First principles study of local and electronic structures of yttrium-doped $\mathrm{Ba}\left(\mathbf{Z r}_{x} \mathrm{Ti}_{1-x}\right) \mathrm{O}_{3}$

Tuesday, 22 May 2018 09:45 (15 minutes)

Abstract

Here we report the first principles study of yttrium-doped $\mathrm{Ba}\left(\mathrm{Zr}_{x} \mathrm{Ti}_{1-x}\right) \mathrm{O}_{3}$ (Y-doped BZT) for $x=0.125$, 0.250 , and 0.375 supercells as a promising rare earth doped lead-free ferroelectric material. The local and electronic structures of Y-doped BZT and pure BZT relaxed supercells are systematically investigated in term of atomic pair distribution functions (PDFs), A and B site cation off-centering, and electronic density of states (DOS) respectively. The PDF spectrums show the increasing of structural disorder as a function of Zr concentration, while the short-range disorder is strongly influenced by the size of cation and their corresponding vacancies. Moreover, the drastic diffusion in PDF spectrums of Y-doped BZT reflects the compositional fluctuation on the local environment of the supercells. For cation off-centering, Ti^{4+} play a major role as the active ferroelectric distortion in BZT. However, the substitution of yttrium ions into BZT matrix enhanced the lattice distortion as observed from the increasing of off-centering magnitude for both A and B site cations. The calculated total and projected DOSs on d states of cations and O- $2 p$ states confirm the strong hybridization between Ti $3 d$ and $\mathrm{O} 2 p$ states, thus implying the covalent bonding in $\mathrm{Ti}-\mathrm{O}_{6}$ octahedral. On the other hand, the little effects of yttrium ions on the electronic structures, especially the highest and lowest valence and conduction bands, were observed.

Primary author: Mr THAMMADA, Wiriya (Department of Physics, Faculty of Science, Mahidol University)

Co-author: Dr SUEWATTANA, Malliga (Department of Physics, Faculty of Science, Mahidol University)
Presenter: Mr THAMMADA, Wiriya (Department of Physics, Faculty of Science, Mahidol University)
Session Classification: A6: Condensed Matter and Accelerators

Track Classification: Condensed Matter Physics

