Contribution ID: 694

Effects of Yttrium Doping on Acetone Sensing Properties of Flame-spray-made SnO₂ Nanoparticles

Tuesday, 22 May 2018 15:45 (15 minutes)

Saowalak Homnan^{1, a}, Anurat Wisitsoraat^{2, 3, b}, Adisorn Tuantranont^{2, 4, c}, Sukon Phanichphant^{2, d}, Chaikarn Liewhiran^{1, 2, 5*}

¹Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

²Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

³Carbon-based Devices and Nanoelectronics Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand ⁴Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand ⁵Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

^a ppsaowalak.h@gmail.com,^b anuratwisit@hotmail.com,^c adisorn.tuantranont@gmail.com,^d sphanichphant@gmail.com
* Corresponding author's e-mail address: cliewhiran@gmail.com (C. Liewhiran)

Abstract. In the present study, gas-sensing properties of flame-spray-made 0-2 wt% Y_2O_3 -doped SnO₂ nanoparticles are systematically and selectively studied for detection of acetone (C₃H₆O) which practically occurred in specific applications. Structural characterizations by electron microscopy, X-ray analysis and nitrogen adsorption further confirmed the formation of loosely agglomerated SnO₂ nanoparticles (5-15 nm) with high specific surface area and highly crystalline tetragonal-cassiterite SnO₂ structure doped with Y³⁺ oxidation states. The gas-sensing properties of undoped SnO₂ and Y₂O₃-doped SnO₂ sensors were systematically tested towards C₃H₆O under atmospheric conditions at the working temperature ranging from 200-350°C. Tested results indicated that the optimal 0.2 wt% Y₂O₃-doped SnO₂ exhibited high responses of ~322 to 400 ppm acetone under exposure at working temperature of 350°C in dry air compared with undoped one. Moreover, the optimal Y₂O₃-doped SnO₂ sensors series are optimal Y₂O₃-doped SnO₂ sensors are potential for responsive detections of C₃H₆O at ppm-level but with limited selectivity and may be useful for environmental and biomedical applications.

Keywords : n-type Y/SnO₂, Nanoparticles, Acetone, Acetylene, Sensor.

Primary author: HOMNAN, Saowalak

Co-author: Dr LIEWHIRAN, Chaikarn

Presenter: HOMNAN, Saowalak

Session Classification: A013: Materials Physics (Poster)

Track Classification: Material Physics and Functional Materials