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1. Introduction
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FIG. 9: Plot of the ūLuL → c̄LcL cross-section normalized
to the tree-level rate, for t/s = −0.2 (dotted blue), −0.35
(dashed red), −0.5 (solid black), −0.65 (dashed magenta) and
−0.8 (dot-dashed cyan). The lower panel shows the rate with
QCD and electroweak corrections, and the upper panel with
only the electroweak corrections.

n̄j · pj ≈ 2Ej > 0 is still positive for outgoing particles,
because of our definition of nj for outgoing particles.

A massive particle such as the top quark is described
by a velocity four-vector vµ, with v · v = 1, where vµ =
γ (1, β), γ = 1/

√
1− β · β. For energetic top-quarks,

it is sometimes convenient to use the four-vector βµ =
(1, β), with β2 = 1/γ2 → 0 in the high-energy limit.
This allows for a smooth transition in the high energy
limit to a massless description, with β → n.

The Sudakov form factor will play an important role
in this paper. The spacelike Sudakov form factor F (Q2)
is defined as the particle scattering amplitude by an ex-
ternal current, with momentum transfer Q2 = −q2 > 0.
It is convenient to compute the form factor in the Breit
frame (see Fig. 15), where the particle is back-scattered,
and the momentum transfer q has q0 = 0. The Sudakov
form factor is an r = 2 scattering amplitude, where the
incoming and outgoing particle are identical. In the Breit
frame, n1 = (1,n), n2 = −(1,−n) so that n̄1 = −n2 and
n̄2 = −n1.

FIG. 10: Plot of the ūLuL → W +
T W−

T cross-section normal-
ized to the tree-level rate. See Fig. 9 caption.

The labelling convention chosen for the Higgs doublet
is

φ =
1√
2

[
ϕ2 + iϕ1

v + H − iϕ3

]
, (2)

so that ϕa ∝ iT a ⟨φ⟩. The charged gauge and Goldstone
bosons are

W± =
1√
2

(
W 1 ∓ iW 2

)
,

ϕ± =
1√
2

(
ϕ1 ∓ iϕ2

)
, (3)

and the sign convention for the Z and photon fields is

Z = cos θW W 3 − sin θW B ,

A = sin θW W 3 + cos θW B . (4)

The SU(2) and U(1) fine structure constants are α2 and
α1 respectively, and the QED fine structure constant is
αem, with

1

αem
=

1

α2
+

1

α1
. (5)
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Electroweak double logarithms

• At high energies    , cross section contains  
[Ciafaloni, Comelli; Kuhn, Penin; Fadin et al; Denner, Pozzorini; Chiu et al; …] 

•               effect at LHC,                 at FCC 

• Problem for finding new physics in tails of distributions

�4

Q

O(10%) O(100%)

�tree+EW

�tree

uLūL ! cLc̄L

[Chiu et al.]
p
ŝ [TeV]

p
ŝ [TeV]

↵W ln2(Q/MW )



Inclusive processes

• Exclusive production usually assumed: all W and Z resolved  
→ only virtual corrections → EW double logs 

• We consider inclusive processes, such as                      , 
where the final state has invariant mass   

• Inclusive production also involves EW double logs [Ciafaloni et al] 

whereas QCD corrections only involve single logs

�5

Q2 � M2
W

pp ! `+`�X



• We find that EW resummation is achieved by: 

• (Modified) DGLAP of PDFs and Fragmentation Functions 

• Soft function evolution 

• Complications arise because initial/final-state particles are  
not electroweak singlets, e.g. 

Electroweak resummation in inclusive processes

�6

1

Z

¯̀

`

fu 6= fd



2. Factorization



Hard matching
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• Integrate out hard scattering at scale     in symmetric phase 

• Remaining radiation is collinear or soft
1

Z

¯̀

`

Lhard =
X

i

HiOi

O
(3)
`q = (¯̀1�

µ
t
a
`2) (q̄3�µt

a
q4)

O`q = (¯̀1�
µ
`2) (q̄3�µq4)

O`u = (¯̀1�
µ
`2) (ū3�µu4)
...

1

Oi

¯̀

`

Rb
beam axis

⌘ = ⌘B

→

Q



Factorization of collinear and soft
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• Soft radiation is captured by Wilson lines 

• There are also collinear Wilson lines (absorbed in PDFs/FFs)

1

Oi

¯̀

`

Rb
beam axis

⌘ = ⌘B

→

1

Oi

¯̀

`

Rb
beam axis

⌘ = ⌘B

SU(3) SU(2) U(1)

q ! Sq S = P exp

⇢
i

Z 0

�1
ds n4 ·

⇥
g3As(s n4) + g2Ws(s n4) + g1yqBs(s n4)

⇤�

O
(3)
`q ! (¯̀1S†

1�
µ
t
aS2`2) (q̄3S†

3�µt
aS4q4)

...



Factorization of cross section
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• Factorize cross section into PDFs, FFs and a soft function
� ⇠

X

X

hpp|Lhard|µ
+µ�Xihµ+µ�X|Lhard|ppi

⇠ |H|
2
hp|q̄4q4|pi| {z }

PDF

hp|q3q̄3|pi| {z }
PDF

h0|S†
2S1S

†
4S3S

†
1S2S

†
3S4|0i| {z }

soft

⇥

X

X1

h0|`1|µ
�X1ihµ

�X1|
¯̀
1|pi

| {z }
FF

X

X2

h0|¯̀2|µ
+X2ihµ

+X2|`2|pi

| {z }
FF

+ . . .



Factorization of cross section
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• Factorize cross section into PDFs, FFs and a soft function 

• Nonsinglets also contribute: 

• Can cancel soft Wilson lines without     in between: 
(this is why for inclusive processes in QCD soft function is 1)

ta S†
i Si = 1

hp|q̄4taq4|pi h0|S1t
aS†

1 S2t
bS†

2 |0i · · ·

� ⇠

X

X

hpp|Lhard|µ
+µ�Xihµ+µ�X|Lhard|ppi

⇠ |H|
2
hp|q̄4q4|pi| {z }

PDF

hp|q3q̄3|pi| {z }
PDF

h0|S†
2S1S

†
4S3S

†
1S2S

†
3S4|0i| {z }

soft

⇥

X

X1

h0|`1|µ
�X1ihµ

�X1|
¯̀
1|pi

| {z }
FF

X

X2

h0|¯̀2|µ
+X2ihµ

+X2|`2|pi

| {z }
FF

+ . . .



Matching onto broken phase
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• Singlet and triplet fermion PDF are (essentially) 

• Tree-level matching at the electroweak scale  

• Nonsinglet thus accounts for SU(2) breaking in initial & final state

fu = fuR

f (I=0)
q = fuL + fdL

f (I=1,I3=0)
q = 1

2fuL � 1
2fdL

f (I=0)
W = fW+ + fW� + cos2 ✓W fZ

+ sin2 ✓W f� + sin ✓W cos ✓W (fZ� + f�Z)

f (I=1,I3=0)
W = fW+ � fW�

...

f (I=0)
q ⇠ hp|q̄q|pi f (I=1)

q ⇠ hp|q̄taq|pi
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3. Evolution



Rapidity divergences

• For transverse mom. factorization, rapidity divergences appear 

�15

S(1)(pT ) / ↵s
µ2✏

p1+2✏
T

Z
dy



Rapidity divergences

• For transverse mom. factorization, rapidity divergences appear 

• We use the   -regulator, which acts very similar to dim. reg. 
[Chiu, Jain, Neill, Rothstein] 

• Soft function contains  
Collinear function has      

•   -evolution sums single logs of
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S(1)(pT ) / ↵s
µ2✏ ⌫⌘

p1+2✏+⌘
T

Z
dy |2 sinh y|�⌘

⌘

µ

⌫

QMW

Q

MW

hard

soft

co
ll
in

ea
r

1

Figure 2. Path in (⌫, µ) space for integrating the anomalous dimensions of collinear and soft
operators.

first do the ⌫ evolution of the soft operator from ⌫ = MW to ⌫ = Q at µ = MW , and then

perform the µ evolution of the soft and collinear operators from µ = MW to µ = Q, as shown

in fig. 2 (see also the discussion above eq. (4.30) in ref. [37]). Using eq. (4.7), the ⌫ evolution

of the soft operator gives

U⌫ = exp

 Z
⌫C

⌫S

d⌫

⌫
�⌫,S

�
= exp


� nI

↵2(µ)

⇡
ln

Q

MW

ln
µ2

M2
W

�
, (6.2)

where nI is the number of gauge indices in the soft factor. When µ = MW exactly, U⌫ = 1

and can be ignored, but otherwise it must be kept to achieve NLL accuracy. In particular it

must be kept when estimating the perturbative uncertainty from scale variations.

Moving on to the µ-evolution, we first consider the terms in the collinear and soft µ-

evolution that give rise to double logarithms. They are described by the following multi-

plicative anomalous dimensions: For the soft anomalous dimension, the relevant terms in

eqs. (4.8)–(4.10) are given by (using cA = 2)

�DL
µ,S = nI

↵2

⇡
ln

µ2

⌫2
. (6.3)

For the collinear anomalous dimensions, the double logarithms arise from the ln ⌫/(n̄·p) term,

which vanishes for the o↵-diagonal elements. For the diagonal elements, it vanishes for the

singlet, and for the triplet PDFs (and FFs) it is given by

�(I=1),DL
µ,qq = �(I=1),DL

µ,WW
= �(I=1),DL

µ,WB
= · · · =

2↵2

⇡
ln

⌫

n̄ · p �(1 � z) . (6.4)

Here n̄ ·p = 2E, with E the energy of the parton. The triplet PDFs have a single gauge index

which is contracted with a soft operator, and the soft operator anomalous dimension eq. (6.3)

is proportional to nI , the number of gauge indices. Combining the collinear anomalous

– 31 –

ln ⌫
pT

ln ⌫
n̄·r ⇠ ln ⌫

Q

pT

pT
Q/pT⌫
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• Electroweak correction to nonsinglets  
have rapidity divergences (                )
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RG equations
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• PDFs (and FFs): 

• Soft function:
d

d lnµ
S(µ, ⌫) = ↵

⇡
�̂µ,S(µ, ⌫)S(µ, ⌫)

d

d ln ⌫
S(µ, ⌫) = ↵

⇡
�̂⌫,S(µ, ⌫)S(µ, ⌫)
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d

d lnµ
fi(x, µ, ⌫) =

X

j

Z 1

0

dz

z

↵

⇡
�̂µ,ij(z, µ, ⌫) fj

⇣x
z
, µ, ⌫

⌘

d

d ln ⌫
fi(x, µ, ⌫) =

↵

⇡
�̂⌫,i(µ, ⌫) fi(x, µ, ⌫)



Fermion PDF anomalous dimension

�19

• Singlet and triplet: 

• Virtual diagrams have 

• Real diagrams have

cF

tbtb = cF

tbtatb = (cF� 1
2cA)t

a

Graph �̂µ �̂⌫

2
(1�z)+

� z � 2 � 2�(1 � z) ln ⌫

n̄·r
� ln µ

2

M2

z 0

Total1
2

(1�z)+
� 2 � 2�(1 � z) ln ⌫

n̄·r
� ln µ

2

M2

�
2 ln ⌫

n̄·r
+ 1

�
�(1 � z) ln µ

2

M2

�(1 � z) 0

Total2
�
2 ln ⌫

n̄·r
+ 2

�
�(1 � z) ln µ

2

M2

Table 2. One-loop diagrams for the renormalization of scalar collinear operators. Subsets of the
graphs have been summed to give Total1 and Total2. For the singlet scalar PDF, Total1 and Total2
have group theory factor cF . For the adjoint PDF, Total1 has group theory factor cF � cA/2 and
Total2 has group theory factor cF .

An almost identical analysis holds for the mixing of scalar (i.e. Higgs) and gauge PDFs.

The graphs are shown in table 2, and give

�̂(R)
µ,HH

= cHH(R) ePHH(z) + [cF � cHH(R)]
⇣
2 ln

⌫

n̄ · r + 2
⌘
�(1 � z) ,

�̂(R)
⌫,H

= [cF � cHH(R)] ln
µ2

M2
, (3.27)

with

ePHH(z) =
2

(1 � z)+
� 2 + 2 �(1 � z) . (3.28)

The group theory factor cHH(R) for scalars is the same as cQQ(R) for fermions. The scalar

results also hold for the H̄ PDF.

The Yukawa diagrams which contribute to the fermion anomalous dimensions are shown

in table 3. We will use the convention

LY = �H†jdr [Yd]rs qj,s � eH†jur [Yu]rs qj,s � H†jer [Ye]rs `j,s + h.c. (3.29)
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f (I=0)
q ⇠ hp|q̄q|pi

f (I=1)
q ⇠ hp|q̄taq|pi



Fermion PDF and FF
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• Group theory: 

• Adjoint representation has double logs and rapidity logs

cqq(1) = cF , cqq(adj) = cF � 1

2
cA .

�̂(R)
µ,qq = cqq(R)Pqq(z) + [cF � cqq(R)]

⇣
2 ln

⌫

n̄ · r +
3

2

⌘
�(1� z)

�̂(R)
⌫,q = [cF � cqq(R)] ln

µ2

M2



Fermion PDF and FF

�21

• Group theory: 

• Adjoint representation has double logs and rapidity logs 

• At one loop, anomalous dimensions of FF related to PDF 

• If final-state particle not observed, completeness gives

cqq(1) = cF , cqq(adj) = cF � 1

2
cA .

X

h

Z 1

0
dxxD(I=0)

q!h (x, µ, ⌫) = 1
X

h

Z 1

0
dxxD(I=1)

q!h (x, µ, ⌫) = 0

�̂(R)
µ,qq = cqq(R)Pqq(z) + [cF � cqq(R)]

⇣
2 ln

⌫

n̄ · r +
3

2

⌘
�(1� z)

�̂(R)
⌫,q = [cF � cqq(R)] ln

µ2

M2



Gauge boson PDF anomalous dimension
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• Virtual diagrams have 

• Real diagrams have

cA

f (I=0)
W : cA

f (I=1)
W : 1

2cA

f (I=2)
W : �1

Graph PG+G+ PG+G�

�̂µ �̂⌫ �̂µ �̂⌫

2
(1�z)+

� 1 � 2 ln ⌫

n̄·r
�(1 � z) � ln µ

2

M2 0 0

1
z

+ 1 � z2 0 (1�z)3

z
0

�1 � z 0 0 0

Total1
2

(1�z)+
+ 1

z
� 1 � z � z2 � 2 ln ⌫

n̄·r
�(1 � z) � ln µ

2

M2
(1�z)3

z
0

cA
�
2 ln ⌫

n̄·r
+ 5

2

�
�(1 � z) cA ln µ

2

M2 0 0

�3
2cA�(1 � z) 0 0 0

�
b0
2 � cA

�
�(1 � z) 0 0 0

Total2
�
b0
2 + 2cA ln ⌫

n̄·r

�
�(1 � z) cA ln µ

2

M2 0 0

Table 4. One-loop diagrams for the renormalization of collinear gauge boson operators. The columns
show the graph and contribution to the µ and ⌫ anomalous dimension for PG+G+ , PG+G� . At one-
loop, PG+G+ = PG�G� and PG+G� = PG�G+ . Combinatoric factors have been included. Subsets of
the graphs have been summed to give Total1 and Total2. Total2 has group theory factor 1 in all cases,
since its group theory factors are already included in the table. Total1 has group theory factors given
in eq. (3.37).

where

ePG+G+(z) =
2

(1 � z)+
+

1

z
� 1 � z � z2 ,
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Gauge boson PDF anomalous dimension
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• Virtual diagrams have 

• Real diagrams have 

• Fermions and gauge 
bosons of same rep mix 

• Evolution polarizes 
gauge bosons, due to 
mixing and

cA

f (I=0)
W : cA

f (I=1)
W : 1

2cA

f (I=2)
W : �1

Graph PG+G+ PG+G�

�̂µ �̂⌫ �̂µ �̂⌫

2
(1�z)+

� 1 � 2 ln ⌫

n̄·r
�(1 � z) � ln µ

2

M2 0 0

1
z

+ 1 � z2 0 (1�z)3

z
0

�1 � z 0 0 0

Total1
2

(1�z)+
+ 1

z
� 1 � z � z2 � 2 ln ⌫

n̄·r
�(1 � z) � ln µ

2

M2
(1�z)3

z
0

cA
�
2 ln ⌫

n̄·r
+ 5

2

�
�(1 � z) cA ln µ

2

M2 0 0

�3
2cA�(1 � z) 0 0 0

�
b0
2 � cA

�
�(1 � z) 0 0 0

Total2
�
b0
2 + 2cA ln ⌫

n̄·r

�
�(1 � z) cA ln µ

2

M2 0 0

Table 4. One-loop diagrams for the renormalization of collinear gauge boson operators. The columns
show the graph and contribution to the µ and ⌫ anomalous dimension for PG+G+ , PG+G� . At one-
loop, PG+G+ = PG�G� and PG+G� = PG�G+ . Combinatoric factors have been included. Subsets of
the graphs have been summed to give Total1 and Total2. Total2 has group theory factor 1 in all cases,
since its group theory factors are already included in the table. Total1 has group theory factors given
in eq. (3.37).

where

ePG+G+(z) =
2

(1 � z)+
+

1

z
� 1 � z � z2 ,
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µ
d

dµ
f (I=0)
B±

=
↵1

⇡


1

2
b0,1f

(I=0)
B±

(z) + ePG±Q+ ⌦
X

i=q̄,u,d,¯̀,e
r=1,...,ng

y2i f
(I=0)
i,r,r

+ ePG±Q� ⌦
X

i=q,ū,d̄,`,ē

r=1,...,ng

y2i f
(I=0)
i,r,r

+ y2H ePG±H ⌦
X

i=H,H̄

f (I=0)
i

�
,

µ
d

dµ
f (I=0)
H

=
↵2

⇡


3

4
ePHH(z) ⌦ f (I=0)

H
+

1

2
ePHG+ ⌦ f (I=0)

W+
+

1

2
ePHG� ⌦ f (I=0)

W�

�

+
↵1

⇡

h
y2H ePHH(z) ⌦ f (I=0)

H
+ y2H ePHG+ ⌦ f (I=0)

B+
+ y2H ePHG� ⌦ f (I=0)

B�

i

+
Y 2
t

8⇡2

h
z ⌦

⇣
f (I=0)
q̄,3,3 + 2f (I=0)

ū,3,3

⌘
� Ncf

(I=0)
H

(z)
i

,

In addition, we also have the antiparticle equations given by CP conjugation, q�, r, s $
q̄+, s, r, g+ $ g�, H $ H̄, etc. Some terms have been simplified using �(1 � z) ⌦ f = f(z).

In the I = 1 sector,

– 38 –

µ
d

dµ
f (I=1)
q,r,s =

↵3

⇡

4

3
ePQ�Q� ⌦ f (I=1)

q,r,s

+
↵2

⇡


�1

4
ePQ�Q�⌦f (I=1)

q,r,s +�1f
(I=1)
q,r,s (z)+

1

4
Nc�rs ePQ�G+ ⌦ f (I=1)

W+
+

1

4
Nc�rs ePQ�G�⌦f (I=1)

W�

�

+
↵1

⇡
y2q ePQ�Q� ⌦ f (I=1)

q,r,s +
g1g2
4⇡2

yqNc�rs ePQ�G+ ⌦
⇣
f (I=1)
W+B+

+ f (I=1)
B+W+

⌘

+
g1g2
4⇡2

yqNc�rs ePQ�G� ⌦
⇣
f (I=1)
W�B�

+ f (I=1)
B�W�

⌘

+
Y 2
t

4⇡2


�1

8
�r3f

(I=1)
q,3,s (z) � 1

8
�s3f

(I=1)
q,r,3 (z) +

Nc

2
�r3�s3 1 ⌦ f (I=1)

H̄

�
,

µ
d

dµ
f (I=1)
`,r,s

=
↵2

⇡


�1

4
ePQ�Q�⌦f (I=1)

`,r,s
+�1f

(I=1)
`,r,s

(z)+
1

4
�rs ePQ�G+⌦f (I=1)

W+
+

1

4
�rs ePQ�G�⌦f (I=1)

W�

�

+
↵1

⇡
y2
`
ePQ�Q� ⌦ f (I=1)

`,r,s
+

g1g2
4⇡2

y`�rs ePQ�G+ ⌦
⇣
f (I=1)
W+B+

+ f (I=1)
B+W+

⌘

+
g1g2
4⇡2

y`�rs ePQ�G� ⌦
⇣
f (I=1)
W�B�

+ f (I=1)
B�W�

⌘
,

µ
d

dµ
f (I=1)
W±

=
↵2

⇡


ePG±G+ ⌦ f (I=1)

W+
+ ePG±G� ⌦ f (I=1)

W�
+ �2f

(I=1)
W±

(z)+PG±Q+ ⌦
X

i=q̄,¯̀
r=1,...,ng

f (I=1)
i,r,r

+PG±Q� ⌦
X

i=q,`,

r=1,...,ng

f (I=1)
i,r,r

+PG±H(z) ⌦
X

i=H,H̄

f (I=1)
i

�
,

µ
d

dµ
f (I=1)
W±B±

=


↵2

⇡
�3 +

↵1

⇡

1

4
b0,1

�
f (I=1)
W±B±

(z) +
g1g2
4⇡2

ePG±Q� ⌦
X

i=q,`,r=1,...,ng

yif
(I=1)
i,r,r

� g1g2
4⇡2

ePG±Q+ ⌦
X

i=q̄,¯̀,r=1,...,ng

f (I=1)
i,r,r

,

µ
d

dµ
f (I=1)
H

=
↵2

⇡


�1

4
ePHH ⌦ f (I=1)

H
+ �4f

(I=1)
H

(z) +
1

4
ePHG+ ⌦ f (I=1)

W+
+

1

4
ePHG� ⌦ f (I=1)

W�

�

+
↵1

⇡

h
y2H ePHH ⌦ f (I=1)

H

i
+

Y 2
t

8⇡2

h
z ⌦ f (I=1)

q̄,3,3 � Ncf
(I=1)
H

(z)
i

,

µ
d

dµ
f (I=1)
eHH

=
↵2

⇡


�1

4
ePHH ⌦ f (I=1)

eHH
+ �4f

(I=1)
eHH

(z)

�

+
↵1

⇡

h
�y2H ePHH ⌦ f (I=1)

eHH
+ 2y2H�4f

(I=1)
eHH

(z)
i
� Y 2

t

8⇡2
Ncf

(I=1)
eHH

(z) .
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µ
d

dµ
f (I=0)
q,r,s (z) =

↵3

⇡


4

3
ePQ�Q� ⌦ f (I=0)

q,r,s + �rs ePQ�G+ ⌦ f (I=0)
g+

+ �rs ePQ�G� ⌦ f (I=0)
g�

�

+
↵2

⇡


3

4
ePQ�Q� ⌦ f (I=0)

q,r,s +
Nc

2
�rs ePQ�G+ ⌦ f (I=0)

W+
+

Nc

2
�rs ePQ�G� ⌦ f (I=0)

W�

�

+
↵1

⇡

h
y2q ePQ�Q�⌦f (I=0)

q,r,s +2Ncy
2
q�rs ePQ�G+ ⌦ f (I=0)

B+
+2Ncy

2
q�rs ePQ�G�⌦f (I=0)

B�

i

+
Y 2
t

4⇡2


�r3�s3(1 � z) ⌦ f (I=0)

u,3,3 � 1

8
�r3f

(I=0)
q,3,s (z) � 1

8
�s3f

(I=0)
q,r,3 (z)

+
Nc

2
�r3�s3 1 ⌦ f (I=0)

H̄

�
,

µ
d

dµ
f (I=0)
u,r,s =

↵3

⇡


4

3
ePQ+Q+ ⌦ f (I=0)

u,r,s +
1

2
�rs ePQ+G+ ⌦ f (I=0)

g+
+

1

2
�rs ePQ+G� ⌦ f (I=0)

g�

�

+
↵1

⇡

h
y2u ePQ+Q+ ⌦ f (I=0)

u,r,s + Ncy
2
u�rs ePQ+G+ ⌦ f (I=0)

B+
+ Ncy

2
u�rs ePQ+G� ⌦ f (I=0)

B�

i

+
Y 2
t

4⇡2


1

2
(1 � z)�r3�s3 ⌦ f (I=0)

q,3,3 � 1

4
�r3f

(I=0)
u,3,s (z) � 1

4
�s3f

(I=0)
u,r,3 (z)

+
Nc

2
�r3�s3 1 ⌦ f (I=0)

H

�
,

µ
d

dµ
f (I=0)
d,r,s

=
↵3

⇡


4

3
ePQ+Q+ ⌦ f (I=0)

d,r,s
+

1

2
�rs ePQ+G+ ⌦ f (I=0)

g+
+

1

2
�rs ePQ+G� ⌦ f (I=0)

g�

�

+
↵1

⇡

h
y2
d
ePQ+Q+ ⌦ f (I=0)

d,r,s
+ Ncy

2
d
�rs ePQ+G+ ⌦ f (I=0)

B+
+ Ncy

2
d
�rs ePQ+G� ⌦ f (I=0)

B�

i
,

µ
d

dµ
f (I=0)
`,r,s

=
↵2

⇡


3

4
ePQ�Q� ⌦ f (I=0)

`,r,s
+

1

2
�rs ePQ�G+ ⌦ f (I=0)

W+
+

1

2
�rs ePQ�G� ⌦ f (I=0)

W�

�

+
↵1

⇡

h
y2
`
ePQ�Q� ⌦ f (I=0)

`,r,s
+ y2

`
�rs ePQ�G+ ⌦ f (I=0)

B+
+ y2

`
�rs ePQ�G� ⌦ f (I=0)

B�

i
,

µ
d

dµ
f (I=0)
e,r,s =

↵1

⇡

h
y2e ePQ+Q+ ⌦ f (I=0)

e,r,s + y2e�rs ePQ+G+ ⌦ f (I=0)
B+

+ y2e�rs ePQ+G� ⌦ f (I=0)
B�

i
,

µ
d

dµ
f (I=0)
g± =

↵3

⇡


3 ePG±G+ ⌦ f (I=0)

g+
+ 3 ePG±G� ⌦ f (I=0)

g� +
1

2
b0,3f

(I=0)
g± (z)

+
4

3
ePG±Q+ ⌦

X

i=q̄,u,d,

r=1,...,ng

f (I=0)
i,r,r

+
4

3
ePG±Q� ⌦

X

i=q,ū,d̄

r=1,...,ng

f (I=0)
i,r,r

�
,

µ
d

dµ
f (I=0)
W±

=
↵2

⇡


2 ePG±G+(z) ⌦ f (I=0)

W+
+ 2 ePG±G�(z) ⌦ f (I=0)

W�
+

1

2
b0,2f

(I=0)
W±

(z)

+
3

4
ePG±Q+ ⌦

X

i=q̄,¯̀
r=1,...,ng

f (I=0)
i,r,r

+
3

4
ePG±Q� ⌦

X

i=q,`,

r=1,...,ng

f (I=0)
i,r,r

+
3

4
ePG±H ⌦

X

i=H,H̄

f (I=0)
i

�
,
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µ
d

dµ
f (I=2)
W±

=
↵2

⇡


� ePG±G+(z) ⌦ f (I=2)

W+
� ePG±G�(z) ⌦ f (I=2)

W�
+

✓
b0,2
2

+ 6 ln
⌫

n̄ · r

◆
f (I=2)
W±

(z)

�
,

⌫
d

d⌫
f (I=0)
i

= 0,

⌫
d

d⌫
f (I=1,I3=0)
i

=
↵2

⇡
ln

µ2

M2
W

f (I=1,I3=0)
i

,

⌫
d

d⌫
f (I=2,I3=0)
i

=
3↵2

⇡
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µ2

M2
W
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i

,

⌫
d

d⌫
f (I=1,I3=1)
eHH

=


↵2

2⇡
ln

µ2

M2
W

+
(↵2 + 4y2

H
↵1)

2⇡
ln

µ2

M2
Z

�
f (I=1,I3=1)
eHH

=


↵2

2⇡
ln

µ2

M2
W

+
↵em

2⇡ sin2 ✓W cos2 ✓W
ln

µ2

M2
Z

�
f (I=1,I3=1)
eHH

.

7 Comparison to literature

We compare our results to those obtained for the (electroweak) PDF evolution in refs. [? ?

? ], which is based on splitting functions in the broken phase. Their approach yields, for

example, for the SU(2) running with µ � M ,

d

d ln µ
f (I=1,I3=0)
q (x, µ) =

↵2

⇡

Z 1�M/µ

0
dz


� 1

4
ePQQ(z) f (I=1,I3=0)

q

⇣x

z
, µ

⌘

+
1

8
Nc

ePQG(z) f (I=1,I3=0)
W

⇣x

z
, µ

⌘
+ . . .

�
,

d

d ln µ
f (I=1,I3=0)
W

(x, µ) =
↵2

⇡

Z 1�M/µ

0
dz


ePGG(z) f (I=1,I3=0)

W

⇣x

z
, µ

⌘

+ ePGQ(z)
X

i=q,q̄,`,¯̀

f (I=1,I3=0)
i

⇣x

z
, µ

⌘
+ . . .

�
.

Here QCD is accounted for through the number of colors Nc, the triplet PDFs are

f (I=1,I3=0)
q (x, µ) = 1

2 [fu�(x, µ) � fd�(x, µ)] ,

f (I=1,I3=0)
W

(x, µ) =
X

h=±

f
W

+
h

(x, µ) � f
W

�
h

(x, µ) ,

i.e. we assume a single generation, and the (conventional) QCD splitting functions are given

by

ePQQ = ePQ�Q� , ePQG = ePQ�G� + ePQ�G+ ,

ePGG = ePG�G� + ePG�G+ , ePGQ = ePG�Q� + ePG+Q� .
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Includes: 

• SU(3)xSU(2)xU(1) 

• Yukawa’s 

• Spin dependence 

• Higgs 

• Longitudinal W, Z 

•       interference�Z
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•   

• Wilson line direction of      denoted by 

•    -evolution cancels against collinear: 

For two Wilson line directions 

In- vs. outgoing Wilson line does not matter

Graph �̂µ �̂⌫

ln (�ni·nj�i0)⌫2

2µ2 ln µ
2

M2

Table 8. The one-loop diagram for the soft operator SiSj . The double lines denote the Wilson lines
Si and Sj . The columns show the graph and its contribution to the µ and ⌫ anomalous dimension,
apart from the group theory factors given in the text.

First consider the (ni · nj)-independent pieces in the soft anomalous dimension. For the soft

operator

Sab

12...n = tr
⇥
(S1t

a1S†

1)(S2t
a2S†

2) . . . (SntanS†

n)
⇤
, (4.5)

one-loop graphs where gauge fields are exchanged between the same Wilson line or between

a Wilson line Si and its conjugate S†

i
vanish, since n2

i
= 0. Gauge boson exchange between

S1 or S†

1 and the other Wilson lines gives a group theory factor

tr [tx, ta1 ][tx, ta2 ]ta3 . . . tan + tr [tx, ta1 ]ta2 [tx, ta3 ] . . . tan + . . . + tr [tx, ta1 ]ta2ta3 . . . [tx, tan ]

= �tr [tx, [tx, ta1 ]]ta2ta3 . . . tan = �cAtr ta1ta2ta3 . . . tan . (4.6)

Similarly, we add the exchanges between S2,S†

2 and all the other Wilson lines, etc. The

sum of all these contributions counts all exchanges twice, so the overall group theory factor is

�nIcA/2, where nI is the number of indices, e.g. 2 for Scd

12 and 4 for Scd

12S
ef

34 . The ⌫ anomalous

dimension has no ni · nj dependent terms, so

�̂⌫,S = �1

2
nI cA ln

µ2

M2
. (4.7)

The ⌫-anomalous dimensions of the soft and collinear operators cancel.

For the µ-anomalous dimension, the second term in eq. (4.4) can be treated in the same

manner as �⌫ , but the first term has to be computed explicitly, accouting for the imaginary

part of ln(�ni ·nj) depending on whether the soft Wilson lines are time-ordered or anti-time-

ordered. We find

�̂µ,S12 = cA
h
ln

µ2

⌫2
� L12

i
,

�̂µ,S123 = cA
h3

2
ln

µ2

⌫2
� 1

2
(L12 + L13 + L23)

i
, (4.8)

where we use the abbreviation

Lij ⌘ ln
���
ni ·nj

2

��� . (4.9)
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Soft function anomalous dimension
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•   

• Wilson line direction of      denoted by 

•    -evolution cancels against collinear: 

• For two Wilson line directions 

• In- vs. outgoing Wilson line does not matter

Graph �̂µ �̂⌫

ln (�ni·nj�i0)⌫2

2µ2 ln µ
2

M2

Table 8. The one-loop diagram for the soft operator SiSj . The double lines denote the Wilson lines
Si and Sj . The columns show the graph and its contribution to the µ and ⌫ anomalous dimension,
apart from the group theory factors given in the text.

First consider the (ni · nj)-independent pieces in the soft anomalous dimension. For the soft

operator

Sab

12...n = tr
⇥
(S1t

a1S†

1)(S2t
a2S†

2) . . . (SntanS†

n)
⇤
, (4.5)

one-loop graphs where gauge fields are exchanged between the same Wilson line or between

a Wilson line Si and its conjugate S†

i
vanish, since n2

i
= 0. Gauge boson exchange between

S1 or S†

1 and the other Wilson lines gives a group theory factor

tr [tx, ta1 ][tx, ta2 ]ta3 . . . tan + tr [tx, ta1 ]ta2 [tx, ta3 ] . . . tan + . . . + tr [tx, ta1 ]ta2ta3 . . . [tx, tan ]

= �tr [tx, [tx, ta1 ]]ta2ta3 . . . tan = �cAtr ta1ta2ta3 . . . tan . (4.6)

Similarly, we add the exchanges between S2,S†

2 and all the other Wilson lines, etc. The

sum of all these contributions counts all exchanges twice, so the overall group theory factor is

�nIcA/2, where nI is the number of indices, e.g. 2 for Scd

12 and 4 for Scd

12S
ef

34 . The ⌫ anomalous

dimension has no ni · nj dependent terms, so

�̂⌫,S = �1

2
nI cA ln

µ2

M2
. (4.7)

The ⌫-anomalous dimensions of the soft and collinear operators cancel.

For the µ-anomalous dimension, the second term in eq. (4.4) can be treated in the same

manner as �⌫ , but the first term has to be computed explicitly, accouting for the imaginary

part of ln(�ni ·nj) depending on whether the soft Wilson lines are time-ordered or anti-time-

ordered. We find

�̂µ,S12 = cA
h
ln

µ2

⌫2
� L12

i
,

�̂µ,S123 = cA
h3

2
ln

µ2

⌫2
� 1

2
(L12 + L13 + L23)

i
, (4.8)

where we use the abbreviation

Lij ⌘ ln
���
ni ·nj

2

��� . (4.9)
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Mixing and angular dependence
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• For four Wilson line directions, there are multiple SU(2) reps.: 

• These mix under renormalization and depend on angles  
 
 
 
 
where                              , and  u, v, w, are conformal ratios

h0|tr[S1t
aS†

1 S2t
bS†

2 ] tr[S3t
cS†

3 S4t
dS†

4 ]|0i

h0|tr[S1t
aS†

1 S3t
cS†

3 ] tr[S2t
bS†

2 S4t
dS†

4 ]|0i

h0|tr[S1t
aS†

1 S4t
dS†

4 ] tr[S2t
bS†

2 S3t
cS†

3 ]|0i
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2
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0
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1

A
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EW resummation
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•   -evolution vanishes for                 (at NLL) 

•   -evolution gives rise to double logarithms [See Ciafaloni et al] 

• Single logarithms for nonsinglets: 

• Different coefficient splitting function 

• Angular dependence through soft

µ = MW⌫

µ

µ

⌫

QMW

Q

MW

hard

soft

co
ll
in

ea
r

1

Figure 2. Path in (⌫, µ) space for integrating the anomalous dimensions of collinear and soft
operators.

first do the ⌫ evolution of the soft operator from ⌫ = MW to ⌫ = Q at µ = MW , and then

perform the µ evolution of the soft and collinear operators from µ = MW to µ = Q, as shown

in fig. 2 (see also the discussion above eq. (4.30) in ref. [37]). Using eq. (4.7), the ⌫ evolution

of the soft operator gives

U⌫ = exp

 Z
⌫C

⌫S

d⌫

⌫
�⌫,S

�
= exp


� nI

↵2(µ)

⇡
ln

Q

MW

ln
µ2

M2
W

�
, (6.2)

where nI is the number of gauge indices in the soft factor. When µ = MW exactly, U⌫ = 1

and can be ignored, but otherwise it must be kept to achieve NLL accuracy. In particular it

must be kept when estimating the perturbative uncertainty from scale variations.

Moving on to the µ-evolution, we first consider the terms in the collinear and soft µ-

evolution that give rise to double logarithms. They are described by the following multi-

plicative anomalous dimensions: For the soft anomalous dimension, the relevant terms in

eqs. (4.8)–(4.10) are given by (using cA = 2)

�DL
µ,S = nI

↵2

⇡
ln

µ2

⌫2
. (6.3)

For the collinear anomalous dimensions, the double logarithms arise from the ln ⌫/(n̄·p) term,

which vanishes for the o↵-diagonal elements. For the diagonal elements, it vanishes for the

singlet, and for the triplet PDFs (and FFs) it is given by

�(I=1),DL
µ,qq = �(I=1),DL

µ,WW
= �(I=1),DL

µ,WB
= · · · =

2↵2

⇡
ln

⌫

n̄ · p �(1 � z) . (6.4)

Here n̄ ·p = 2E, with E the energy of the parton. The triplet PDFs have a single gauge index

which is contracted with a soft operator, and the soft operator anomalous dimension eq. (6.3)

is proportional to nI , the number of gauge indices. Combining the collinear anomalous
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U⌫ = exp
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4. Comparison and extensions



Comparison with Bauer, Ferland, Webber
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• They cut off soft singularity in PDF evolution 

• Fix               contribution from momentum sum rule 

• Agrees with our result for           and at LL. Differences at NLL  

• They do not account for polarization of gauge bosons

d

d lnµ
f (I=1,I3=0)
q (x, µ) =

↵2

⇡

Z 1�M/µ

0
dz


� 1

4
ePQQ(z) f
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⇣x
z
, µ

⌘

+
1

4
Nc

ePQG(z) f
(I=1,I3=0)
W

⇣x
z
, µ

⌘
+ . . .

�

d

d lnµ
f (I=1,I3=0)
q (x, µ) =

↵2

⇡

⇣3
2
ln

M

µ
+

9

8

⌘
f (I=1,I3=0)
q (x, µ) + . . .

z < 1

�(1� z)



Some extensions
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• Higher orders: 

• Jets: fragmentation function for jets, match at scale  
[Kang, Ringer, Vitev; Dai, Kim, Leibovich] 

• Inclusive beams and exclusive 
central (detector) region 
[Chien, Hornig, Lee; Becher, Neubert, Rothen, Shao]

Matching Non-cusp Cusp
LL tree - 1-loop
NLL tree 1-loop 2-loop
NLL0 1-loop 1-loop 2-loop
NNLL 1-loop 2-loop 3-loop

1

Rb
beam axis

⌘ = ⌘B

µ = pTR

D(I=0)
W±!jet(x, µ, ⌫) = �(1� x) , D(I=1,I3=0)

W±!jet (x, µ, ⌫) = 0 , D(I=2,I3=0)
W±!jet (x, µ, ⌫) = 0 ,

D(I=0)
q!jet(x, µ, ⌫) = �(1� x) , D(I=1,I3=0)

q!jet (x, µ, ⌫) = 0 ,

Du!jet(x, µ, ⌫) = �(1� x)



5. Electroweak gauge boson PDFs



Transverse gauge boson PDFs
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• Tree-level matching vanishes, first contribution at one-loop 

• Does not have to be positive (MS subtraction) 

• At higher energies comparable to photon PDF
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Figure 5. The transverse gauge boson PDFs fW+
T

(red), fW�
T

(blue), fZT (green) and f�ZT (purple)
for µ = MZ and µ = 1000GeV. The unpolarized photon PDF (dashed, brown) has also been shown
for comparison, multipled by 0.1 at µ = MZ and by 0.5 at µ = 1000GeV, so it fits on the same plot.

Figure 6. The polarized gauge boson PDFs f�W+
T

(red), f�W�
T

(blue), f�ZT (green) and f��ZT

(purple) for µ = MZ and µ = 1000GeV.

Figure 7. The longitudinal gauge boson PDFs fW+
L

(red), fW�
L

(blue), and fZL (green) for µ = MZ .
The longitudinal PDF does not depend on µ to the order computed in the plot.
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Polarized gauge boson PDFs
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• Polarization effects size-able, especially at largish x 

• Proton contains more quarks than anti-quarks, and  
left-handed quarks preferably emit helicity -1 gauge bosons

Figure 5. The transverse gauge boson PDFs fW+
T

(red), fW�
T

(blue), fZT (green) and f�ZT (purple)
for µ = MZ and µ = 1000GeV. The unpolarized photon PDF (dashed, brown) has also been shown
for comparison, multipled by 0.1 at µ = MZ and by 0.5 at µ = 1000GeV, so it fits on the same plot.
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Figure 6. The polarized gauge boson PDFs f�W+
T

(red), f�W�
T

(blue), f�ZT (green) and f��ZT

(purple) for µ = MZ and µ = 1000GeV.

Figure 7. The longitudinal gauge boson PDFs fW+
L

(red), fW�
L

(blue), and fZL (green) for µ = MZ .
The longitudinal PDF does not depend on µ to the order computed in the plot.
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Longitudinal gauge boson PDFs
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• Similar in size to transverse PDFs at low scales 

•    -independent at this order

Longitudinal
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Summary
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• Electroweak resummation for inclusive processes involves 
double logs because initial/final particles are not SU(2) singlets 

• Factorization in symm. phase but includes SU(2) nonsinglets  
→ soft functions, double logs, rapidity logs 

• Beyond LL: modified DGLAP,  angular dependence (through 
soft function), evolution polarizes gauge boson PDFs 

• Can also consider mixed inclusive/exclusive setup and jets 

• Matched the EW gauge boson PDFs at one-loop 

• Coming soon: phenomenology

Tack!


