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Resummation in SCET uses factorization theorems and RG
equations

In SCET, collinear and soft degrees of freedom factorize at level of
Lagrangian.

L=1L 4. L + L

If collinear and soft factor in definition of observable, one obtains
factorization theorem

Z(va) — H(/LMUH)J(:UMLLJ) Y J(:ualuJ) Y S(N?/LS)
HWF = MF[U7Q]

Most important part of above: Each term in factorization theorem
depends only on single scale
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Resummation in SCET uses factorization theorems and RG
equations

(v, Q) = H(py g )J (11, 1) @ J (e, pry) @ S (s pis)

One can now derive RG equations for each piece of factorization
formula, and one finds in general (F=H,J,S)

d
u@F(u, pr) =vr(p, pr) @ F(p, pir)

From this one can write

s
&

Solution to RGE resums logarithms.

Precision determined by loops in anom. dimensions (and matching)



Resummation in SCET uses factorization theorems and RG
equations

1. SCET requires factorization theorem

2. For each ingredient of factorization theorem compute and
solve RG equations

Downsides of approach:

1. Only works for observables where factorization formula
can be derived

2. Need a different calculation for each observable

3. Clearly does not work if factorization formula does not
exist



A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini (91)
Catani, Turnock, Webber, Trentadue ('91)

Banfi, Salam, Zanderighi ('04)

One starts from the generic all order expression

() = V(@5) Y % /[dkl] Ak M By k) ROV (. Ky <0

To proceed, need to simplify the generic |M(k1,...,kn)[2

(P+01+02+03)?

pwq‘qug v O

Leading divergence only if 9Tt « q'2 « T3 (strongly ordered)




A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini (91)
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1
N(v) =V(®5) ), — /[dkl] Ak [ M (B, B2 OV (R, ... Ky < 0]
n=0

Leading divergence only if qT1 « gT2 « T3 (strongly ordered)

In strongly ordered limit
M (Kiyo k)P = [M (k1) [M(R2)[* .. [ M (k)|
This gives

S () =V(®B) ) k H/[dkiHM(ki)F OV(ki,... ky) <]

For simple enough observable can be solved very easily



A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini (91)
Catani, Turnock, Webber, Trentadue ('91)

Banfi, Salam, Zanderighi ('04)

@)

SLL () = V(@) Y — H/[dkiHM(ki)F OV (k... k) <]

n!
n=0

Consider an observable that satisfies

Vinax (K1, ..., kn) = max [V (k1), ...,V (k)]

Then one can easily exponentiate the result
Z?nléx( (I)B n' H {/ d/{ ‘M )‘2@ [V(kz) < ?}]}

e—RLL (”U)

Can this be applied for more complicated observables?



A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini (91)
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SLL () = V(@) Y — H/[dkiHM(ki)F OV (k... k) <]

Can one relate the two expressions to one another?

Most observables satisty the following property

V(kl,kg, . ,kn) @[V(kl) < 52}] — V(kg, . ,kn)

For these, one can make additional simplifications



A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini ('91)
Catani, Turnock, Webber, Trentadue ('91)

Banfi, Salam, Zanderighi ('04)

@)

SLL (1) = V(P p) Z% H/[dkiHM(ki)F OV (k... k) <]

V(kl,kg, . ,kn) @[V(kl) < 5?)] = V(l{ig, - ,]{?n)

Splitting each integration into a part <év and one >0v one finds

o

00 v
SE (1) = V(@) {Z = [H / [dkiuM(W] } {Z = [H [ fakar (i

= Do (00) Z%% [H Lv[dkiHM(l@;)F

OV (ky,... k) <]

Rewrlte as

ZEIJJL Egi) — Z i _1:[ /5v[dkz]|M(/€z)|2 OV(ki,..., kn) <




A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini (91)
Catani, Turnock, Webber, Trentadue ('91)

Banfi, Salam, Zanderighi ('04)
Allows to write

Y(v) = Ymax (V) F(v)

F(v)—z (5”)21 H k)| M (k)12 OV (k1,. .. kn) < 0]

n!

L) = nl (AL 05S

For simple enough observables, can perform integral analytically
IR divergences regulated, can be calculated in 4 dimension

Can always be calculated numerically
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A numerical resummation approach was developed based on

the coherent branching formalism Catani, Webber, Marchesini (91)
Catani, Turnock, Webber, Trentadue ('91)

Banfi, Salam, Zanderighi ('04)
In summary, for any observable one can write

¥:(v) = Xmax(v) F(v)

where 2max can be computed easily analytically and

F) = 200 S LTI [ arliM00R | 1V, ... k) <o

max (V)

n=0

can be calculated numerically

Downsides of approach:

1. Computation of the max observable not trivial at higher
orders

2. Computation of the ratio again complicated at higher
orders
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Pros and Cons for both: Coherent branching formalism being
more generic and SCET more systematic

Coherent branching

Only works for observables for which Works for any observable
factorization theorem exists (that is rIRC safe)
Purely analytical calculations Only need analytical resummation for
(although numerical techniques for simple observable. Everything else
parts exist) done numerically

Very systematic way to go to higher = Somewhat of an art to go to higher
orders (more loops in anomalous orders (need to know exactly what
dimensions) was and was not included before)
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Combining two approaches allows for generic resummation in
SCET, without need for factorization theorem

Combination

Derive general factorization formula that only uses separation of
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

Obtain relation between general and simplified observable through
numerical algorithm within SCET
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1) Write a “factorized” expression using only the separation

of modes in SCET Lagrangian CWB, Fleming, Lee, Sterman ('08)
CWB, Hornig Tackmann (’08)

Write the energy distribution of a generic event as

Es, (6 N
1, Q4

()) = E;0(Q) — €
. ox() = 3 Bid(0 - 9

Es, ()5 E, Q4 Es, Q3

Write a general observable in terms of this energy distribution

00
Y(®p,v) = /Dw 1B om OV dp,w| < wv)

with

op — /Q A0 w(Q) Do (92) = D) 0w(€2)] = [ o O(cr)
k k 15



1) Write a “factorized” expression using only the separation

of modes in SCET Lagrangian CWB, Fleming, Lee, Sterman ('08)
CWB, Hornig Tackmann (’08)

Almost any observable can be written in terms of fully differential
energy distribution

00
Y(Pp,v) = /Dw 1B o0 OV ®p,w| <v)

Using the fact that SCET Lagrangian completely tactors into collinear
and soft pieces

00, 0o 0o g
—H D n D n D S n n S
/ “ dCDBéwn / “ dCDBéwn / “ d(I)B&,dS [w twntw ] < U)

This applies to any observable

Observable can be factorizable or not
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Combining two approaches allows for generic resummation in
SCET, without need for factorization theorem

Combination

Derive general factorization formula that only uses separation of
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

3 Obtain relation between general and simplified observable through
numerical algorithm within SCET
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2) For the simplified observable, can obtain resummation
using the standard SCET methods

00, 00 005
:H D n D ’FL D S mn 'FL S
/ * dCDBéwn / * dCIJB&un / * d(I)B&,dS [w T wh ] < ”U)

Define max observable satistying

Vmax[q)Ba Wp, + Wg T ws] — INax [Vmax[q)Ba wn] + Vmax[q)Ba wﬁ] + Vmax[q)Ba WSH

Gives trivial factorization
Yimax (V) =H (1, porr) 5" (e, pr) B2 (s pg) X5 (1, ps )

Resum using RG equations for each ingredient
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Combining two approaches allows for generic resummation in
SCET, without need for factorization theorem

Combination

Derive general factorization formula that only uses separation of
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

Obtain relation between general and simplified observable through

numerical algorithm within SCET
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3) Difference between desired and simplified observable can
now be computed numerically

Relate the "max” observable to the observable we want
¥(v) = Ymax(v) F(v)

Using the factorization results from above

Yo don 005
H D n D n n n S
/ v dCIDB(Swn / wn d(I)B&,un / d(I)B&uS Q(V[w —|_ v —|_ v ] < U>

Ymax (V) =H (1, prrr) 550 (i, pr) B3 (s g ) 28 (1, s )

one finds
F(v) :/Dwn F'(wn,v) /Dwn F'(waq,v) /Dws Fl(ws, 0)0(V]wy, + wr + ws] < )

With Sor

Flwrv) =5 dq)(ZZUFuF)
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3) Difference between desired and simplified observable can
now be computed numerically

50‘F

Flwrv) =5 dq}(ZtFuF)

For the jet function one can show that with appropriate definitions

50-5'% max,LL
d(I)B5CLJ — 5(wn )’ Zn,ﬁ (:LLHaluJ) =1
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3) Difference between desired and simplified observable can
now be computed numerically

50‘F

F,(WF,U) — d(I)B5wF

ErnaX(,u[—Ia ILLF)

For the soft functions, do manipulations similar to coherent branching

005
d(I)B&US N

1. Replace [Ms(k1,
(product of tree-

Vs(®p) Y |Ms(®pik, ... k)|

n=0

K2, ...,Kn)[2 by strongly ordered limit
evel, 1-particle emissions)

2. |Introduce resolu

3. Perform various

ion scale 6 to regulate IR (cancels

netween numerator and denominator

algebraic simplifications on result
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3) Difference between desired and simplified observable can
now be computed numerically

dor

d® zow
Fi(®p,wr,v) = zmaX?cb; v)

After all manipulations, one finds

/ ) > 1 r Oodvi
INLL((I)B;?}) = (5RLL(CI)B>U) Z EH/ /[dkz] R/LL((I)Bavakz)@[V(q)kalv7kn) < ”U]
n=0 = =100

with

0 [V (®p;k) — v]

R/ (CI) . L) = (0) . 2
LL B, U, )— MS ((I)Bak)
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3) Difference between desired and simplified observable can
now be computed numerically

FNLL(

INLL(PB;v) =

dv;
_ SRLL(@pw) Z L H/ /dk RL (Bpiv, ki) O V(D krs o k) < 0]

This can be written as

(1)_R,1,L((I)B5U)
oV

vdoy [ v —Ri 1 (PB;v) v1\ — R (@53)
— | — d
+ /6@ U1 (v1> /[dkl]RLL( B5 U, kl) (5/0)

. — R} (®PB;v)
. / dv, (ﬁ) /[dkl]R’LL(CI)B;%kl)
sv Ul U1

v1 —R{ (®B;w) —R7 . (Pp;v)
% dvo (v1> /[de]RLL((I)BaU k2) (gz) e
v

+ ... @[V((I)B;kl,...,kn)<v] :
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3) Difference between desired and simplified observable can

now be computed numerically

/ 0 > 1 - Ood’Ui
JtNLL((I)B; U) — §fre(®aiv) Z ol H/5 v /[de] R/LL((I)B3 v, kZ) S [V((I)B3 ki,...
n=0 1=1

(

Or this

Algorithm 1: Generating NLL transfer function

Start with ¢+ = 0 and vy = v;
while true do
1=141;
Generate v; randomly according to (vi_1/v;)” FLL(®Bv) = with r € [0, 1];
if v; < dv then
break;
end
Generate a momentum k; randomly according to Ry (®p;v, ki) subject to the
constraint V(®p; k;) = v;

end
One now has a set of momenta k;. If V(®p;kq,...k,) is less than v, accept the

event, otherwise reject it. The value of Fnr(®Pp;v) is equal to the fraction of the
accepted events
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3) Difference between desired and simplified observable can

now be computed numerically

MC/Analytic
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One can check that this works by comparing analytical
to numerical calculation

ENLL (7'> — ZmaX(7-)'FSI\TLL (7-7 T Q)

Monte Carlo
Analytic

0.001 0.01 0.1

Fs\"o(x,7,Q)

MC/Analytic
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This approach opens door for resummation for a large class of
observables

| have shown that one can combine two different methods of
performing resummation to obtain a numerical method that is both
systematic and applicable to wide variety of observables

S
1. Find simplified obserg\aggss of observables

2. Compute @ | esummation to given order

3. Run generic numerical algorithm to compute
resummation for any observable in given class
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