Type: Oral

Evolution of V339 Del (Nova Del 2013) since 0.37 –75 days after discovery

Monday 21 May 2018 14:15 (15 minutes)

We study the evolution of V339 Del (Nova Del 2013) during 0.37-75 days after discovery. Spectra from the Liverpool Telescope were collected and analysed to find the velocity of ejecta (v_{ej}) , relative radiation with respect to continuum level (\mathbb{R}^*_{λ}), and FWHM of the radiation. The evolution of light curve was explained by adopting an ideal nova light curve as criteria. We found that the evolution of V339 Del during t = 0.37 - 75 days can be explained in 7 phases: 1) Initial rise (t = 0 - 0.6 days); nova is suddenly brighter from V ~ 11 to ~6.4. A maximum v_{ej} is ~2400 km/s. R^{*}_{λ} and FWHM first increases and then decreases where this joint (t = 0.35 days) turns out to be the first detection of X-ray. 2) Pre-maximum halt (0.6-1.2 days); There is a halt of brightness around V \sim 5.1–5.9, decreasing v_{ej}, increasing R^{*}_{λ} with decreasing FWHM. 3) Final rise (t = 1.2–1.5 days); Nova is brighter again to maximum. The variation of v_{ej} and radiation have similar trend to the halt phase. 4) Maximum (t = 1.5–2.5 days); Nova has maximum brightness of V = 4.45 \pm 0.01 (t = 1.67 days) decreasing v_{ej} and increasing $R^*{}_{\lambda}$ until maximum value and the decreasing afterward, while FWHM decreases from the final rise. 5) Early decline (t = 2.5 – 35 days); Nova has a drop in brightness and v_{ej} . The last measurement of v_{ej} is $^{\sim}$ 1100–1200 km/s at t = 35.5 days. The radiation seems to have 2 distinct phases in this early decline including: First stage (t = 2.2^{-12} days) where R^*_{λ} and FWHM increase and nebular spectra begins around t⁻¹⁰ days. In this stage the nova shell expands optical depth reduces, marking pseudo-photosphere shrink. Second stage (t = 12^{35} days) where R^{*}_{λ} and FWHM decrease and SED shift to near-IR until not visible in optical (t = 28 days). Iron curtain (t $^{-}$ +25 days) was found near the time of first soft X-ray detection (t = 35.6 days). 6) Transition (t = 35–60 days); Brightness decreases where R^*_{λ} and FWHM gradually increase meaning it reveals deeper pseudo-photosphere. 7) Final decline (t = 60⁻⁷⁵ days); Nova is fainter than 6 magnitude from maximum, R^*_{λ} and FWHM decrease, Nova is now in nebular phase permanently allowing us to see the surface of white dwarf for the first time.

Primary authors: Mr MUEANGKON, Yothin (Chiang Rai Rajabhat University); KHAMRAT, Sutharut (Chiang Rai Rajabhat University); Ms AINTAWIPHAK, Suthhida (Chiang Rai Rajabhat University); Ms JAIBOE, Anothai (Chiang Rai Rajabhat University); Mr SUEKONG, Dawee (Chiang Rai Rajabhat University); Dr SURINA, Farung (Chiang Rai Rajabhat University); Dr DARNLEY, Matt J. (Liverpool John Moores University); Prof. BODE, Mike F. (Liverpool John Moores University)

Presenters: Mr MUEANGKON, Yothin (Chiang Rai Rajabhat University); KHAMRAT, Sutharut (Chiang Rai Rajabhat University)

Session Classification: A7: Astronomy I

Track Classification: Astronomy, Astrophysics, and Cosmology