
Elastic and transition form factors

Much Excitement About Nothing?
adapted freely from William Shakespeare

Probe the excited nucleon structures at
perturbative and nonperturbative QCD scales

Distinctive information on the roles played
by DCSB and confinement in QCD
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The propagator can be obtained from QCD’s gap equation: the  Dyson-Schwinger equation (DSE) 
for the dressed-fermion self-energy, which involves the set of infinitely many coupled equations.

[
p

]−1 =
p

[ ]−1 +
p

q = p− k

k

S�1(p)|p2=�2 = i� · p + m(⇥)
where ⇥ is the renormalization point.

S�1(p) = Z2(i� · p + mbm) + ⇥(p) := i� · p A(p2) + B(p2)

⇥(p) = Z1

� � d4q

(2⇤)4
g2Dµ⇥(p� q)

⇥a

2
�µS(q)�a

⇥(q, p)

with the running mass function M(p2) = B(p2)/A(p2).

Dµ⇥ : dressed-gluon propagator
�a

⇥(q, p) : dressed quark-gluon vertex
Z2 : quark wave function renormalization constant
Z1 : quark-gluon vertex renormalization constant

Each satisfies  
it’s own DSE !

Quark-Gap Equation in QCD
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➪ For light quarks the Higgs mechanism is almost irrelevant!

S(p) =
Z(p2)

i� · p +M(p2)
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Motivation: Connection with Real World
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How does one incorporate the dressed-quark mass function
M(p2) in study of mesons and baryons? The behavior of M(p2)
is a quantum field theoretical effect.

In quantum field theory a meson (nucleon) appears as a pole

in the four (six)-point quark Green functions amplitude.

Residue is proportional to meson’s Bethe-Salpeter or
nucleon’s Faddeev amplitude.

Poincaré covariant Bethe-Salpeter/Faddeev equation sum all
possible exchanges and interactions that can take place
between dressed-quarks (Q2 ≫ M2).

Motivation: Connection with Real World



Meson Bound States
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Nonperturbative QCD based ansatz  
for interaction kernel

�(P, p) =

Z
d4k

(2⇡)4
K(P, p, k)S(k � P

2 )�(P, k)S(k + P
2 )

K(P, p, k) = �Z2
2 G(q2)
q2

✓
�a

2
�µ

◆
Tµ⌫(q)

✓
�a

2
�⌫

◆
Rainbow-Ladder truncation:

Bethe-Salpeter Equations for QCD Bound States 
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Nonperturbative QCD based ansatz  
for interaction kernel

�(P, p) =

Z
d4k

(2⇡)4
K(P, p, k)S(k � P

2 )�(P, k)S(k + P
2 )

K(P, p, k) = �Z2
2 G(q2)
q2

✓
�a

2
�µ

◆
Tµ⌫(q)

✓
�a

2
�⌫

◆
Rainbow-Ladder truncation:

�Pn(p, P ) = �5

⇥
i IDEPn(p, P ) + � · P FPn(p, P )

+ � · p (p · P )GPn(p, P ) + �µ⌫pµP⌫ HPn(p, P )
⇤

General solution for Poincaré 
 invariant ground- and  

excited-state amplitudes

Bethe-Salpeter Equations for QCD Bound States 
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Dressed-gluon propagator

Use effective interaction which 
reproduces Lattice QCD and DSE 
results for gluon-dressing function:  
infrared massive fixed point; 
ultraviolet massless propagator.

IR-massive	but	UV-massless,	confined	gluon

perturba:ve,	massless	gluon

massive	,	unconfined	gluon

A.C.	Aguilar	et	al.,	Phys.Rev.	D80,	085018	(2009)
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Pseudoscalar- and Vector-Meson Spectroscopy
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E. Rojas, B. E. & J. P. B. C. de Melo, PRD  (2014)

F. Mojica, C. Vera, E. Rojas & B. E., PRD  (2017)
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�(P 2)�Pn(P, p) =

Z
d4k

(2⇡)4
K(P, p, k)�Pn(k, P )

�Pn(k, P ) = S(k � P
2 )�(P, k)S(k + P

2 ) : Bethe-Salpeter wave function

The kernel K(P 2) has a complete set of real eigenvectors �i with eigenvalues
�i(P 2) which are ordered as �0(P 2) > �1(P 2) > �2(P 2) > .... > �i(P 2).

�(P 2) |�i = K(P 2) |�i |�i =
1X

i=1

ai |�ii

|�ni := Kn(P 2) |�i =
1X

i=1

�n
i ai |�ii = �n

0

"
a0 |�0i+

1X

i=1

✓
�i

�0

◆n

ai |�ii
#

|�ni
n!1
= �n

0 a0 |�0i ' �0 Kn�1(P 2) |�i

Bethe-Salpeter Equations as an Eigenvalue Problem

B. El-Bennich & E. Rojas arXiv:1509.02919 (2015)
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Eigenvalue spectrum is not limited to the ground state. 

Excited states with smaller eigenvalues can be determined  
with the same iterative methods. 

Usage of Gram-Schmidt orthogonalization process:  
 

|�̃i = |�i � h�0 |�i
h�0 |�0i

|�0i
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Eigenvalue spectrum is not limited to the ground state. 

Excited states with smaller eigenvalues can be determined  
with the same iterative methods. 

Usage of Gram-Schmidt orthogonalization process:  
 

Modern and more efficient approach is the implicitly restarted  
Arnoldi method (IRAM). 

Based on the stabilized Gram-Schmidt orthogonalization in the  
Krylov subspace obtained by iteration:  
 

|�̃i = |�i � h�0 |�i
h�0 |�0i

|�0i

Sr :=
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Eigenvalue spectrum is not limited to the ground state. 

Excited states with smaller eigenvalues can be determined  
with the same iterative methods. 

Usage of Gram-Schmidt orthogonalization process:  
 

Modern and more efficient approach is the implicitly restarted  
Arnoldi method (IRAM). 

Based on the stabilized Gram-Schmidt orthogonalization in the  
Krylov subspace obtained by iteration:  
 

The Arnoldi method generalizes the Gram-Schmidt process by 

computing the eigenvalues of the orthogonal projection of K  

onto the Krylov subspace  ⇒ yields smaller eigenvalues.

|�̃i = |�i � h�0 |�i
h�0 |�0i

|�0i

Sr :=
�
�,K�,K2�,K3�, ....,Kr�1�
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Examples of eigenvalue spectrum: 
pion ground and radially excited states 

ground state

 first excited state
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EP1(p, P ) =
1X

m=0

Em
P1
(p, P )Um(cos ✓)Chebyshev expansion of 1st excited state:

0 0,5 1 1,5 2 2,5 3 3,5 4

p2(GeV)
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2 )
/E
P 1
(0
)

π(1300)
ss
ηc(2S)

Lowest Chebyshev moment : E0
P1
(p2, P 2)

�Pn(p, P ) = �5

⇥
i IDEPn(p, P ) + � · P FPn(p, P )

+ � · p (p · P )GPn(p, P ) + �µ⌫pµP⌫ HPn(p, P )
⇤
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Pseudoscalar- and Vector-Meson Spectroscopy

JPC = 0�+ DSE-BSE PDG

m⇡ 0.136 0.139

f⇡ 0.139 0.1304

m⇡(1300) 1.414 1.30± 0.10

f⇡(1300) 8.3⇥ 10�4 —

mK 0.493 0.493

fK 0.164 0.156

mK(1460) 1.580 1.460

fK(1460) �0.017 —

m⌘c(1S) 3.065 2.984

f⌘c(1S) 0.389 0.395

m⌘c(2S) 3.784 3.639

f⌘c(2S) 0.105 —

JPC = 1�� DSE-BSE PDG

m⇢0(770) 0.742 0.775

f⇢0(770) 0.231 0.221

m⇢0(1450) 1.284 1.465

f⇢0(1450) 0.150 —

mK⇤(892) 0.951 0.896

fK⇤(892) 0.287 0.217

mK⇤(1410) 1.217 1.414

fK⇤(1410) 0.127 —

m�(1020) 1.087 1.019

f�(1020) 0.305 0.322

m�(1680) 1.650 1.659

f�(1680) 0.138 —

mJ/ 3.114 3.097

fJ/ 0.433 0.416

m (2S) 3.760 3.689

f (2S) 0.176 0.295

m⌥(1S) 9.634 9.460

f⌥(1S) — 0.715

m⌥(2S) 10.140 10.023

f⌥(2S) 0.564 0.497

Weak decay constant for radially excited  
states vanish — only strong decays possible:

E. Rojas, B. E. & J. P. B. C. de Melo, PRD  (2014)
F. Mojica, C. Vera, E. Rojas & B. E., PRD  (2017)

f0
Pn

⌘ 0 , n � 1



Baryon Spectrum
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The attractive nature of quark-antiquark correlations in a color-singlet 
meson is also attractive for 3̅c quark-quark correlations within a color-singlet 
baryon.

Diquark correlations provide a tractable truncation of the Faddeev equation. 

We use non-pointlike color-antitriplet and fully interacting diquarks in the 
description of the Baryon Octet and Decuplet.

Scalar and axialvector diquarks: dominant right parity.

Covariant Fadeev Equation

6333
⊕=⊗

SU(3)
:
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The attractive nature of quark-antiquark correlations in a color-singlet 
meson is also attractive for 3̅c quark-quark correlations within a color-singlet 
baryon.

Diquark correlations provide a tractable truncation of the Faddeev equation. 

We use non-pointlike color-antitriplet and fully interacting diquarks in the 
description of the Baryon Octet and Decuplet.

Scalar and axialvector diquarks: dominant right parity.

Typically, r0+ ~ rπ  &  r1+ ~ rρ  (actually 10% larger).

Pseudoscalar and vector diquarks: initially neglected, now included. 

Diquarks: have soft form factors. 

Covariant Fadeev Equation

6333
⊕=⊗

SU(3)
:
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Covariant Fadeev Equation

R.T. Cahill, C.D. Roberts, J. Praschifka (1989) 

M. Oettel, L. von Smekal, R. Alkofer (2001) 

I.C. Cloët, G. Eichmann, B. El-Bennich, T. Klähn and C.D. Roberts (2009) 

G. Eichmann, C. Fischer, H. Sanchis-Alepuz (2016)

P
pd

pq

Ψa =
P

pq

pd

Ψb
Γ
a

Γb

Quark exchange  
ensures Pauli statistics Quark

Diquark (non point-like)

Linear homogeneous matrix equation yields Poincaré covariant Faddeev amplitude  
(wave function) that describes relative motion of quark-diquark within nucleon.
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Nucleon Electromagnetic Form Factors

Dressed quark propagator solutions of 
QCD’s Dyson-Schwinger equations.
              ⇒  momentum dependence !

• Composite nucleon must interact with photon via 
nontrivial current constrained by Ward-Takahashi 
identities (EM gauge invariance).

• Coupling of the photon to the dressed quark. 

• Coupling of the photon to the dressed diquark:  
                        Elastic & induced transitions 

• Exchange and seagull terms.

One-loop diagrams Two-loop diagrams 
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Proton’s Sachs Electric and Magnetic Form Factors   

I.C. Cloët, G. Eichmann, B. El-Bennich, T. Klähn and C.D. Roberts, Few Body Syst. 46 (2009)
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Electric Sachs form factors: mass function dependence

Both CI and QCD-based frameworks predict a zero crossing in            .

The possible existence and location of the zero in               is an indirect  
measure of the nature of the quark-quark interaction.

µp
Gp

E

Gp
M

µp
Gp

E

Gp
M
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A world with only scalar diquarks
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A world with scalar and axialvector diquarks
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A world with scalar and axialvector diquarks
J. Segovia & C. D. Roberts  

Phys. Rev. C94 (2016)
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Scalar and axialvector diquark contributions

Axialvector diquark contribution is not enough in order to explain the proton’s electromagnetic ratios. 

Scalar diquark contribution is dominant and responsible of the Q2-behavior of the the proton’s e.m. ratios. 

Higher quark-diquark angular momentum components of the nucleon are critical in explaining the data. 

The presence of higher orbital angular momentum components in the nucleon is an
inescapable consequence of solving a realistic Poincaré-covariant Faddeev equation

J. Segovia & C. D. Roberts  
Phys. Rev. C94 (2016)



The Roper
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EBAC examined dynamical origins of two poles associated with the  
Roper resonance.

Both of them, together with the next higher resonance in the P11  
partial wave have the same originating bare state. 

The meson cloud shields quark-core state and diminishes  
its mass considerably.
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Ground and Radially Excited States of the Nucleon



DSE: Faddeev quark-diquark amplitude of 1st excited state with dressed quark propagators.  
          J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloët, C.D. Roberts, S.-S. Xu, H.-S. Zhong, Phys. Rev. Lett. 115 (2015)  
             G. Eichmann, C. Fischer, H. Sanchis-Alepuz, Phys.Rev. D94 (2016)

DSE: Faddeev three-quark interaction amplitude of 1st excited state with dressed propagators.  
         G. Eichmann, C. Fischer, H. Sanchis-Alepuz, Phys.Rev. D94 (2016)

Contact : Faddeev amplitude of 1st excited state with contact interaction gap equation.  
         D.J. Wilson, I. C. Cloët, L. Chang, C.D. Roberts, Phys. Rev. C85 (2012)

DCCM : Dynamical Coupled Channel Model.  
         N. Suzuki, B. Julio-Díaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, Phys. Rev. Lett. 104 (2010)

Roper Quark-Core Mass

RDSE
q(qq) RDSE

q(qq) RDSE
qqq RContact

core RDCCM
bare

mass [GeV] 1.73 1.45 1.50 1.72 1.76
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Chebyshev Moments
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Chebyshev Moments
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Zeroth Chebyshev moments of all S-wave components in the Faddeev wave function.  
S1 is associated with the baryon’s scalar diquark;  A2 , A3 , A5 associated with axialvector correlation.

Nucleon

1st excited state
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γ p → R+  Dirac and Pauli Transition Form Factors

DSE-Faddeev 
Contact Interaction (NJL)

Meson Cloud Estimate 
Fit

DSE-Faddeev 
Contact Interaction (NJL)

Meson Cloud Estimate 
Fit

Our calculation agrees quantitatively 
in magnitude and qualitatively in trend 
with the data on x > 2.  

The mismatch between our prediction 
and the data on x = 2 is due to meson 
cloud contribution.  

The dotted-green curve is an inferred 
form of meson cloud contribution from 
the fit to the data.  

The contact-interaction prediction 
disagrees both quantitatively and 
qualitatively with the data. 

J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloët, C.D. 
Roberts, S.-S. Xu, H.-S. Zhong, Phys. Rev. Lett. (2015) 
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γp → R+  Dirac Transition Form Factor

The Dirac transition form factor is primarily driven by a photon striking a bystander 
dressed quark that is partnered by a scalar diquark.  

Lesser but non-negligible contributions from all other processes are found.  

In exhibiting these features,              shows marked qualitative similarities to the 
proton’s elastic Dirac form factor. 

F ⇤
1p(q

2)
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γp → R+  Pauli Transition Form Factor

A single contribution is overwhelmingly important: photon strikes a bystander 
dressed-quark in association with a scalar diquark.  

No other diagram makes a significant contribution.  

             shows marked qualitative similarities to the proton’s elastic Pauli form factor. F ⇤
2p(q

2)



Nucleon & Parity Par tner
Including pseudoscalar and vector diquarks …

The Nucleon and Roper remain dominated by scalar and axialvector diquark correlation.

Both, the Nucleon and Roper are dominated by S-waves (~75% & 85%).

However, while the N*(1535) and N*(1650) are still dominated by scalar and axialvector  
correlations, the Faddeev amplitude is dominated by P-waves (~70% & 85%).

m⇤
N (1535) > m⇤

N (1440)

C. Chen, B. El-Bennich, C. D.Roberts, S. M. Schmidt, J. Segovia and S. Wan  
Phys. Rev. D 97, no. 3, 034016 (2018)



N*(1535) & N*(1650)
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N(940) & N*(1535) —  P-waves

N*(1535)  P-waves
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Bar yon Octet & Decuplet

Ø Contact	model	is	good	enough	to	calculate	the	spectrum.	

Ø However,	in	the	CI	model	the	Faddeev	amplitudes	are	constant		⇒		not	suitable 
								for	quanItaIve	predicIons	of	large-q2	form	factors.			

CI : C. Chen, L. Chang, C. D. Roberts, S. Wan and D. J. Wilson,  Few Body Syst. 53, 293 (2012)



Bar yon Octet & Decuplet

Ø Contact	model	is	good	enough	to	calculate	the	spectrum.	

Ø However,	in	the	CI	model	the	Faddeev	amplitudes	are	constant		⇒		not	suitable 
								for	quanItaIve	predicIons	of	large-q2	form	factors.			

CI : C. Chen, L. Chang, C. D. Roberts, S. Wan and D. J. Wilson,  Few Body Syst. 53, 293 (2012)



Conclusive Remarks

We extracted the ground states and first radial excitations of the 
nucleon, its parity partner and hyperons using a quark-diquark Faddeev 

kernel that described the quark core.  

Dynamical chiral symmetry breaking and its correct implementation 
produces pions as well as strong electromagnetically-active diquark 

correlations.  

Poincaré covariance demands the presence of dressed-quark orbital 

angular momentum in the baryon.  

The presence of strong diquark correlations within the nucleon is 
sufficient to understand empirical extractions of the flavor-separated 

form factors. 

Scalar diquark dominance and the presence of higher orbital angular 
momentum components are responsible of the Q2-behavior of    
and            . F p

2 /F
p
1

µp G
p
E/G

p
M



The Roper is the proton’s first radial excitation. It’s mass agrees
with that of the bare unclothed Roper quark core.

Our calculation agrees quantitatively in magnitude and qualitatively

in trend with the data on x ≳ 2. The mismatch below x ≳ 2 is due to
meson cloud contribution.

Flavor-separated versions of transition form factors reveal that, as in

the case of the elastic form factors, the d-quark contributions are
suppressed with respect the u-quark ones.

Conclusive Remarks about the Roper


