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Resumma'on	in	SCET	uses	factoriza'on	theorems	and	RG	
equa'ons	
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In SCET, collinear and soft degrees of freedom factorize at level of 
Lagrangian.  

If collinear and soft factor in definition of observable, one obtains 
factorization theorem

Most important part of above: Each term in factorization theorem 
depends only on single scale

µF ⌘ µF [v,Q]

⌃(v,Q) = H(µ, µH)J(µ, µJ)⌦ J(µ, µJ)⌦ S(µ, µS)

L = Ln1 + . . .Lnn + Ls
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One can now derive RG equations for each piece of factorization 
formula, and one finds in general (F=H,J,S)

µ
d

dµ
F (µ, µF ) = �F (µ, µF )⌦ F (µ, µF )

From this one can write

F (µ, µF ) = U(µ, µF )⌦ F (µF , µF )

⌃(v,Q) = H(µ, µH)J(µ, µJ)⌦ J(µ, µJ)⌦ S(µ, µS)

Solution to RGE resums logarithms. 
Precision determined by loops in anom. dimensions (and matching)
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1. SCET requires factorization theorem 
2. For each ingredient of factorization theorem compute and 

solve RG equations

Downsides of approach:

1. Only works for observables where factorization formula 
can be derived 

2. Need a different calculation for each observable 
3. Clearly does not work if factorization formula does not 

exist



A	numerical	resumma'on	approach	was	developed	based	on	
the	coherent	branching	formalism
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One starts from the generic all order expression

To proceed, need to simplify the generic |M(k1,…,kn)|2

q3

q2

q1

(p+q1)2 (p+q1+q2)2

(p+q1+q2+q3)2

Leading divergence only if qT1 ≪ qT2 ≪ qT3 (strongly ordered)

⌃(v) = V(�B)
1X

n=0

1

n!

Z
[dk1] . . . [dkn]|M(k1, . . . , kn)|2 ⇥ [V (k1, . . . , kn) < v]

p

Catani, Webber, Marchesini (’91)

Catani, Turnock, Webber, Trentadue (’91)


Banfi, Salam, Zanderighi (’04)
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|M(k1, . . . , kn)|2 = |M(k1)|2 |M(k2)|2 . . . |M(kn)|2
In strongly ordered limit

⌃(v) = V(�B)
1X

n=0

1

n!

Z
[dk1] . . . [dkn]|M(k1, . . . , kn)|2 ⇥ [V (k1, . . . , kn) < v]

This gives

For simple enough observable can be solved very easily

⌃LL(v) = V(�B)
1X

n=0

1

n!

"
Y

i

Z
[dki]|M(ki)|2

#
⇥ [V (k1, . . . , kn) < v]

Catani, Webber, Marchesini (’91)

Catani, Turnock, Webber, Trentadue (’91)


Banfi, Salam, Zanderighi (’04)

Leading divergence only if qT1 ≪ qT2 ≪ qT3 (strongly ordered)
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Consider an observable that satisfies

Then one can easily exponentiate the result

Vmax(k1, . . . , kn) = max [V (k1), . . . , V (kn)]

Can this be applied for more complicated observables?

⌃LL(v) = V(�B)
1X

n=0

1

n!

"
Y

i

Z
[dki]|M(ki)|2

#
⇥ [V (k1, . . . , kn) < v]

⌃LL
max(v) = V(�B)

1

n!

nY

i=1

⇢Z
[dki]|M(ki)|2⇥ [V (ki) < v]

�

= e�RLL(v)

Catani, Webber, Marchesini (’91)

Catani, Turnock, Webber, Trentadue (’91)


Banfi, Salam, Zanderighi (’04)
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⌃LL(v) = V(�B)
1X

n=0

1

n!

"
Y

i

Z
[dki]|M(ki)|2

#
⇥ [V (k1, . . . , kn) < v]

Can one relate the two expressions to one another?

V (k1, k2, . . . , kn)⇥[V (k1) < �v] = V (k2, . . . , kn)

Most observables satisfy the following property

For these, one can make additional simplifications

⌃LL
max(v) = V(�B)

1

n!

nY

i=1

⇢Z
[dki]|M(ki)|2⇥ [V (ki) < v]

�

Catani, Webber, Marchesini (’91)

Catani, Turnock, Webber, Trentadue (’91)


Banfi, Salam, Zanderighi (’04)
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⌃LL(v) = V(�B)
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#)( 1X

n=0

1

n!

"
Y

i

Z

�v
[dki]|M(ki)|2
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"
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#
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Splitting each integration into a part <δv and one >δv one finds 

V (k1, k2, . . . , kn)⇥[V (k1) < �v] = V (k2, . . . , kn)

⌃LL(v) = V(�B)
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#
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Rewrite as
⌃LL(v)

⌃LL
max(�v)

=
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Catani, Webber, Marchesini (’91)
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Banfi, Salam, Zanderighi (’04)
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IR divergences regulated, can be calculated in 4 dimension

For simple enough observables, can perform integral analytically

Can always be calculated numerically

F(v) =
⌃LL(�v)

⌃LL
max(v)

1X

n=0

1

n!

"
Y

i

Z

�v
[dki]|M(ki)|2

#
⇥ [V (k1, . . . , kn) < v]

⌃(v) = ⌃max(v)F(v)

Allows to write

with

Catani, Webber, Marchesini (’91)

Catani, Turnock, Webber, Trentadue (’91)


Banfi, Salam, Zanderighi (’04)



A	numerical	resumma'on	approach	was	developed	based	on	
the	coherent	branching	formalism

�11

can be calculated numerically

F(v) =
⌃LL(�v)

⌃LL
max(v)

1X

n=0

1

n!

"
Y

i

Z

�v
[dki]|M(ki)|2

#
⇥ [V (k1, . . . , kn) < v]

⌃(v) = ⌃max(v)F(v)

In summary, for any observable one can write

where Σmax can be computed easily analytically and 

Catani, Webber, Marchesini (’91)

Catani, Turnock, Webber, Trentadue (’91)


Banfi, Salam, Zanderighi (’04)

Downsides of approach:

1. Computation of the max observable not trivial at higher 
orders 

2. Computation of the ratio again complicated at higher 
orders



Pros	and	Cons	for	both:	Coherent	branching	formalism	being	
more	generic	and	SCET	more	systema'c
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SCET Coherent branching

Only works for observables for which 
factorization theorem exists

Works for any observable 

(that is rIRC safe)

Purely analytical calculations 
(although numerical techniques for 

parts exist)

Only need analytical resummation for 
simple observable. Everything else 

done numerically

Very systematic way to go to higher 
orders (more loops in anomalous 

dimensions)

Somewhat of an art to go to higher 
orders (need to know exactly what 
was and was not included before)



Combining	two	approaches	allows	for	generic	resumma'on	in	
SCET,	without	need	for	factoriza'on	theorem
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Combination

1 Derive general factorization formula that only uses separation of 
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

3 Obtain relation between general and simplified observable through 
numerical algorithm within SCET
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Combination

1 Derive general factorization formula that only uses separation of 
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

3 Obtain relation between general and simplified observable through 
numerical algorithm within SCET



1)	Write	a	“factorized”	expression	using	only	the	separa'on	
of	modes	in	SCET	Lagrangian
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whose logarithmic resummation is defined by the functions gi and g̃i with g0 = g̃0, the

ratio of these two expressions in the three counting schemes are given by

⌃NLL(v)

⌃̃NLL(v)

�����
scheme1

= exp [g1(↵sL)� g̃1(↵sL)] exp [↵sg2(↵sL)� ↵sg̃2(↵sL)]

⌃NLL(v)

⌃̃NLL(v)

�����
scheme2,3

= exp [g1(↵sL)� g̃1(↵sL)] [1 + ↵sg2(↵sL)� ↵sg̃2(↵sL)] . (2.7)

By expanding the functions gi�2, their di↵erence only needs to be evaluated at fixed order,

rather than exponentiating the di↵erence. This will simplify the numerical algorithm. For

this reason, scheme 3 is the one that has been used in approaches that push the automatic

NLL resummation of CAESAR beyond NLL accuracy, in particular ARES.

The results of this paper are in principle agnostic to the scheme used to define the

resummation accuracy, and we will illustrate how any of the three schemes can be achieved

numerically. The last scheme is, however, more straight forward to implement, and will

yield a more e�cient numerical algorithm.

3. Computing resummation numerically

In this section we derive in detail how the transfer function relating the resummation

of a simple observable to the resummation of the desired observable can be computed

numerically. For this we work within SCET, but without assuming that the measurement

function of the desired observable factorizes. This therefore extends the results of [1], in

which similar results were derived for the thrust distribution to generic observables. We

will also explain in detail how the transfer function can be computed beyond NLL accuracy.

3.1 General observables from the energy density

Any observable is defined by the way it acts on a set of final state particles. For many

observables, its value only depends on the momenta of the final state particles. Such

observables can be defined in terms of a general energy density, following the discussion

of [2, 3].

If X has n particles with four-momenta pi = Ei, (1, ~⌦i)1, we can associate each particle

with a given energy Ei and direction ⌦i, such that the total energy in the final state is

given by

!X(⌦) =
nX

i=1

Ei �(⌦� ⌦i) . (3.1)

More generally, we can think of !(⌦) as the distribution of energy over the solid angle ⌦,

as measured experimentally.

One can now define a functional integration measure as usual by discretization. We

divide ⌦ into bins {⌦k}, and define the set of discrete variables {!k} as the integrals of

1We assume that all massless particles, such that for each particle |k| = !k. This can be generalized to

massive particles in a straightforward way.
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Write the energy distribution of a generic event as

!(⌦) over the bins {⌦k},

!k =

Z

⌦k

d⌦!(⌦) . (3.2)

This gives

D!(⌦) ⌘ D!(⌦) ✓[!(⌦)] =
Y

k

d!k ✓(!k) . (3.3)

This allows us to write

⌃(�B, v) ⌘

Z
D!

��

d�B�!
✓(V [�B,!] < v) , (3.4)

where V [�B,!] is the value of the observable as calculated from the energy density of an

event corresponding to Born phase space �B. This equations simply says that the cross

section di↵erential in a given observable can be constructed from the projection of the cross

section that is fully di↵erential in the energy distribution of the event, onto the value of

the observable. The energy distribution is a very general concept, and any observable that

only depends on the kinematics of the final state can be obtained by Eq. (3.4). Observables

that can not be constructed in this way depend on an additional properties of the final

state particles, such as charges or spins.

Note that the fully di↵erential energy distribution can be written formally in terms

of V(�B), denoting the virtual corrections to all orders in perturbation theory, as well as

|M(k1, . . . kn)|2, denoting the all order amplitudes with n extra final state emissions

��

d�B�!
= V(�B)

1X

n=0

|M(k1, . . . , kn)|
2 . (3.5)

The fully di↵erential cross section ��/d�B�! can be factorized in SCET using the im-

portant fact that collinear and soft degrees factorize from one another Need to comment

on for which observables the separation into collinear and soft is valid at the

level of the Lagrangian to find (note that this equation di↵ers slightly from the one given

in [3] in that we have performed the integration over the momenta pi)

��

d�B�!
= |C(�B)|

2
Z
D!n

��n
d�B�!n

Z
D!n̄

��n̄
d�B�!n̄

Z
D!s

��S
d�B�!s

�


! � !s � !n � !n̄

�
.

(3.6)

Here |C(�B)|2 denotes the matching coe�cient describing the short distance fluctuations

in the full theory that are not included in SCET, which depends on the process under con-

sideration, but is independent of the definition of the observable. The terms ��F /d�B�!F

denote the fully di↵erential cross section as computed from the part of the SCET La-

grangian describing sector F . Combining Eq. (3.6) with Eq. (3.4) one can write

⌃(�B, v) =|C(�B)|
2
Z
D!n

��n
d�B�!n

Z
D!n̄

��n̄
d�B�!n̄

Z
D!s

��S
d�B�!s

⇥ ✓(V [�B,!n + !n̄ + !s] < v) . (3.7)
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with

E1, Ω1

E2, Ω2

E3, Ω3E4, Ω4E5, Ω5

E6, Ω6

CWB, Fleming, Lee, Sterman (’08)

CWB, Hornig Tackmann (’08)
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Using the fact that SCET Lagrangian completely factors into collinear 
and soft pieces

This applies to any observable

1)	Write	a	“factorized”	expression	using	only	the	separa'on	
of	modes	in	SCET	Lagrangian

⌃(v) =H

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s
✓(V [!n + !n̄ + !s] < v)

Observable can be factorizable or not

Almost any observable can be written in terms of fully differential 
energy distribution

CWB, Fleming, Lee, Sterman (’08)

CWB, Hornig Tackmann (’08)



Combining	two	approaches	allows	for	generic	resumma'on	in	
SCET,	without	need	for	factoriza'on	theorem
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Combination

1 Derive general factorization formula that only uses separation of 
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

3 Obtain relation between general and simplified observable through 
numerical algorithm within SCET



2)	For	the	simplified	observable,	can	obtain	resumma'on	
using	the	standard	SCET	methods
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Observables that factorize have the property

V [�B,!n + !n̄ + !s] = V [�B,!n] + V [�B,!n̄] + V [�B,!s] (3.8)

such that one obtains

⌃(�B, v) =|C(�B)|
2
Z
dvn

d�n
d�Bdvn

Z
dvn̄

d�n̄
d�Bdvn̄

Z
dvs

d�S
d�Bdvs

✓(vn + vn̄ + vs < v) ,

(3.9)

where

d�F
d�BdvF

=

Z
D!F

d�F
d�Bd!F

� [V (�B;!F )� vF ] . (3.10)

Thus, for factorizable observables one reproduces the factorized result that was the starting

point in [1] when discussing the thrust distribution at NLL accuracy.

However, even for non-factorizable observables, having separated the fully di↵erential

cross section into contributions from di↵erent sectors of the e↵ective theory will allow to

define the transfer function in a factorized way, as will be shown next.

Note that for an energy distribution given by n indistinguishable particles with mo-

menta k1, . . . kn, one can write

D! =
1

n!
[dk1] . . . [dkn] (3.11)

3.2 General definition of the transfer function

As already discussed in the introduction, the transfer function F(�B; v) relates the cross

sections of two observables to one another. One of these observables, ⌃(�B; v) is the

cross section one is interested in obtaining a resummed expression for, while the second,

⌃max(�B; v) is an observable that has the same leading logarithmic structure as the desired

observable, but has a simpler definition which allows for a much simpler resummation

expression. This allows to write

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (3.12)

The suitable definition ⌃max(v) is the cumulative cross section

⌃max(�B; v) =

Z
D!

��

d�B�!
✓(Vmax[�B,!] < v) , (3.13)

where the simplified observable Vmax[�B,!] satisfies 2

Vmax[�B,!n + !n̄ + !s] = max [Vmax[�B,!n] + Vmax[�B,!n̄] + Vmax[�B,!s]] (3.14)

2Several comments are in order about this definition of Vmax[�B ,!]. First, given that the separation

between collinear and soft fields is not experimentally well defined, this observable is not a measurable

object, but rather a theoretical construct. Second, Eq. (3.14) does not fully define Vmax[�B ,!], and we will

defer the exact definition to when it is needed.
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Define max observable satisfying

Gives trivial factorization
⌃max(v) =H(µ, µH)⌃max

n
(µ, µJ)⌃

max
n̄

(µ, µJ)⌃
max
S

(µ, µS)

Resum using RG equations for each ingredient

⌃(v) =H

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s
✓(V [!n + !n̄ + !s] < v)



Combining	two	approaches	allows	for	generic	resumma'on	in	
SCET,	without	need	for	factoriza'on	theorem
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Combination

1 Derive general factorization formula that only uses separation of 
modes in SCET Lagrangian

2 Use SCET to obtain resummed result for a simple observable

3 Obtain relation between general and simplified observable through 
numerical algorithm within SCET



3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically
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Relate the  “max” observable to the observable we want

Using the factorization results from above

with

⌃(v) =H

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s
✓(V [!n + !n̄ + !s] < v)

⌃max(v) =H(µ, µH)⌃max
n

(µ, µJ)⌃
max
n̄

(µ, µJ)⌃
max
S

(µ, µS)

one finds
F(v) =

Z
D!n F 0(!n, v)

Z
D!n̄ F 0(!n̄, v)

Z
D!s F 0(!s, v)✓(V [!n + !n̄ + !s] < v)

F 0(!F , v) =
��F

d�B�!F

⌃max(µH , µF )

⌃(v) = ⌃max(v)F(v)
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For the jet function one can show that with appropriate definitions

3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically

F 0(!F , v) =
��F

d�B�!F

⌃max(µH , µF )

��LL
nn̄

d�B�!n,n̄

= �(!n,n̄) , ⌃max,LL
n,n̄ (µH , µJ) = 1

F
0NLL(!n,n̄, v) = �(!n,n̄)
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For the soft functions, do manipulations similar to coherent branching

from which one immediately obtains

F
0NLL
n,n̄ (�B;!n,n̄) = �(!n,n̄) . (3.21)

Thus, to NLL accuracy, only the transfer function FS(�B; v) is required and one finds

F
NLL(�B, v) =

Z
D!sF

0NLL
S (�B,!s, v) ✓(V [�B,!s] < v) , (3.22)

To compute the soft transfer function, one follows the discussion in [1], which starts

from the general expressions

��S
d�B�!s

= VS(�B)
1X

n=0

|MS(�B; k1, . . . , kn)|
2 , (3.23)

which to NLL accuracy can be written as

��LL
S

d�B�!s
= VS(�B)

1X

n=0

nY

i=1

���M (0)
S (�B; ki)

���
2
. (3.24)

This gives the numerator of the transfer function. To obtain the denominator, one needs

a precise definition of Vmax, which satisfies the condition given in Eq. (3.14). We use

Vmax(�B,!s)
��LL

S

d�B�!s
⌘ VS(�B)

1X

n=0

nY

i=1

|MS(�B; ki)|
2 max {V (�B; k1), . . . , V (�B; kn)} .

(3.25)

This gives

⌃max,LL
S (�B; v) = VS(�B)

1X

n=0

1

n!

nY

i=1

Z
[dki]

���M (0)
S (�B; ki)

���
2
⇥ [V (�B; ki) < v]

= VS(�B) exp

⇢Z
[dki]

���M (0)
S (�B; ki)

���
2
⇥ [V (�B; ki) < v]

�
. (3.26)

These equations can be simplified somewhat by introducing a radiator function

R0
LL(�B; v) ⌘

Z
[dk]R0

LL(�B; v, k) , (3.27)

with

R0
LL(�B; v, k) ⌘

���M (0)
S (�B; k)

���
2
� [V (�B; k)� v] . (3.28)

This gives

��LL
S

d�B�!s
= VS(�B)

1X

n=0

nY

i=1

Z 1

0

dvi
vi

R0
LL(�B; vi, ki)

⌃max,LL
F (�B; v) = VS(�B) exp

⇢Z v

0

dvi
vi

R0
LL(�B; vi)

�
. (3.29)
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1. Replace |MS(k1, k2, …,kn)|2 by strongly ordered limit 
(product of tree-level, 1-particle emissions) 

2. Introduce resolution scale δ to regulate IR (cancels 
between numerator and denominator 

3. Perform various algebraic simplifications on result

3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically

F 0(!F , v) =
��F

d�B�!F

⌃max(µH , µF )
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F 0
F (�B ,!F , v) =

��F
d�B�!F

⌃max
n (�B , v)

FNLL(�B ; v) = �R
0
LL(�B ;v)

1X

n=0

1

n!

nY

i=1

Z 1

�v

dvi
vi

Z
[dki]R

0
LL(�B ; v, ki)⇥ [V (�B ; k1, . . . , kn) < v]

After all manipulations, one finds

from which one immediately obtains

F
0NLL
n,n̄ (�B;!n,n̄) = �(!n,n̄) . (3.21)

Thus, to NLL accuracy, only the transfer function FS(�B; v) is required and one finds

F
NLL(�B, v) =

Z
D!sF

0NLL
S (�B,!s, v) ✓(V [�B,!s] < v) , (3.22)

To compute the soft transfer function, one follows the discussion in [1], which starts

from the general expressions

��S
d�B�!s

= VS(�B)
1X

n=0

|MS(�B; k1, . . . , kn)|
2 , (3.23)

which to NLL accuracy can be written as

��LL
S

d�B�!s
= VS(�B)

1X

n=0

nY

i=1

���M (0)
S (�B; ki)

���
2
. (3.24)

This gives the numerator of the transfer function. To obtain the denominator, one needs

a precise definition of Vmax, which satisfies the condition given in Eq. (3.14). We use

Vmax(�B,!s)
��LL

S

d�B�!s
⌘ VS(�B)

1X

n=0

nY

i=1

|MS(�B; ki)|
2 max {V (�B; k1), . . . , V (�B; kn)} .

(3.25)

This gives

⌃max,LL
S (�B; v) = VS(�B)

1X

n=0

1

n!

nY

i=1

Z
[dki]

���M (0)
S (�B; ki)

���
2
⇥ [V (�B; ki) < v]

= VS(�B) exp

⇢Z
[dki]

���M (0)
S (�B; ki)

���
2
⇥ [V (�B; ki) < v]

�
. (3.26)

These equations can be simplified somewhat by introducing a radiator function

R0
LL(�B; v) ⌘

Z
[dk]R0

LL(�B; v, k) , (3.27)

with

R0
LL(�B; v, k) ⌘

���M (0)
S (�B; k)

���
2
� [V (�B; k)� v] . (3.28)

This gives

��LL
S

d�B�!s
= VS(�B)

1X

n=0

nY

i=1

Z 1

0

dvi
vi

R0
LL(�B; vi, ki)

⌃max,LL
F (�B; v) = VS(�B) exp

⇢Z v

0

dvi
vi

R0
LL(�B; vi)

�
. (3.29)
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with

3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically
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FNLL(�B ; v) = �R
0
LL(�B ;v)

1X

n=0

1

n!

nY

i=1

Z 1

�v

dvi
vi

Z
[dki]R

0
LL(�B ; v, ki)⇥ [V (�B ; k1, . . . , kn) < v]

by rewriting Eq. (3.34) as

FNLL(�B; v) =

"⇣ v

�v

⌘�R0
LL(�B ;v)

+

Z v

�v

dv1
v1

✓
v

v1

◆�R0
LL(�B ;v) Z

[dk1]R
0
LL(�B; v, k1)

⇣ v1
�v

⌘�R0
LL(�B ;v)

+

Z v

�v

dv1
v1

✓
v

v1

◆�R0
LL(�B ;v) Z

[dk1]R
0
LL(�B; v, k1)

⇥

Z v1

�v

dv2
v2

✓
v1
v2

◆�R0
LL(�B ;v) Z

[dk2]R
0
LL(�B; v, k2)

⇣ v2
�v

⌘�R0
LL(�B ;v)

+ . . .

#
⇥ [V (�B; k1, . . . , kn) < v] . (3.35)

This gives the following algorithm

Algorithm 1: Generating NLL transfer function

Start with i = 0 and v0 = v;

while true do

i=i+1;

Generate vi randomly according to (vi�1/vi)�R0
LL(�B ;v) = r, with r 2 [0, 1];

if vi < �v then

break;

end

Generate a momentum ki randomly according to R0
LL(�B; v, ki) subject to the

constraint V (�B; ki) = v;

end

One now has a set of momenta ki. If V (�B; k1, . . . kn) is less than v, accept the

event, otherwise reject it. The value of FNLL(�B; v) is equal to the fraction of the

accepted events

3.4 Transfer function at N2LL

Computing the transfer function at higher logarithmic order requires two main ingredients:

First, higher order corrections to the soft transfer function need to be included. Second,

the collinear transfer functions F
0NLL
n,n̄ (�B;!n,n̄), which were trivial at NLL, need to be

included. We will address these two contributions in turn.

As already discussed, there are various counting schemes when defining higher loga-

rithmic accuracy. One can either include the higher order corrections perturbatively (see

Eqs. (2.4) and (2.5)), or include them to all orders in the exponent (see Eq. (2.3)). We will

discuss computing the transfer function in both schemes, starting with the expressions in

scheme 1, and then discuss what simplifications can be made in schemes 2/3.

As shown in Eq. (3.17), the transfer function is a convolution over the the fully di↵er-

ential soft and collinear transfer functions. Thus, it can be determined by constructing the

– 9 –

This can be written as

3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically



�25

FNLL(�B ; v) = �R
0
LL(�B ;v)

1X

n=0

1

n!

nY

i=1

Z 1

�v

dvi
vi

Z
[dki]R

0
LL(�B ; v, ki)⇥ [V (�B ; k1, . . . , kn) < v]

Or this

by rewriting Eq. (3.34) as

FNLL(�B; v) =

"⇣ v

�v

⌘�R0
LL(�B ;v)

+

Z v

�v

dv1
v1

✓
v

v1

◆�R0
LL(�B ;v) Z

[dk1]R
0
LL(�B; v, k1)

⇣ v1
�v

⌘�R0
LL(�B ;v)

+

Z v

�v

dv1
v1

✓
v

v1

◆�R0
LL(�B ;v) Z

[dk1]R
0
LL(�B; v, k1)

⇥

Z v1

�v

dv2
v2

✓
v1
v2

◆�R0
LL(�B ;v) Z

[dk2]R
0
LL(�B; v, k2)

⇣ v2
�v

⌘�R0
LL(�B ;v)

+ . . .

#
⇥ [V (�B; k1, . . . , kn) < v] . (3.35)

This gives the following algorithm

Algorithm 1: Generating NLL transfer function

Start with i = 0 and v0 = v;

while true do

i=i+1;

Generate vi randomly according to (vi�1/vi)�R0
LL(�B ;v) = r, with r 2 [0, 1];

if vi < �v then

break;

end

Generate a momentum ki randomly according to R0
LL(�B; v, ki) subject to the

constraint V (�B; ki) = v;

end

One now has a set of momenta ki. If V (�B; k1, . . . kn) is less than v, accept the

event, otherwise reject it. The value of FNLL(�B; v) is equal to the fraction of the

accepted events

3.4 Transfer function at N2LL

Computing the transfer function at higher logarithmic order requires two main ingredients:

First, higher order corrections to the soft transfer function need to be included. Second,

the collinear transfer functions F
0NLL
n,n̄ (�B;!n,n̄), which were trivial at NLL, need to be

included. We will address these two contributions in turn.

As already discussed, there are various counting schemes when defining higher loga-

rithmic accuracy. One can either include the higher order corrections perturbatively (see

Eqs. (2.4) and (2.5)), or include them to all orders in the exponent (see Eq. (2.3)). We will

discuss computing the transfer function in both schemes, starting with the expressions in

scheme 1, and then discuss what simplifications can be made in schemes 2/3.

As shown in Eq. (3.17), the transfer function is a convolution over the the fully di↵er-

ential soft and collinear transfer functions. Thus, it can be determined by constructing the
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3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically
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One can check that this works by comparing analytical  
to numerical calculation

⌃NLL(⌧) = ⌃max(⌧)FNLL
S (⌧, ⌧, Q)

1. Start with i = 0 and v0 = ⌧

2. Increase i by one

3. Generate ⌧i randomly according to (⌧i�1/⌧i)�R
0
LL(�B ;⌧) = r, with r 2 [0, 1]

4. If ⌧i < �⌧ exit the algorithm, otherwise go back to step 2

If the sum over all generated ⌧i are less than ⌧ , accept the event, otherwise reject it. The

value of FNLL

S
(⌧, ⌧, Q) is equal to the fraction of the accepted events.

One can compare the result obtained in Eq. (4.31) using the MC algorithm above

to determine the transfer function F
NLL

S
(⌧, ⌧, Q) to the analytical expression, given in

Eq. (3.46). We show this comparison in Figure. 5, where we observe a perfect agreement

between the two predictions.
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Figure 5: The left figure shows the thrust cross section at NLL obtained with the Monte-Carlo
algorithm given in the text (crosses in the plot). The analytic result is reported as a solid line
for comparison. The right plot reports the comparison between numerical and analytical solutions
for the soft transfer function at the same order. The numerical results have been obtained with
ln(�) = �20.

Although the extension to the general case is beyond the scope of this article, we do

want to mention that it is possible to apply the above method to a more complicated

observable than thrust. In general, if one is able to find an SCET Lagrangian for the

simple observable and define ⌃max which by definition contains the same LL as the full

observable v, then the resummation for v can be obtained by means of a transfer function

that is defined in terms of the fields of the same Lagrangian, and can be computed via

Monte Carlo methods.

5. Conclusions and Outlook

In this work we have shown how to formulate a numerical approach to resummation in

SCET using the example of NLL resummation of the thrust distribution. This was achieved

by combining the automated CAESAR/ARES approach to resummation with the factorization

of the long distance degrees of freedom in SCET.
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3)	Difference	between	desired	and	simplified	observable	can	
now	be	computed	numerically



This	approach	opens	door	for	resumma'on	for	a	large	class	of	
observables
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1. Find simplified observable for class of observables 

2. Compute analytical resummation to given order 

3. Run generic numerical algorithm to compute 
resummation for any observable in given class

Ques
tions

?

I have shown that one can combine two different methods of 
performing resummation to obtain a numerical method that is both 

systematic and applicable to wide variety of observables


