Contribution ID: 442 Type: Oral

Method to determine the single curve IV characteristic parameter of solar cell

Tuesday, 22 May 2018 10:15 (15 minutes)

Solar cell I-V characteristics curves are basically representation of relationship between the current and voltage at the existing conditions of irradiance and temperature. I-V curves provide the information required to configure a solar system. The parameters values of V_{oc} , I_{sc} , V_m , I_m and P_m , which can be experimentally measured. However, the circuit parameters reverse saturation current density (I_0), ideality factor (n), series resistance (R_s) and shunt resistance (R_s) at a certain solar irradiance and ambient temperature can be obtained by solving the governing equations of the solar cell. The purpose of this paper is to determine the I_o , n, R_s , and R_{sh} by the single IV-curve and the standard model of solar cell under different the irradiance intensity level (600- 1000 W/m^2 , temperature 25 ^oC) is being done in this paper. From the results of these experiments we found that, the value of I_0 is between $4.78 \times 10^{-5} \text{ A}$ to $7.19 \times 10^{-5} \text{ A}$ and n of between values is 1.33 to 1.39. The increasing of I_0 and n are caused by the increase in the recombination current at high irradiance intensity. On the other hand the parasitic resistance of R_s and R_{sh} are decrease at high intensity irradiance.

Primary author: Mrs KHUNCHAN, Sukanya (Naresuan University)

Co-author: Dr WIENGMOON, Buntoon (Naresuan University)

Presenter: Mrs KHUNCHAN, Sukanya (Naresuan University)

Session Classification: A14: Environment

Track Classification: Environmental Physics, Atmospheric Physics, Geophysics and Renewable En-

ergy