Equilibration of Charm Quarks at Ultrarelativistic Energies

Christoph Herold

School of Physics, Suranaree University of Technology

May 22, 2018, Phitsanulok
Thanks to

Work in collaboration with

- Thorben Graf
- Jan Steinheimer
- Marcus Bleicher
- Ayut Limphirat
- Chinorat Kobdaj
- Yupeng Yan
Standard Model of Particle Physics

Quarks
- **U** (up) | Mass: 2.3 MeV/c^2 | Charge: $2/3$
- **C** (charm) | Mass: 1.275 GeV/c^2 | Charge: $2/3$
- **T** (top) | Mass: 173.07 GeV/c^2 | Charge: $2/3$
- **D** (down) | Mass: 4.8 MeV/c^2 | Charge: $-1/3$
- **S** (strange) | Mass: 95 MeV/c^2 | Charge: $-1/3$
- **B** (bottom) | Mass: 4.18 GeV/c^2 | Charge: $-1/3$

Leptons
- **E** (electron) | Mass: 0.511 MeV/c^2 | Charge: -1
- **M** (muon) | Mass: 105.7 MeV/c^2 | Charge: -1
- **T** (tau) | Mass: 1.777 GeV/c^2 | Charge: -1
- **Neutrino (e)** | Mass: $<2.2 \text{ eV/c}^2$ | Charge: 0
- **Neutrino (μ)** | Mass: $<0.17 \text{ MeV/c}^2$ | Charge: 0
- **Neutrino (τ)** | Mass: $<15.5 \text{ MeV/c}^2$ | Charge: 0

Gauge Bosons
- **W** | Mass: 80.4 GeV/c^2 | Charge: ± 1
- **Z** | Mass: 91.2 GeV/c^2 | Charge: 0

Bosons
- **Gluon** | Mass: 126 GeV/c^2
- **Higgs boson** | Mass: 126 GeV/c^2
The Quark-Gluon Plasma
The QCD phase diagram
Colliders now and in the future

- **Future Circular Collider (FCC)**
 Circumference: 90 - 100 km
 Energy: 100 TeV (pp) 90-350 GeV (e⁺e⁻)

- **Large Hadron Collider (LHC)**
 Large Electron-Positron Collider (LEP)
 Circumference: 27 km
 Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)

- **Tevatron**
 Circumference: 6.2 km
 Energy: 2 TeV (pp)
The Quark-Gluon Plasma

Sequential suppression of charmonium states

(H. Satz: “The Quark-Gluon Plasma”)

\[T < T_c \]

\[T_{\psi'} < T < T_{\chi} \]

\[T > T_{\psi} \]
Charm Quark Equilibration

From kinetic theory (weak coupling):
- Low $\sqrt{s_{NN}}$: Thermal production negligible
- FCC energies: $T_0 = 840$ MeV
- Thermal production efficient

On the other hand:
- $\Gamma_{\text{chem}}^{-1} \sim 10$ fm/c

(Bödeker, Laine, JHEP 2012)

\[\rightarrow \text{Relevant at LHC} \]
\[\rightarrow \text{Dominant at FCC} \]

Equilibration T and V

- Susceptibilities correspond to conserved charge fluctuations:
 \[
 \chi^2 = \frac{1}{TV} \langle \delta N^2 \rangle
 \]

- Use Charm Quark Number Susceptibilities, order i:
 \[
 \chi^i_c(T) = \left. \frac{\partial^i p(T, \bar{\mu})}{\partial \mu^i_c} \right|_{\bar{\mu}=0}
 \]

- Two equations with two unknowns T and V:
 \[
 \frac{\langle (\delta N_{c-\bar{c}})^2 \rangle}{\chi^2_c} = TV \quad \text{and} \quad \frac{\chi^4_c}{\chi^2_c / T^2} = \kappa \sigma^2 \equiv \frac{\langle (\delta N_{c-\bar{c}})^4 \rangle}{\langle (\delta N_{c-\bar{c}})^2 \rangle} - 3 \langle (\delta N_{c-\bar{c}})^2 \rangle
 \]
Susceptibilities - lattice and pQCD

Unquenched lQCD only for $T < 0.5$ GeV

(Graf, Bleicher, Steinheimer, Herold, PRC 97 (2018))
Susceptibilities - lattice and pQCD

\[
\left(\frac{\delta N^2}{\langle \rangle^{1/2}} \right)
\]

\[
\kappa \sigma^2
\]

(Graf, Bleicher, Steinheimer, Herold, PRC 97 (2018))
Charm Quark Equilibration

- Thermal Charm Quark Production
- Important at FCC, relevant at LHC
- Possible to explore equilibration T, V via susceptibilities
- Future: Additional constraints from higher-order fluctuations