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Introduction

o Parton distribution functions (PDFs) together with parton level matrix
elements allow for a very accurate description of ‘hard’ events in
hadron-hadron and hadron-electron collisions.

o The bulk of such analysis is carried out within the framework of collinear
factorization.

o However, there exist classes of multi-scale processes where the use of
more general schemes is of advantage

» E.g. high-energy or low 2 limit of hard processes s > M? > AZQCD
where z = M?/s.

> In such a scenario it is necessary to resum terms enhanced by
logarithms In 1/x to all orders in the «, which is achieved by BFKL
evolution equation.

> The resulting formalism called high energy (or kr) factorization
provides a factorization of such cross-sections into a TMD
coefficient or ‘impact factor' and an ‘unintegrated’ gluon density.




Introduction

Limitations of high-energy factorization framework:

o valid only in low < 1072 region

» problems for observables involving fragmentation functions which
involve integrals over the full x range of initial state PDFs
> limited to exclusive observables which allow to fix « of both gluons

o limited to gluon-to-gluon splittings in the low x evolution, with
quarks being absent.

> omits a resummation of collinear logarithms associated with quark
splittings which can provide sizable contributions at intermediate
and large x

» For hard processes initiated by quarks the appropriate unintegrated
parton density functions are needed




What can we do?

o Partial solution: use CCFM evolution equation instead of BFKL
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What do we want?

Resum low z logarithms.

Smooth continuation to the large = region.

Reproduce the correct collinear limit (DGLAP).

Ultimately: a coupled system of evolution equations for
unintegrated PDFs

» need: kp-dependent splitting functions

We will try to achieve this goal by extending Curci-Furmanski-Petronzio
(CFP) and Catani-Hautmann (CH) formalisms.
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. Basics of Curci-Furmanski-Petronzio method of splitting function
calculation in collinear factorization.

. Generalization to the high-energy case and kernel calculation.

. Results: new TMD splitting functions

. Some results obtained within the kp-factorization framework
(KaTie + CASCADE).




Curci-Furmanski-Petronzio (CFP) methodology

o Factorization based on generalized ladder expansion (in terms of
2Pl kernels)

o Axial gauge instrumental
> integration over outgoing legs leads to collinear singularities
» incoming propagators amputated

o 2Pl kernels connected only by convolution in z
» this is achieved by introducing appropriate projector operators.

2. The CFP method 7/30



Curci-Furmanski-Petronzio (CFP) methodology

o Factorization based on generalized ladder expansion (in terms of
2Pl kernels)
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Curci-Furmanski-Petronzio (CFP) methodology
[Nucl. Phys. B175 (1980) 2792]

o CFP projector operators: P =P @ P° =P @ P}, ® IP;
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Curci-Furmanski-Petronzio (CFP) methodology [rs175 (1980) 2792]

o Splitting function definition
» Extracted from PDF
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2. Generalization to the high-energy case and kernel calculation.




Generalization to high energy kinematics

o High energy kinematics

k= yp* + kY
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We will define/constrain splitting functions by requiring:
o gauge invariance/current conservation of vertices
o correct collinear limit

o correct high energy limit




Generalization to high energy kinematics

o Partly obtained by Catani and Hautmann for the case of P,
[Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]

o We want to extend it to general case including all splittings
» P, and Py, case done in [JHEP 01 (2016) 181, 1511.08439]
» P,, done in [EPJC 78 (2018) 174, 1711.04587]

qu

To achieve this goal we need to provide:
» Appropriate projector operators

» Generalize QCD vertices




Generalization of QCD vertices

We need to ensure gauge invariance of vertices in the presence of
off-shell k£, ¢ momenta.

o We use spinor helicity formalism to construct appropriate gauge
invariant amplitudes and extracted vertices from them [kutak, van
Hameren, Serino, JHEP 02, 009 (2017)]

» Off-shell particles are introduced as pairs of auxiliary on-shell
particles — increased no. of Feynman diagrams.

» Sum relevant diagrams to obtain gauge invariant amplitudes.

> “Deconstruct” amplitude by removing polarisation vectors
(e*(p) for an on-shell particle vs. p* for an off-shell particle)

o Alternatively (but with some ambiguity for P,4) this can be

obtained using the reggeized quark formalism (Lipatov high-energy
action) [Lipatov, Vyazovsky, NPB 597 (2001) 399]
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Generalization of QCD vertices: T}. ., from A(1*, 2%, 3)
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Generalization of QCD vertices

The full set of gauge invariant off-shell vertices are:
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Generalization of projector operators 1

Since the incoming momentum is no longer collinear the corresponding
projector operators need to be modified.

o Gluon case [Catani, Hautmann NPB427 (1994) 475524]:
Hov
wy kJ_kJ_
@ im- T k2

o Quark case [JHEP 01 (2016) 181]:

Y
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v/ Both operators reduce to the CFP projectors in the collinear limit
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Generalization of projector operators 2

o The form of the CH projectors were derived based on heavy quark
production in which case numerators of the gluon propagators
factorize [catani, Ciafaloni, NPB 366 (1991) 135-188]
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3. Results: new TMD splitting functions.




TMD splitting function definition

o Angular-dependent splitting function
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Results for splitting functions

With the new projection operators we reproduce our earlier results [JHEP 01
(2016) 181, 1511.08439]
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v In the collinear limit, 272 — 0, standard DGLAP results are reproduced.
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Results for splitting functions

The new result is [EPJC 78 (2018) 174, 1711.04587]
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Results for splitting functions

or in an angular integrated form (with e = 0)
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Kinematic limits of 159(2)

o Collinear (DGLAP) limit
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Kinematic limits of 159(3)
o Collinear (DGLAP) limit
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Kinematic limits of 159(3)
o Collinear (DGLAP) limit
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we obtain real/unresummed CFFM kernel “for free”
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4. Some results obtained within the kp-factorization framework
(KaTie + CASCADE).




kr-factorization framework: KaTie + CASCADE

o ldea behind new splitting functions:
> construct a set of coupled evolution equations (including quarks,

having correct collinear limit),
» use it for evolution in Monte Carlo generator.

o Currently we already have a high-energy factorization toolbox:

» off-shell matrix element generator: KaTie [cpPc 224 (2018) 371],
» MC generator: CASCADE [EPJC 70 (2010) 1237],
» kp-dependent PDFs:

» KMRW [EPJC 31, 73 (2003)],
» Parton Branching [JHEP 01 (2018) 070].

o In what follows | present some selected results obtained using this
toolbox.
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Results from kp-factorization framework:

o Dijet Azimuthal Decorrelations measured by CMS

> parton level

Di-jet azimuthal decorrelation, 110 < pie*®™8 < 140 GeV Di-jet azimuthal decorrelation, 140 < pi=*®™ < 200 GeV
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Results from kp-factorization framework:

o Dijet Azimuthal Decorrelations measured by CMS

» including showers

> initial state PS — “TMD shower” (follows TMD PDFs)
> final state PS — from PYTHIA

Di-jet azimuthal decorrelation, 110 < pie**™ < 140 Gev Di-jet azimuthal decorrelation, 140 < pis™ < 200 GeV

—
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Results from kp-factorization framework:

o Dijet Azimuthal Decorrelations measured by CMS

» scale choice for initial state PS
» u® = Q7 + 5 — angular ordering
» u? = p;> — conventional ordering

Disjet azimuthal decorrelation, 110 < pl*™ < 140 Gev Disjet azimuthal decorrelation, 140 < pis™4"™8 < 200 GeV

P=Qf+s
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Summary and Outlook

o We successfully extended method of Curci, Furmanski and Petronzio to
the TMD case using gauge invariant vertices.

» The essential subtleties which prevent the Catani-Hautmann
generalisation from being directly extended to the P,, case were
uncovered and worked out.

o With the new projectors we have reproduced our earlier results for real
emission k -dependent P, Py, and F,, splitting functions confirming
our formalism.

o We used the formalism to calculate P;, TMD splitting function which
feature correct

> collinear limit (DGLAP kernels)
> high-energy limit (BFKL kernel)
» soft limit (CCFM kernel)




Summary and Outlook

The next step is to calculate virtual corrections.
In a longer perspective construct a complete set of evolution equations.

| briefly showed results obtained using:
TMDs + KaTie ME generator + CASCADE PS

» which provides a first complete toolbox for calculations in

kp-factorization.

The presented splitting functions can form a basis for a new extraction of
TMDs as well as a new shower.
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Dijet Azimuthal Decorrelations measured by CMS
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