQ′Q′ tανpQ − tµαQ′p tανQQ

)
. (31)

Noting that the resulting basis is not minimal, it is subse-
quently exchanged with Xµν

4 = Fµν
2,6, which is still linearly

independent but has only n = 4. (In Tarrach’s notation,
Xµν

4 is proportional to τµν
19 and the bracket above is iden-

tical to −τµν
5 , cf. Table XIV.) Thus, one can construct

different transverse bases but only those that are free of
kinematic singularities and satisfy n = {2, 2, 4, 4, 4} are
minimal and guarantee the absence of kinematic depen-
dencies in the CFFs.

Unfortunately, for the tensors Xµν
6...18 the counting is

obscured by the contraction with the onshell spinors,
i.e., the positive-energy projectors in Eq. (5). The cor-
responding Gordon identities can raise the photon mo-
mentum powers so that the definition of n is no longer
meaningful. Scalar Compton scattering is an exception
because the first five tensors do not involve γ−matrices
and can be pulled out from Λ+(pf ) . . . Λ+(pi).

In any case, the Xi basis in Table I is minimal because
no division is necessary in its derivation (cf. App. B).
This property is signalled by the fact that all CFFs that
we give later in Tables IV, VI and IX are free of kine-
matic singularities and no kinematic factors appear in
their denominators. Any basis transformation whose de-
terminant is a constant preserves this property, i.e.

X ′
i = Uij Xj , det U = const., (32)

because otherwise the transformation would become sin-
gular in specific kinematic limits. The standard example
of a minimal basis is Tarrach’s (modified) basis [5] which
is given in Table XIV.

We have constructed the Xi basis in Table I to facili-
tate the physical interpretation:

• X1 and X2 are the Compton tensors that survive
for a pointlike scalar particle (cf. Sec. III);

• X1 and X10 are the tensors for a pointlike fermion,
such as the electron in tree-level QED (see Table IV
and the remark in Sec. IVC);

• X2 and X3 are the tensors for a scalar t−channel
exchange, i.e., the CFFs c2 and c3 have scalar poles
(cf. Sec. II in Ref. [6]);

• X6 is the tensor for pseudoscalar t−channel ex-
change and therefore c6 contains the pion pole.

C. Kinematic limits

We conclude this section with a brief discussion of the
various kinematic limits. As is well known [? ? ? ], the
18 CFFs in general kinematics collapse into four CFFs
in the forward limit, six CFFs in RCS and 12 CFFs in
VCS. With the notation in Table I and Eq. (29) these
properties are comparatively easy to derive.

In the RCS limit both photons are real (η+ = ω = 0).
In that case all instances of tµαQ′Q′ and tανQQ, which up to

factors Q′2 and Q2 are the transverse projectors, vanish
after contraction with the transverse polarization vectors:

ε∗µ(Q′) tµαQ′Q′ = Q′2 ε∗α(Q′)
Q′2=0−−−−→ 0 ,

tανQQ εν(Q) = Q2 εα(Q)
Q2=0−−−−→ 0 .

(33)

For example, one can see from Eq. (29) that the tensors
X3, X4, X5, X7 and X8 vanish in RCS. In total only
six tensors are non-zero, namely X1, X2, X6, X10, X11

and X12, and thus the RCS amplitude is described by
the corresponding six CFFs which depend on η− and λ2.
Their relations with the RCS amplitudes Ai defined in
Refs. [7, 8] can be found in Table XVI in the appendix.
In the limit η− → 0 and λ → 0 they are related with the
nucleon’s static polarizabilities: the electric and magnetic
polarizabilities α and β,

[
α + β

β

]
= −αem

m3

[
c1
c2

]
, (34)

and the four spin polarizabilities




γE1E1

γM1M1

γE1M2

γM1E2


 =

αem

2m4


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c6 + 4c11 − 4c12
−c6 − 2c10 + 4c12

c6 + 2c10
−c6


 . (35)

The forward polarizability γ0 and so-called pion polariz-
ability γπ are their linear combinations

[
γ0
γπ

]
= −2αem

m4

[
c11

c6 + c10 + c11 − 2c12

]
. (36)

The magnitudes of the CFFs in this limit can be re-
constructed from the experimental results for the polar-
izabilities as well as from ChPT and dispersion relations;
see e.g. Table 8 in Ref. [9] and Table 4.2 in [4] for com-
pilations. For example, the O(p3) ChPT calculations for
the polarizabilities [10, 11] yield

[
c1
c2

]
= −C πmgA

4mπ

[
11

1

]
,




c6
c10
c11
c12


 = C m2

m2
π




12 − gA
gA

−gA
0


 ,

(37)
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etc. For example, for Compton scattering on a scalar
particle, which only involves the tensors Xµν

1...5, the min-
imality is tied to the alignment n = {2, 2, 4, 4, 4}. On
the one hand, it is not possible to find more than two
tensors with n = 2 unless one divides by kinematic vari-
ables, which leads to kinematic singularities in the basis
elements. On the other hand, replacing tensors in the
set by others with higher n introduces kinematic singu-
larities in the CFFs, because those higher momentum
powers must be matched by respective denominators in
the CFFs. For example, in Tarrach’s original basis [5]
the following tensor with n = 6 appears:

Fµν
1,10 =

λω

m4

(
tµαQ′Q′ tανpQ − tµαQ′p tανQQ

)
. (31)

Noting that the resulting basis is not minimal, it is subse-
quently exchanged with Xµν

4 = Fµν
2,6, which is still linearly

independent but has only n = 4. (In Tarrach’s notation,
Xµν

4 is proportional to τµν
19 and the bracket above is iden-

tical to −τµν
5 , cf. Table XIV.) Thus, one can construct

different transverse bases but only those that are free of
kinematic singularities and satisfy n = {2, 2, 4, 4, 4} are
minimal and guarantee the absence of kinematic depen-
dencies in the CFFs.

Unfortunately, for the tensors Xµν
6...18 the counting is

obscured by the contraction with the onshell spinors,
i.e., the positive-energy projectors in Eq. (5). The cor-
responding Gordon identities can raise the photon mo-
mentum powers so that the definition of n is no longer
meaningful. Scalar Compton scattering is an exception
because the first five tensors do not involve γ−matrices
and can be pulled out from Λ+(pf ) . . . Λ+(pi).

In any case, the Xi basis in Table I is minimal because
no division is necessary in its derivation (cf. App. B).
This property is signalled by the fact that all CFFs that
we give later in Tables IV, VI and IX are free of kine-
matic singularities and no kinematic factors appear in
their denominators. Any basis transformation whose de-
terminant is a constant preserves this property, i.e.

X ′
i = Uij Xj , det U = const., (32)

because otherwise the transformation would become sin-
gular in specific kinematic limits. The standard example
of a minimal basis is Tarrach’s (modified) basis [5] which
is given in Table XIV.

We have constructed the Xi basis in Table I to facili-
tate the physical interpretation:

• X1 and X2 are the Compton tensors that survive
for a pointlike scalar particle (cf. Sec. III);

• X1 and X10 are the tensors for a pointlike fermion,
such as the electron in tree-level QED (see Table IV
and the remark in Sec. IVC);

• X2 and X3 are the tensors for a scalar t−channel
exchange, i.e., the CFFs c2 and c3 have scalar poles
(cf. Sec. II in Ref. [6]);

• X6 is the tensor for pseudoscalar t−channel ex-
change and therefore c6 contains the pion pole.

C. Kinematic limits

We conclude this section with a brief discussion of the
various kinematic limits. As is well known [? ? ? ], the
18 CFFs in general kinematics collapse into four CFFs
in the forward limit, six CFFs in RCS and 12 CFFs in
VCS. With the notation in Table I and Eq. (29) these
properties are comparatively easy to derive.

In the RCS limit both photons are real (η+ = ω = 0).
In that case all instances of tµαQ′Q′ and tανQQ, which up to

factors Q′2 and Q2 are the transverse projectors, vanish
after contraction with the transverse polarization vectors:

ε∗µ(Q′) tµαQ′Q′ = Q′2 ε∗α(Q′)
Q′2=0−−−−→ 0 ,

tανQQ εν(Q) = Q2 εα(Q)
Q2=0−−−−→ 0 .

(33)

For example, one can see from Eq. (29) that the tensors
X3, X4, X5, X7 and X8 vanish in RCS. In total only
six tensors are non-zero, namely X1, X2, X6, X10, X11

and X12, and thus the RCS amplitude is described by
the corresponding six CFFs which depend on η− and λ2.
Their relations with the RCS amplitudes Ai defined in
Refs. [7, 8] can be found in Table XVI in the appendix.
In the limit η− → 0 and λ → 0 they are related with the
nucleon’s static polarizabilities: the electric and magnetic
polarizabilities α and β,

[
α + β

β

]
= −αem

m3

[
c1
c2

]
, (34)

and the four spin polarizabilities




γE1E1

γM1M1

γE1M2

γM1E2


 =

αem

2m4




c6 + 4c11 − 4c12
−c6 − 2c10 + 4c12

c6 + 2c10
−c6


 . (35)

The forward polarizability γ0 and so-called pion polariz-
ability γπ are their linear combinations

[
γ0
γπ

]
= −2αem

m4

[
c11

c6 + c10 + c11 − 2c12

]
. (36)

The magnitudes of the CFFs in this limit can be re-
constructed from the experimental results for the polar-
izabilities as well as from ChPT and dispersion relations;
see e.g. Table 8 in Ref. [9] and Table 4.2 in [4] for com-
pilations. For example, the O(p3) ChPT calculations for
the polarizabilities [10, 11] yield

[
c1
c2

]
= −C πmgA

4mπ

[
11

1

]
,




c6
c10
c11
c12


 = C m2

m2
π




12 − gA
gA

−gA
0


 ,

(37)
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Covariant Faddeev equation for baryons:

3-gluon diagram vanishes 3-body effects small?

Lorentz-invariant
dressing functions

Dirac-Lorentz
tensors carry

  OAM: s, p, d,...

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Sanchis-Alepuz, Williams,  PLB 749 (2015)

++= +

+ ++

2-body kernels same as for mesons, 
no further approximations:

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602
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i

∑
) =p, q, P(αβγδΨ
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7

etc. For example, for Compton scattering on a scalar
particle, which only involves the tensors Xµν

1...5, the min-
imality is tied to the alignment n = {2, 2, 4, 4, 4}. On
the one hand, it is not possible to find more than two
tensors with n = 2 unless one divides by kinematic vari-
ables, which leads to kinematic singularities in the basis
elements. On the other hand, replacing tensors in the
set by others with higher n introduces kinematic singu-
larities in the CFFs, because those higher momentum
powers must be matched by respective denominators in
the CFFs. For example, in Tarrach’s original basis [5]
the following tensor with n = 6 appears:

Fµν
1,10 =

λω

m4

(
tµαQ′Q′ tανpQ − tµαQ′p tανQQ

)
. (31)

Noting that the resulting basis is not minimal, it is subse-
quently exchanged with Xµν

4 = Fµν
2,6, which is still linearly

independent but has only n = 4. (In Tarrach’s notation,
Xµν

4 is proportional to τµν
19 and the bracket above is iden-

tical to −τµν
5 , cf. Table XIV.) Thus, one can construct

different transverse bases but only those that are free of
kinematic singularities and satisfy n = {2, 2, 4, 4, 4} are
minimal and guarantee the absence of kinematic depen-
dencies in the CFFs.

Unfortunately, for the tensors Xµν
6...18 the counting is

obscured by the contraction with the onshell spinors,
i.e., the positive-energy projectors in Eq. (5). The cor-
responding Gordon identities can raise the photon mo-
mentum powers so that the definition of n is no longer
meaningful. Scalar Compton scattering is an exception
because the first five tensors do not involve γ−matrices
and can be pulled out from Λ+(pf ) . . . Λ+(pi).

In any case, the Xi basis in Table I is minimal because
no division is necessary in its derivation (cf. App. B).
This property is signalled by the fact that all CFFs that
we give later in Tables IV, VI and IX are free of kine-
matic singularities and no kinematic factors appear in
their denominators. Any basis transformation whose de-
terminant is a constant preserves this property, i.e.

X ′
i = Uij Xj , det U = const., (32)

because otherwise the transformation would become sin-
gular in specific kinematic limits. The standard example
of a minimal basis is Tarrach’s (modified) basis [5] which
is given in Table XIV.

We have constructed the Xi basis in Table I to facili-
tate the physical interpretation:

• X1 and X2 are the Compton tensors that survive
for a pointlike scalar particle (cf. Sec. III);

• X1 and X10 are the tensors for a pointlike fermion,
such as the electron in tree-level QED (see Table IV
and the remark in Sec. IVC);

• X2 and X3 are the tensors for a scalar t−channel
exchange, i.e., the CFFs c2 and c3 have scalar poles
(cf. Sec. II in Ref. [6]);

• X6 is the tensor for pseudoscalar t−channel ex-
change and therefore c6 contains the pion pole.

C. Kinematic limits

We conclude this section with a brief discussion of the
various kinematic limits. As is well known [? ? ? ], the
18 CFFs in general kinematics collapse into four CFFs
in the forward limit, six CFFs in RCS and 12 CFFs in
VCS. With the notation in Table I and Eq. (29) these
properties are comparatively easy to derive.

In the RCS limit both photons are real (η+ = ω = 0).
In that case all instances of tµαQ′Q′ and tανQQ, which up to

factors Q′2 and Q2 are the transverse projectors, vanish
after contraction with the transverse polarization vectors:

ε∗µ(Q′) tµαQ′Q′ = Q′2 ε∗α(Q′)
Q′2=0−−−−→ 0 ,

tανQQ εν(Q) = Q2 εα(Q)
Q2=0−−−−→ 0 .

(33)

For example, one can see from Eq. (29) that the tensors
X3, X4, X5, X7 and X8 vanish in RCS. In total only
six tensors are non-zero, namely X1, X2, X6, X10, X11

and X12, and thus the RCS amplitude is described by
the corresponding six CFFs which depend on η− and λ2.
Their relations with the RCS amplitudes Ai defined in
Refs. [7, 8] can be found in Table XVI in the appendix.
In the limit η− → 0 and λ → 0 they are related with the
nucleon’s static polarizabilities: the electric and magnetic
polarizabilities α and β,

[
α + β

β

]
= −αem

m3

[
c1
c2

]
, (34)

and the four spin polarizabilities




γE1E1

γM1M1

γE1M2

γM1E2


 =

αem

2m4




c6 + 4c11 − 4c12
−c6 − 2c10 + 4c12

c6 + 2c10
−c6


 . (35)

The forward polarizability γ0 and so-called pion polariz-
ability γπ are their linear combinations

[
γ0
γπ

]
= −2αem

m4

[
c11

c6 + c10 + c11 − 2c12

]
. (36)

The magnitudes of the CFFs in this limit can be re-
constructed from the experimental results for the polar-
izabilities as well as from ChPT and dispersion relations;
see e.g. Table 8 in Ref. [9] and Table 4.2 in [4] for com-
pilations. For example, the O(p3) ChPT calculations for
the polarizabilities [10, 11] yield

[
c1
c2

]
= −C πmgA

4mπ

[
11

1

]
,




c6
c10
c11
c12


 = C m2

m2
π




12 − gA
gA

−gA
0


 ,

(37)

Hagelstein, Miskimen, Pascalutsa,
Prog. Part. Nucl. Phys. 88 (2016)

PDG: 
  �𝑐� = 20.3(4)
  �𝑐� =   3.7(6) 

Large ∆(1232) contribution, 
but also N(1520) non-negligible
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Baryons

Covariant Faddeev equation for baryons:

3-gluon diagram vanishes 3-body effects small?

Lorentz-invariant
dressing functions

Dirac-Lorentz
tensors carry

  OAM: s, p, d,...

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Sanchis-Alepuz, Williams,  PLB 749 (2015)

++= +

+ ++

2-body kernels same as for mesons, 
no further approximations:

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602
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Compton scattering

GE, Ramalho,
in preparation

⟷

+ +

=

= + + . . .

. . .

. . .

. . .

+ +

+ + + +

+ +

=

=

general offshell transition vertices

constraint-free transition FFs
�ts for transition FFs

impact of higher resonances on Compton FFs

only ∆(1232) and N(1520) relevant for polarizabilities

kinematic variables
tensor basis

constraint-free Compton FFs

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

𝑁*
𝑁

𝑁, 𝑁*, 𝛥, . . .

𝑇
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Meson electroproduction?

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,  PPNP 91 (2016)

⟷
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=

How important is the “QCD background”?

kinematic variables
tensor basis

constraint-free electroproduction amplitudes

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

𝑁, 𝑁*, 𝛥, . . .

𝑇
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Developing numerical tools

Rare pion decay 𝜋⁰ → 𝑒⁺𝑒⁻: Photon and lepton poles produce branch cuts in complex plane: 
deform integration contour!

0π

γ

γ

+e

−e

Algorithm is stable & efficient

Result agrees with dispersion relations

Can be applied to any integral 
as long as singularity locations known
Weil, GE, Fischer, Williams,  PRD 96 (2017)

→ talk by Richard Williams

10 17

22−

Re 𝜎

Im 𝜎

0.010.00-0.01

-0.01

 0.00

 0.01

0.02 0.03

𝑡

8

TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.

γ(k)

γ(k − P )

e−

e+

γ

Fπ0γγFπ0γγ

e+(p)

e−(p)
γ(k)

γ(k − q)

π0(q) π0

γ(k4)

γ(k5)

e−(p1)

e+(p2)

π0(P ) p1 − k

γ(Q)

γ(Q′)

π0(∆)

e+(pf )

e−(pi)

FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

2′Q

1
2Q

1
2m+2k

1· · ·dz
∫

dσ
∫

) =t(A
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Tetraquarks

Light scalar mesons 𝜎, 𝜅, 𝑎₀, 𝑓₀ as tetraquarks:
solution of four-body equation reproduces mass pattern
GE, Fischer, Heupel,  PLB 753 (2016)

BSE dynamically generates 
meson poles in wave function:

Four quarks rearrange
to “meson molecule”

perm.
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→

Similar in meson-meson / 
diquark-antidiquark approximation
(analogue of quark-diquark for baryons) 
Heupel, GE, Fischer,  PLB 718 (2012)

+

→ Christian Fischer
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Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

6 ground states, one of them deuteron

Dibaryons vs. hidden color?

Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

Dyson, Xuong, PRL 13 (1964)

Bashkanov, Brodsky, Clement, PLB 727 (2013)

Weise, Nucl. Phys. A805 (2008)

NN potential

r

short 
distance

two-pion
exchange

one-pion
exchange

only quarks and gluons

quark interchange
and pion exchange
automatically included

dibaryon exchanges

s
channel

t
channel

u
channel

 = 4

 = 0

 = 4  = 0 =
 4 =
 0

(a)

(b)

= = =

(a) (b) (c)Six quarks Two baryons Three diquarks?

→= = =

(a) (b) (c)Six quarks Two baryons Three diquarks?
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Backup slides

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
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Now let’s express the ‘pole variables’ in terms of these.
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• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
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Resonances?

𝑀 𝑀

𝜌 � 𝜋𝜋:  resonance dynamics 
only beyond rainbow-ladder, 
would shift 𝜌 pole into complex plane
(above 𝜋𝜋 threshold)    

But 𝜌 decay width 
already calculable 
in rainbow-ladder

References:  GE et al., PPNP 91 (2016) 1606.09602  
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Bethe-Salpeter equations

Simplest: Wick-Cutkosky model

But:

bound states for 𝑀 < 2𝑚  

scalar tree-level propagators,
scalar exchange particle

not a consistent QFT:
would need to solve DSEs for 
propagators, vertices etc. 

no confinement: threshold 2𝑚
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Form factors

Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

!!
But: pion-cloud cancels in 𝜅�  ⟺ quark core 

       Exp:    𝜅� = –0.12   
Calc:   𝜅� = –0.12(1)

Nucleon charge radii: 
isovector (p-n) Dirac (F1) radius

Pion-cloud effects missing 
(⇒ divergence!), agreement with 
lattice at larger quark masses. GE,  PRD 84 (2011)

 [ ]  [ ]

[ ] [ ]

[ ]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(  )

LHPC (Syritsyn 10, 
Bratt 10, Green 14)

Lattice:

RBC/UKQCD (Yamazaki 09)

PNDME (Bhattacharya 14)

Lin 10

QCDSF (Collins 11)

ETMC (Alexandrou 13, 
Abdel-Rehim 15)

DSE PDG

Gernot Eichmann (IST Lisboa) April 30, 2018 33 / 33



Lattice vs. DSE / BSE

Full dynamics 
contained in path integral

Proper treatment of 
resonances essential

Simpler access to position-space  
and gluonic operators 

Precision! Can tell us about underlying dynamics!

Simpler access to multi-scale problems 
and higher n-point functions

Resonance dynamics
“on top of” quark-gluon dynamics

Dynamics constructed from
underlying n-point functions

Lattice DSE / BSE

. . .〉N|D ψ/ψ̄|N〈 ∼ +

Re

Im

2P

2P

N(940)

Re

Im

2P

2P

N(940)
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nPI effective action

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=

η+ + ω

4
, τ ′ =

Q′2
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=
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4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=
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4
, τ ′ =

Q′2
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=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have
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A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.
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• Polarizabilities: η+ = η− = ω = λ = 0.
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sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
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tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
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The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

⇒

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

So we arrive at a closed system of equations:

Crossed ladder 
cannot be added by hand,
requires vertex correction!

Similar in QCD. nPI truncation
guarantees chiral symmetry,
massless pion in chiral limit, etc.

without 3-loop term: 
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with tree-level vertex ⇒ 2PI
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− are even under photon crossing and charge conjuga-
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tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2
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=
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4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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tween Lorentz-invariant quantities, such as the Compton
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=
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4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2
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=

η+ + ω

4
, τ ′ =

Q′2
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

⇒

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

So we arrive at a closed system of equations:

Crossed ladder 
cannot be added by hand,
requires vertex correction!

Similar in QCD. nPI truncation
guarantees chiral symmetry,
massless pion in chiral limit, etc.

without 3-loop term: 
rainbow-ladder 
with tree-level vertex ⇒ 2PI

but still requires DSE solutions
for propagators!

4
1+−

−

−

2
1+

2
1

=2Γ

-1 -1

-1 -1

= +

+=

=

=

see:  Sanchis-Alepuz & Williams,
J. Phys. Conf. Ser. 631 (2015),  arXiv:1503.05896  and refs therein
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Baryon spectrum I

)
− −

Three-quark vs. quark-diquark in rainbow-ladder:    GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

# levels compatible with experiment: no states missing  

N, ∆ and their 1st excitations (including Roper) agree with experiment

qqq and q-dq agrees: N, ∆, Roper, N(1535)

But remaining states too low ⇒ wrong level ordering between Roper and N(1535)
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Baryon spectrum

)
− −

Quark-diquark with reduced pseudoscalar + vector diquarks:    GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Current-quark mass 𝑚� set by 𝑚�

𝜂 doesn’t change much

Scale 𝛬 set by 𝑓�

c adjusted to 𝜌�𝑎� splitting

PDG
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Baryon spectrum
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dynamics of ps diquark produces 
2 nearby states: N(1535), N(1650)

Level ordering between
Roper and N(1535):
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Resonances

)
− −

Current-mass evolution of Roper:
GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Branch cuts & widths generated by 
meson-baryon interactions: Roper → 𝑁𝜋 , etc.

Lattice: finite volume, DSE (so far): bound states
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‘Pion cloud’ effects difficult to implement 
at quark-gluon level: 

Resonance dynamics 
shifts poles into complex plane, 
but effects on real parts small?
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QED

Γ−e=S−e]ψ,A¯ψ,[D
∫

QED’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig+∂/ (ψ̄

[
x4d

∫
=

=

S

g

-1 -1 -1 -1

Perturbation theory: expand Green functions
in powers of the coupling

-1

-1

-1

-1

mass
function

running 
coupling

anomalous 
magnetic moment

+=

+=

+= + ...

+ ...

+ ...

π2

α(0) =2F

m+p/i

µγ

νpµp−µνδ2p

)
)2p(M+p/i)2p(A

. . .+νQµνσm2
2F−µγ1F

)
νpµp−µνδ2p1− )2p(D

2m−

m
)2Q(M
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)2Q(α
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137
1=α
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QED

Γ−e=S−e]ψ,A¯ψ,[D
∫

QED’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig+∂/ (ψ̄

[
x4d

∫
=

=

S

g

-1 -1 -1 -1

Perturbation theory: expand Green functions
in powers of the coupling

Light-by-light
scattering

Compton 
scattering

Moller 
scattering

+ ...

+ ...

+ ...

=

+=

=

⟹ extremely precise 
     theory predictions!
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Dynamical quark mass

Quark DSE: determines quark propagator, 
input → gluon propagator, quark-gluon vertex

General form of dressed quark propagator:

Reproduces perturbation theory:

Generates 𝑀(𝑝�) � 0  even in chiral limit. 
Cannot happen in perturbation theory!

))2p(M+p/i) (2p(A) =p(1−S

)2p(2M+2p

)2p(M+p/i−
)2p(A

1) =p(S

52 Hadrons

δ−function which is peaked at vanishing gluon momentum kµ = 0, with a bare quark-
gluon vertex. The self-energy integral can now be easily evaluated:

S−1(p) − S−1
0 (p) = Λ2 γµS(p)γµ = Λ2 2i/p + 4M

(p2 + M2) A
, (2.102)

A(p2) and M(p2) — we suppressed their momentum dependencies above for brevity —
are the dressing functions of the quark propagator for the Dirac structures i/p and 1.
Eq. (??) leads to selfconsistent equations for these two functions:

A = 1 +
2Λ2

(p2 + M2) A
, AM = m0 + 2M

2Λ2

(p2 + M2) A
. (2.103)

In the chiral limit (m0 = 0), we obtain two possible solutions:

M(p2) =
√

Λ2 − p2 ,

A(p2) = 2
or

M(p2) = 0 ,

A(p2) = 1
2

(
1 +

√
1 + 8 Λ2/p2

)
.

(2.104)

The second solution satisfies A
p2→∞−−−−→ 1, hence it is the perturbative solution with a

vanishing quark mass function that preserves chiral symmetry. The first solution breaks
chiral symmetry spontaneously and is the infrared solution. The quark condensate in
the chiral limit is proportional to Λ3:

−〈q̄q〉 = NC

∫
d4p

(2π)4
Tr S(p) = 2NC

∫
d4p

(2π)4
M(p2)

p2 + M(p2)2

=
NC

8π4

Λ2∫

0

dp2p2
√

Λ2 − p2

Λ2
=

2

15

NC

(2π)2
Λ3 .

(2.105)

The combined solutions are plotted in Fig. ??, and they are qualitatively similar to
more realistic DSE calculations. If we insert Λ = 1 GeV, we even get a reasonable
value for the quark condensate: −〈q̄q〉 ∼ (220 MeV)3. Note that in there is no critical
coupling in the Munczek-Nemirovsky model: an infrared solution for the quark mass
function and consequently also a chiral condensate exist as long as Λ > 0.

2.8 U(1)A anomaly

As with the axial vector anomaly, eaeh derivation of the anomaly with a different
regulator, taken individually, seems artificial, as if there were a problem with the field
theory that we are not quite clever enough to fix. Eventually, though, we are foreed to
eonclude that the quantum field theory is trying to tell us something. The anomalous
symmetries of the classical theory eannot be promoted to symmetries of the quantum
theory. Instead, the anomalous eonservation laws require profound and qualitative
ehanges in the theory from the classical to the quantum level.

U(1) axial symmetry (singlet, octet) is anomalously broken - functional measure is
not invariant. The respective current picks up an anomalous term that depends on
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2.8 U(1)A anomaly

As with the axial vector anomaly, eaeh derivation of the anomaly with a different
regulator, taken individually, seems artificial, as if there were a problem with the field
theory that we are not quite clever enough to fix. Eventually, though, we are foreed to
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Dynamical quark mass

Quark DSE becomes

Two solutions in chiral limit: IR + UV

Another extreme case: NJL model,
gluon propagator = const,
𝑀(𝑝�) = const, but critical behavior

leads to self-consistent equations for A, M:

Quark condensate:

Simplest example: Munczek-Nemirovsky model
Gluon propagator = 𝛿-function, analytically solvable

S−1(p) − S−1
0 (p) = Λ2 γµS(p)γµ = Λ2 2i/p + 4M

(p2 + M2) A

A = 1 +
2Λ2

(p2 + M2) A
, AM = m0 + 2M

2Λ2

(p2 + M2) A
(2.103)
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The combined solutions are plotted in Fig. ??, and they are qualitatively similar to
more realistic DSE calculations. If we insert Λ = 1 GeV, we even get a reasonable
value for the quark condensate: −〈q̄q〉 ∼ (220 MeV)3. Note that in there is no critical
coupling in the Munczek-Nemirovsky model: an infrared solution for the quark mass
function and consequently also a chiral condensate exist as long as Λ > 0.

2.8 U(1)A anomaly

As with the axial vector anomaly, eaeh derivation of the anomaly with a different
regulator, taken individually, seems artificial, as if there were a problem with the field
theory that we are not quite clever enough to fix. Eventually, though, we are foreed to
eonclude that the quantum field theory is trying to tell us something. The anomalous
symmetries of the classical theory eannot be promoted to symmetries of the quantum
theory. Instead, the anomalous eonservation laws require profound and qualitative
ehanges in the theory from the classical to the quantum level.
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The combined solutions are plotted in Fig. ??, and they are qualitatively similar to
more realistic DSE calculations. If we insert Λ = 1 GeV, we even get a reasonable
value for the quark condensate: −〈q̄q〉 ∼ (220 MeV)3. Note that in there is no critical
coupling in the Munczek-Nemirovsky model: an infrared solution for the quark mass
function and consequently also a chiral condensate exist as long as Λ > 0.

2.8 U(1)A anomaly

As with the axial vector anomaly, eaeh derivation of the anomaly with a different
regulator, taken individually, seems artificial, as if there were a problem with the field
theory that we are not quite clever enough to fix. Eventually, though, we are foreed to
eonclude that the quantum field theory is trying to tell us something. The anomalous
symmetries of the classical theory eannot be promoted to symmetries of the quantum
theory. Instead, the anomalous eonservation laws require profound and qualitative
ehanges in the theory from the classical to the quantum level.

U(1) axial symmetry (singlet, octet) is anomalously broken - functional measure is
not invariant. The respective current picks up an anomalous term that depends on
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Dynamical quark mass

Simplest realistic example: rainbow-ladder

Tree-level quark-gluon vertex + effective interaction: 

All dimensionful quantities ~ 𝛬 in chiral limit
⇒  mass generation for hadrons! 

If strength is large enough (                ): DCSB 

-1 = -1 +
𝑝 𝑞

𝑘

critα > α
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Quark mass 
function [GeV]:

𝑝� [𝐺𝑒𝑉�]

Also 𝑓� ~ 𝛬  ⇒  𝑚� = 0  in chiral limit!
⇒  massless Goldstone bosons!

νγ
)

2k

νkµk−µνδ2k

)2k(α∼ µγ)k(4δ2Λ−→ ∼)p, q(ν) Γk(µνD

Maris,  Tandy, PRC 60 (1999)

𝛼 (𝑘  ) = 𝛼���        , 𝜂� + 𝛼��(𝑘²)  2 𝑘²
𝛬²

adjust scale 𝛬 to observable, 
keep width 𝜂 as parameter
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Classical PCAC relation for                :

At quantum level:
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Extracting resonances

Sato-Lee/EBAC/ANL-Osaka,  Dubna-Mainz-Taiwan,  Valencia,  Jülich-Bonn,  GSI,
JLab,  MAID,  SAID,  KSU,  Giessen,  Bonn-Gatchina, JPAC, . . .

Hadronic coupled-channel equations:

=

= =

+

+ +

= =+ +

V

-1 -1

T = +

Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
the equations at the bottom. Note that the loop diagram in the vertex equation can be equally written in terms of the background Nπ
scattering matrix and a bare vertex (instead of the background Nπ potential and a dressed vertex).

Being Lorentz invariant, they are again identical in Euclidean and Minkowski conventions. As illustrated in
Fig. 2.5 for the N(1535) transition, if the form factors are free of kinematic constraints the helicity amplitudes
must have kinematic zeros: a naive parametrization of the experimental form factors F1 and F2 by a vector-
meson bump produces kinematic zeros for A1/2 and S1/2 at λ± = 0 ⇔ τ = −δ2± and beyond those points
they become imaginary. The analogous relations for the JP = 3/2± transition currents defined later in (4.60),
expressed in terms of the Jones-Scadron form factors GM (Q2), GE(Q2) and GC(Q2), read [53, 54]

[
GM

GE

]
= −

A1/2 +
√

3 A3/2

2δ±R∓
,

[
GE

GM

]
=

A1/2 − 1√
3
A3/2

2δ±R∓
, GC =

mR

γm

S1/2

2δ±R∓
. (2.19)

Analysis of experimental results. While the bump landscape in the experimentally measured structure func-
tions in (2.12) provides a basic indication of the underlying baryon spectrum, the detailed extraction of baryon
properties requires a more sophisticated toolbox. Several analysis tools have been developed and are still under
development to achieve this task. They can be roughly categorised as reaction models, which assume a certain
reaction mechanism and determine resonance observables by fitting a large set of parameters to the experimen-
tal multipole amplitudes, and dynamical coupled-channel models which aim at a self-consistent description of
the reaction dynamics. In the following we will sketch the basic ideas behind these approaches and refer to
Refs. [4, 11, 13, 55, 56] for details and a comprehensive list of references.

The common goal is to calculate the T-matrix or, equivalently, its multipole expansion in terms of interaction
potentials Vij , which are split into a non-resonant background and resonant contributions. The background
potentials are typically derived from the tree-level diagrams of chiral effective Lagrangians and contain the nu-
cleon Born terms together with the u-channel resonances and t-channel meson exchanges in Fig. 2.2; the res-
onant s-channel diagrams encode the N∗ exchanges together with their couplings to the photons and mesons.
Upon selecting the channel space (Nγ, Nπ, Nη, ∆π, Nρ, Nσ etc.), one can establish a system of coupled-
channel equations for the T-matrix. For example, keeping only the Nγ and Nπ channels in the low-energy
region leads to the scattering equation

T = V + VGT , T =

(
Tππ Tπγ

Tγπ Tγγ

)
, V =

(
Vππ Vπγ

Vγπ Vγγ

)
, G =

(
Gπ 0
0 Gγ

)
, (2.20)

where Gπ and Gγ are the two-body nucleon-pion and nucleon-photon propagators and the scattering matrices
correspond to Nπ scattering (ππ), pion electroabsorption/electroproduction (πγ, γπ) and nucleon Compton
scattering (γγ). Neglecting also electromagnetic effects leaves two equations for Tππ and Tγπ which are shown
in the left of Fig. 2.6: here only the integral equation for the Nπ scattering amplitude has to be solved and
everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)
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Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
the equations at the bottom. Note that the loop diagram in the vertex equation can be equally written in terms of the background Nπ
scattering matrix and a bare vertex (instead of the background Nπ potential and a dressed vertex).

Being Lorentz invariant, they are again identical in Euclidean and Minkowski conventions. As illustrated in
Fig. 2.5 for the N(1535) transition, if the form factors are free of kinematic constraints the helicity amplitudes
must have kinematic zeros: a naive parametrization of the experimental form factors F1 and F2 by a vector-
meson bump produces kinematic zeros for A1/2 and S1/2 at λ± = 0 ⇔ τ = −δ2± and beyond those points
they become imaginary. The analogous relations for the JP = 3/2± transition currents defined later in (4.60),
expressed in terms of the Jones-Scadron form factors GM (Q2), GE(Q2) and GC(Q2), read [53, 54]
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,

[
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=
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3
A3/2

2δ±R∓
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mR

γm

S1/2

2δ±R∓
. (2.19)

Analysis of experimental results. While the bump landscape in the experimentally measured structure func-
tions in (2.12) provides a basic indication of the underlying baryon spectrum, the detailed extraction of baryon
properties requires a more sophisticated toolbox. Several analysis tools have been developed and are still under
development to achieve this task. They can be roughly categorised as reaction models, which assume a certain
reaction mechanism and determine resonance observables by fitting a large set of parameters to the experimen-
tal multipole amplitudes, and dynamical coupled-channel models which aim at a self-consistent description of
the reaction dynamics. In the following we will sketch the basic ideas behind these approaches and refer to
Refs. [4, 11, 13, 55, 56] for details and a comprehensive list of references.

The common goal is to calculate the T-matrix or, equivalently, its multipole expansion in terms of interaction
potentials Vij , which are split into a non-resonant background and resonant contributions. The background
potentials are typically derived from the tree-level diagrams of chiral effective Lagrangians and contain the nu-
cleon Born terms together with the u-channel resonances and t-channel meson exchanges in Fig. 2.2; the res-
onant s-channel diagrams encode the N∗ exchanges together with their couplings to the photons and mesons.
Upon selecting the channel space (Nγ, Nπ, Nη, ∆π, Nρ, Nσ etc.), one can establish a system of coupled-
channel equations for the T-matrix. For example, keeping only the Nγ and Nπ channels in the low-energy
region leads to the scattering equation

T = V + VGT , T =

(
Tππ Tπγ

Tγπ Tγγ

)
, V =

(
Vππ Vπγ

Vγπ Vγγ

)
, G =

(
Gπ 0
0 Gγ

)
, (2.20)

where Gπ and Gγ are the two-body nucleon-pion and nucleon-photon propagators and the scattering matrices
correspond to Nπ scattering (ππ), pion electroabsorption/electroproduction (πγ, γπ) and nucleon Compton
scattering (γγ). Neglecting also electromagnetic effects leaves two equations for Tππ and Tγπ which are shown
in the left of Fig. 2.6: here only the integral equation for the Nπ scattering amplitude has to be solved and
everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)
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FIG. 1: (above) Trajectories of the evolution of P11 resonance
poles A (1357,76), B (1364,105), and C (1820,248) from a bare
N∗ with 1763 MeV, as the couplings of the bare N∗ with the
meson-baryon reaction channels are varied from zero to the
full strengths of the JLMS model. See text for detailed expla-
nations. Brunch cuts for all channels are denoted as dashed
lines. The branch points, Eb.p., for unstable channels are
determined by Eb.p. − EM (k) − EB(k) − ΣMB(k,Eb.p.) =
0 of the their propagators (described in the text) evalu-
ated at the spectator momentum k=0. With the param-
eters [16] used in JLMS model, we find that Eb.p. (MeV)
= (1365.40,−32.46), (1704.08,−74.98), (1907.57,−323.62) for
π∆, ρN , and σN , respectively. (below) 3-Dimensional depic-
tion of the behavior of |det[D(E)]|2 of the P11 N∗ propagator
(in arbitrary units) as a function of complex-E.

This finding is consistent with the results from the anal-
ysis by Cutkosky and Wang [12] (CMB), GWU/VPI [13]
and Jülich [14] groups, as seen in Tab. I. In our analysis,
we find that they are on different sheets: (1357,76) and
(1364,105) are on the un-physical and physical sheet of
the π∆ channel, respectively.

We also find one higher mass pole at (1820, 248) in
P11 partial wave, which is close to the N∗(1710) state
listed by PDG. Within the JLMS model, we find that
this pole and the two poles listed in table II are related
to one of the two bare states needed to obtain a good
fit to the P11 amplitude up to W = 2 GeV, see [15].

TABLE II: The resonance pole positions MR [listed as
(Re MR,−Im MR)] extracted from the JLMS model in the
different unphysical sheets are compared with the values of
3- and 4-stars nucleon resonances listed in the PDG [1].
The notation indicating their locations on the Riemann sur-
face are explained in the text. “—” for P33(1600), P13 and
P31 indicates that no resonance pole has been found in the
considered complex energy region, Re(E) ≤ 2000 MeV and
−Im(E) ≤ 250 MeV. All masses are in MeV.

M0
N∗ MR Location PDG

S11 1800 (1540, 191) (uuuupp) (1490 - 1530, 45 - 125)
1880 (1642, 41) (uuuupp) (1640 - 1670, 75 - 90)

P11 1763 (1357, 76) (upuupp) (1350 - 1380, 80 - 110)
1763 (1364, 105) (upuppp)
1763 (1820, 248) (uuuuup) (1670 - 1770, 40 - 190)

P13 1711 — (1660 - 1690, 57 - 138)
D13 1899 (1521, 58) (uuuupp) (1505 - 1515, 52 - 60)
D15 1898 (1654, 77) (uuuupp) (1655 - 1665, 62 - 75)
F15 2187 (1674, 53) (uuuupp) (1665 - 1680, 55 - 68)
S31 1850 (1563, 95) (u–uup–) (1590 - 1610, 57 - 60)
P31 1900 — (1830 - 1880, 100 - 250)
P33 1391 (1211, 50) (u–ppp–) (1209 - 1211, 49 - 51)

1600 — (1500 - 1700, 200 - 400)
D33 1976 (1604, 106) (u–uup–) (1620 - 1680, 80 - 120)
F35 2162 (1738, 110) (u–uuu–) (1825 - 1835, 132 - 150)

2162 (1928, 165) (u–uuu–)
F37 2138 (1858, 100) (u–uuu–) (1870 - 1890, 110 - 130)

To see how these poles evolve dynamically through their
coupling with reaction channels, we trace the zeros of
det[D̂−1(E)] = det[E − M0

N∗ − ∑
MB yMBMMB(E)] in

the region 0 ≤ yMB ≤ 1, where MMB(E) is the con-
tribution of channel MB to the self energy defined by
Eq. (5). Each yMB is varied independently to find contin-
uous evolution paths through the various Riemann sheets
on which our analytic continuation method is valid.

We find that the three poles listed in Table I are asso-
ciated to the bare state at 1736 MeV as shown in Fig. 1.
The solid blue curve shows the evolution of this bare
state to the position at C(1820, 248) on the unphysical
sheet of the π∆ and ηN channels. The poles A(1357, 76)
and B(1364,105) evolve from the same bare state on the
physical sheet of the ηN channel. The dashed red curve
indicates how the bare state evolves through varying all
coupling strengths except keeping yπ∆ = 0, to about
Re(MR) ∼ 1400 MeV. By further varying yπ∆ to 1 of the
full JLMS model, it then splits into two trajectories; one
moves to pole A(1357,76) on the unphysical sheet and
the other to B(1364, 105) on the physical sheet of π∆
channel. Fig. 1 clearly shows how the coupled-channels
effects induces multi-poles from a single bare state. The
evolution of the second bare state at 2037 MeV [15] into
a resonance at W > 2 GeV can be similarly investigated,
but will not be discussed here.

To explore this interesting result further and to ex-
amine the stability of the determined three P11 poles,

Microscopic effects?
What is an “offshell hadron”?

GPD
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Extracting resonances
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Scattering amplitudes at quark-gluon level:

𝑇

cat‘s ears diagramshandbag t-channel meson poles

+ ++

Nucleon resonances

  

𝑇

=

𝑁, 𝑁*, 𝛥, . . .
𝜋, 𝜌, . . .

GPD

GE, Fischer,  PRD 85 (2012),  PRD 87 (2013)

Photoproduction of exotic mesons at JLab/GlueX:

𝑁, 𝑁*, 𝛥, . . .
XX

M

What if exotic mesons are relativistic qq states?
⇒ study with DSE/BSE!
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Diquarks?

)
− −

Suggested to resolve ‘missing resonances’ in quark model:
fewer degrees of freedom ⇒ fewer excitations

QCD version: assume 𝑞𝑞 scattering matrix as sum of diquark correlations 
⇒ three-body equation simplifies to quark-diquark BSE

Quark exchange binds nucleon, gluons absorbed in building blocks.
Scalar diquark ~ 800 MeV,  axialvector diquark ~ 1 GeV 

N and 𝛥 properties similar in quark-diquark and three-quark approach:
quark-diquark approximation is good!   

Maris, FBS 32 (2002),  GE, Krassnigg, Schwinzerl, Alkofer, Ann. Phys. 323 (2008),   GE, FBS 57 (2016)

Oettel, Alkofer, Hellstern Reinhardt,  PRC 58 (1998),
Cloet, GE, El-Bennich, Klähn, Roberts,  FBS 46 (2009)

Anselmino et al.,  Rev. Mod. Phys. 65 (1993),  
Klempt, Richard,  Rev. Mod. Phys. 82 (2010)

q
q

q
q

q

q

Gernot Eichmann (IST Lisboa) April 30, 2018 33 / 33



Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iL φ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

⇒  all EVs strictly real
⇒  “anomalous states” removed?
⇒  low-lying exotics removed!

GE, FBS 58 (2017)

𝜆
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ
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K and G are Hermitian (even for 
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If               and             : 
Cholesky decomposition 
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L†L=G

iφiλ=iL φ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

⇒  all EVs strictly real
⇒  level repulsion
⇒  “anomalous states” removed?

GE, FBS 58 (2017)
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iL φ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

Eigenvalue spectrum
for pion channel

⇒  all EVs strictly real
⇒  level repulsion
⇒  “anomalous states” removed?

GE, FBS 58 (2017)

before: after:

only pos. EVs in G
only neg. EVs in G
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Tetra quarks?

𝜎

𝜎

𝜅

𝑓₀₀𝑎
𝜅⁺𝜅⁰

𝜅⁰𝜅⁻
𝑓₀

𝑎⁺₀
₀𝑎⁰

₀𝑎⁻

0.5

1.0

Light scalar (0⁺⁺) mesons  don’t fit into the conventional meson spectrum: 

Why are 𝑎₀, 𝑓₀ mass-degenerate?

Why are their decay widths so different?
     

Why are they so light?
Scalar mesons ~ p-waves, should have 
masses similar to axialvector & tensor mesons ~ 1.3 GeV 

𝛤(𝜎, 𝜅) ≈ 550 MeV
𝛤(𝑎₀, 𝑓₀) ≈ 50‒100 MeV 

𝜎

𝜅
𝑓₀

𝑎₀ ( 980 MeV )
( 500 MeV )

( 680 MeV )

( 980 MeV )

𝑢𝑢, 𝑑𝑑, 𝑢𝑑

𝑢𝑠, 𝑑𝑠
𝑠𝑠 

�
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Tetraquarks?

𝜎

𝜎

𝜅
𝐾𝜋

𝐾𝐾

𝜋𝜋

𝑓₀₀𝑎
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What if they were tetraquarks (diquark-antidiquark)?  Ja�e 1977,   Close, Tornqvist 2002,  Maiani, Polosa, Riquer 2004

𝜎
𝜅
𝑎₀
𝑓₀ ( 980 MeV )

( 500 MeV )

( 800 MeV )

( 980 MeV )
𝑢𝑠𝑢𝑠, ...

𝑢𝑠𝑢𝑑, ...
𝑢𝑑𝑢𝑑 

�

Explains mass ordering & decay widths:
𝑓₀ and 𝑎₀ couple to KK, large widths for 𝜎, 𝜅 

     

𝜋⁻

𝜎

𝜋⁺

Alternative: meson molecules? 
Weinstein, Isgur 1982, 1990;  Close, Isgur, Kumano 1993

 
Non-qq nature of 𝜎 supported by
dispersive analyses, unitarized ChPT, large Nc,
extended linear 𝜎 model, quark models
 Pelaez, Phys. Rept. 658 (2016)
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Two-body interactions 3-body
(+ permutations)

4-body

� � � ��

... plus permutations: 

(34)   (23)  

)q̄q)(q̄q(,)q̄q)(q̄q(,)q̄q)(¯qq(

(13)(12) (14)  (24)

Four-body equation

Bethe-Salpeter amplitude:                     

256 
Dirac-

Lorentz 
tensors

9 Lorentz invariants: 2 Color
tensors:

2, k2, q2p

k·q=1ω
k·p=2ω

q·p=3ω

P·p=1η
P·q=2η

P·k=3η

2M−=2P

⊗ ⊗)p, q, k, P(iτ)}jη{,}jω{,2, k2, q2p(if
i

∑
) =p, q, k, PΓ( Color Flavor

3⊗3 6⊗6

1⊗1 8⊗8

or
,
,

(Fierz-equivalent)
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Structure of the amplitude

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
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and therefore.
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then
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(
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
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π (7)

and therefore.

s = 1 + 3
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(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2
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π) leads to the condition

16
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and therefore.
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π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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and
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We can express p2, q2, k2 in terms of the doublet vari-
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p2 = 2
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q2 = 2
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k2 = 4
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P
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√
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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and
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We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
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q2 = 2
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
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π (7)

and therefore.

s = 1 + 3
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Defining the momenta as in your notes, we have the
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√
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q2 = 2
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k2 = 4
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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with
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and
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We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −
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3 a) ,

q2 = 2
3 S0(2 + s −

√
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k2 = 4
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P
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)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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with
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and
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p2 = 2
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then
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(
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)2
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4 ± iMη3
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(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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with
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and
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p2 = 2
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√
3 a) ,

q2 = 2
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k2 = 4
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P
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)2
= k2 − M2

4 ± iMη3
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√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .
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Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Defining the momenta as in your notes, we have the
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with
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and
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
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π) leads to the condition

16
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and therefore.
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Now let’s express the ‘pole variables’ in terms of these.
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
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π (7)

and therefore.

s = 1 + 3
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(4m2
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
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π) leads to the condition
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and therefore.
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So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
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Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
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too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
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work in that case (because it’s S3, the triangle is
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ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
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simply comes out very low, i.e., that the diquark
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the threshold? Can you calculate scalar diquarks
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Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

6 ground states, one of them deuteron

Dibaryons vs. hidden color?

Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

Dyson, Xuong, PRL 13 (1964)

Bashkanov, Brodsky, Clement, PLB 727 (2013)

Weise, Nucl. Phys. A805 (2008)

NN potential

r

short 
distance

two-pion
exchange

one-pion
exchange

only quarks and gluons

quark interchange
and pion exchange
automatically included

dibaryon exchanges

s
channel

t
channel

u
channel

 = 4

 = 0

 = 4  = 0 =
 4 =
 0

(a)

(b)

= = =

(a) (b) (c)Six quarks Two baryons Three diquarks?

→= = =

(a) (b) (c)Six quarks Two baryons Three diquarks?

Gernot Eichmann (IST Lisboa) April 30, 2018 33 / 33



Hadron physics with functional methods

Understand properties of 
elementary n-point functions

Calculate hadronic observables:
mass spectra, form factors, scattering amplitudes, . . .

∎  QCD
∎  symmetries intact (Poincare invariance & chiral symmetry important) 
∎  access to all momentum scales & all quark masses 
∎  compute mesons, baryons, tetraquarks, . . . from same dynamics

access to underlying
nonperturbative dynamics!

↔

∎  systematic construction of truncations 
∎  technical challenges: coupled integral equations, 
    complex analysis, structure of 3-, 4-, ... point functions,
    need lots of computational power!
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Nucleon-𝛥-𝛾 transition  

*

Electric & Coulomb quadrupole ratios
small & negative, encode deformation.
Reproduced without pion cloud: OAM from p waves! 

Magnetic dipole transition (𝐺� ) dominant: 
quark spin flip (s wave).  “Core + 25% pion cloud”
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Quark model: need d waves or pion cloud.
Perturbative QCD: 𝑅�� → 1, 𝑅�� → const.
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Compton scattering

Nucleon polarizabilities:
ChPT & dispersion relations
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Hagelstein, Miskimen, Pascalutsa,  PPNP 88 (2016)

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’
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VCS

FW
D
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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• Real Compton scattering (RCS):
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• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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 Born + 1PI + ∆
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Quark Compton vertex
(Born + 1PI) calculated,
added 𝛥 exchange

First DSE results: 

Quark-level effects  ↔  Baldin sum rule
+ nucleon resonances (mostly 𝛥) 
+ pion cloud (at low 𝜂₊)? 

In total: polarizabilities � 

𝛼�  dominated by handbag,
𝛽� by 𝛥 contribution
 

GE, FBS 57 (2016)

⇒ large “QCD background”!
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Tetraquarks in charm region?

Can we distinguish different
tetraquark configurations? 

compact
tetraquark
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Tetraquarks in charmonium & bottomonium spectrum:
X(3872), Y(4260), charged Z states? 

    

adapted from
Esposito, Guerrieri, Piccinini, Pilloni, Polosa,
Int. J. Mod. Phys. A 30 (2015)

Four quarks dynamically rearrange themselves into dq-dq, molecule, hadroquarkonium; 
strengths determined by four-body BSE:
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Muon g-2

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 
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13

Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 εµναβaαbβ ,
(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q2 and Tµν

Q′ = tµνQ′Q′/Q′2.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµ
T

kµ
T /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Q γµ − kµ /Q

[k ·Q γµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γν

]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γν , /k

]
= [γµ, /k, /Q] ,

tµνQγ kν = −4 tµνQk γν ,
[
tµνQγ kν , /k

]
= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ
1 = tµνQQ γν ,

τµ
2 = tµνQQ k ·Q i

2 [γν , /k] ,

τµ
3 = i

2 [γµ, /Q] ,

τµ
4 = 1

6 [γµ, /k, /Q] ,

τµ
5 = tµνQQ ikν ,

τµ
6 = tµνQQ kν/k ,

τµ
7 = tµνQk k ·Q γν ,

τµ
8 = tµνQk

i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµ

i and the transverse tensor structures Tµ
i in

those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·Q T4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·Q T6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2

± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k, Q) = Λf
+ Γµ(k, Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k, Q) = iΛf
+

(
F1 γµ +

iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 

)p(u
]

m2
νq

µνσ
)2q(2F–µγ)2q(1F

[
)′p(ūie

𝑞
〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

𝑝’ 𝑝

total SM prediction deviates from exp. by ~3σ
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
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Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:
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verse part

− iΓµ
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fi(k
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The dimensionful dressing functions fi(k
2, k ·Q, Q2) are
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and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
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The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].
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By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form
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(
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where F1, F2 are dimensionless functions of Q2 only. Via
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components which are related to the functions ΣA, ∆A,
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