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Abstract. The mass-radius ratio bounds of spherically symmetric static compact objects are
considered in the ghost-free dRGT massive gravity. In this type of modified gravity model, the
graviton has a non-zero mass leading to the naturally generated cosmological constant term.
Therefore, this may bring about to an explanation for the late-time accelerated expansion
of the Universe without assuming any additional dark energy. The hydrostatic equilibrium
(TOV) equation in this theory is derived to describe the structure of a spherical object such
as a star. In this work, the generalized Buchdahl inequalities, providing the upper and lower
limits of mass-radius ratio for high density compact objects, are obtained together with their
crucial constraints. Finally, for theoretical testing these results may be proved in the context of
astrophysical observations.

1. Introduction
Massive gravity is a modified general relativity by introducing the massive graviton. First
started in 1939, Fierz and Pauli [1] proposed the linear model of massive gravity. Later, it was
found that there exists a discrete difference between the theories of massless and massive in the
limit m→0. To solve this discontinuity problem, the further studies in the nonlinear framework
were required. Unfortunately, the nonlinearities usually generate a ghost instability. The ghost
instability is the mode that the energy has no lower bound, so it is associated with instability of
the system. After that, a number of ghost free massive gravity theories have been considered in
the nonlinear framework, but one of the interesting theory is dRGT massive gravity. In 2010,
de Rham, Gabadadze and Tolley [2, 3] succeeded to develop the first nonlinear fulfillment of
the Fierz-Pauli theory free of the ghost instability. This theory naturally generates cosmological
constant term. Therefore, it may be a possible explanation for late-time accelerated expansion
of the Universe without any additional dark energy.

The study of the stability of compact objects in the general relativistic framework is of central
importance for understanding the behavior of astrophysical systems. In order to understand the
structure of a spherical object such as a star, we consider the TOV (Tolman, Oppenheimer,
and Volkoff) equation which can describe the internal feature of a spherical object. Moreover,
a simple but very powerful stability criterion was obtained by Buchdahl [4, 5], and it gives the
condition for the stability of a compact object with total mass M and radius R as

2GM

c2R
≤ 8

9
.

Furthermore, the mass-radius limits can be extended in massive gravity theories due to the
possibility to give graviton a mass.



2. Formalism
2.1. Field equations of dRGT massive gravity
We start with the well-known Einstein-Hilbert gravitational action in the four-dimensional
spacetime plus consistent nonlinear interaction terms interpreted as a graviton mass mg which
is given by [3]

S =

∫
d4x

√
−g

1

2κ

[
R+ 2κLm +m2

g (U2 + α3U3 + α4U4)

]
, (1)

where κ = 8πG/c4, the coefficients α3 and α4 are dimensionless free parameters, R is the scalar
curvature, Lm is the matter Lagrangian, and Ui are dimensionless graviton potential terms
defined as U2 ≡ [K]2− [K2], U3 ≡ [K]3−3[K][K2]+2[K3], and U4 ≡ [K]4−6[K]2[K2]+8[K][K3]+
3[K2]2 − 6[K4], respectively. The building block tensor is defined as

Kµ
ν = δµν −

√
gµσfab∂σϕa∂νϕb, (2)

where [K] = Kµ
µ, [Kn] = (Kn)µµ, and we choose the unitary gauge ϕa = xµδaµ for the Stückelberg

scalars. We follow the previous works by choosing a simple form of the fiducial metric to be [6, 7]

fµν = diag(0, 0, λ2, λ2 sin2 θ), (3)

where λ is a constant. This choice of interaction eliminates the BD ghost order by order. In four
space-time dimensions, we consider a static and spherically symmetric metric of the following
form

ds2 = −n(r)d(ct)2 + dr2

f(r)
+ r2dθ2 + r2 sin2 θdϕ2, (4)

After varying the action S, the modified Einstein field equations in the presence of the
graviton potential are

Gµν − κTµν +m2
gXµν = 0. (5)

We assume that the energy-momentum tensor of the matter is given by

Tµ
ν = (ρc2 + P )uµuν + Pδµν , (6)

i.e., by a perfect fluid, characterized by the matter density ρ, and the thermodynamic pressure
P , respectively. Next, the effective energy-momentum tensor of massive graviton, obtained by
varying the graviton potential terms in the action, takes the following form [6, 7]

Xµν = Kµν −Kgµν − α

{
K2

µν −KKµν +
[K]2 − [K2]

2
gµν

}
+ 3β

{
K3

µν −KK2
µν +

1

2
Kµν

{
[K]2 − [K2]

}
− 1

6
gµν

{
[K]3 − 3[K][K2] + 2[K3]

}}
, (7)

where α3 = (α− 1)/3, and α4 = β/4 + (1− α)/12.
Furthermore, the constraint from Bianchi identities gives separately the covariant derivatives

of Tµν and Xµν equal to zero, according to the equations ∇µXµν = 0, and ∇µTµν = 0.

2.2. Hydrostatic equilibrium equation
The solution of the functional form f is obtained from equation (5) in the component µ = 0, ν =
0, and can be expressed as

f(r) = 1− 2G

c2
M(r)

r
− Λ

3
r2 + γr, (8)



where Λ = −3m2
g(1− 2β), and γ = −λm2

g(1− 3β).
From the continuity equation,∇µTµν = 0, it follows that

n′

n
= − 2P ′

ρc2 + P
. (9)

By substituting equations (8) and (9) in equation (5) in the component µ = 1, ν = 1, the
modified TOV equation can be obtained as

dP

dr
= −

(ρc2 + P )
[(

8πG
c4
P − 2

3Λ
)
r3 + γr2 + 2G

c2
M(r)

]
2r2

[
1− 2G

c2
M
r − Λ

3 r
2 + γr

] . (10)

3. Buchdahl limits in dRGT massive gravity
We introduce the generalized Buchdahl variables (x, ω, ζ, y), defined as follows

x = r2, ω(r) =
G

c2
M(r)

r3
, ζ = n1/2, y2 = f(r) = 1− 2ω(r)r2 − Λ

3
r2 + γr.

By using equation (9) and equation (10), in terms of new variables, we obtain the generalized
Buchdahl equation as follows

d

dx

(
y
dζ

dx

)
− 1

2

ζ

y

dω

dx
+
γ

8

ζ

y
x−3/2 = 0. (11)

The density inside the spherically symmetric object is required to be decreasing functions of r.
This requirement implies that

d

dr

(
M(r)

r3

)
< 0, (12)

leading to dω/dx < 0.

3.1. Mass-radius bounds for γ > 0
We introduce a new independent variable ℓ, obtained by changing the derivative 2y(d/dx) →
d/dℓ, leading to the constraint,

d2ζ

dℓ2
< 0, (13)

under the condition that γ > 0. By using the mean value theorem, we obtain the inequality

dζ

dℓ
≤ ζ(ℓ)− ζ(0)

ℓ− 0
≤ ζ(ℓ)

ℓ
→ 1

ζ

dζ

dℓ
≤ 1

ℓ
. (14)

We introduce now the new function α(r) defined by y2 = 1− 2GM(r)α(r)/c2r. We also assume
the condition, α(r′)M(r′)/r′ ≥ (α(r)M(r)/r)(r′/r)2, for all r′ < r, by using the condition (12)
together with the function α(r). Then, the right-hand side of inequality (14) can be bounded by
above condition. By reorganizing the relation (14) and considering at the surface of the object,
we eventually obtain the mass-radius ratio bounds in the presence of massive graviton for γ > 0,

4 + 3γR

9

[
1−

√
1− 3 (3γ2 + 4Λ)R2

(4 + 3γR)2

]
≤ 2GM

c2R
≤ 4 + 3γR

9

[
1 +

√
1− 3 (3γ2 + 4Λ)R2

(4 + 3γR)2

]
, (15)

where R is the radius of the object, and M is the total mass. The validity of this inequality
demands that the value in the square root must be greater than zero, a requirement which leads
to the constraint Λ < (4 + 6γR)/3R2. Moreover, a nontrivial (positive) lower bound does exist
only when the fraction in the square root is greater than zero, which gives another constraint
for the negative Λ case, γ >

√
−4Λ/3,Λ < 0.



3.2. Mass-radius bounds for γ < 0
We introduce four new variables Γ, ψ, η and z, defined as Γ(r) ≡ |γ|ζ/8r2, ψ = ζ − η,

where η = 4
∫ r
0

(∫ r1
0 Γ(r2)/

√
1−Θ(r2)/r2 dr2

)
· (r1/

√
1−Θ(r1)/r1) dr1, while z is given by

dz = (1/y(x))dx. The function Θ(r) is obviously defined by y2 = 1−Θ(r)/r.
We assume two conditions that, for r′ < r, Θ(r′)/r′ ≥ (Θ(r)/r) · (r′/r)2, and Γ(r′) ≥ Γ(r).
In terms of the new variables and two conditions defined above, the Buchdahl inequality (11)

under the condition γ < 0 becomes
d2

dz2
ψ(z) < 0. (16)

Again, by using the mean value theorem, we find

dψ

dz
≤ ψ(z)

z
→ dζ

dz
− dη

dz
≤ ζ − η

z
. (17)

As the same way, we have obtained the following lower and upper bounds for the mass-radius
ratio of compact objects in massive gravity for γ < 0,

4

9

[
1−

√
1− 3 (ΛR+ 3|γ|)R

4

]
≤ 2GM

c2R
≤ 4

9

[
1 +

√
1− 3 (ΛR+ 3|γ|)R

4

]
. (18)

The inequality demands the value in the square root greater than zero which leads to a constraint
|γ| < 4/(9R)− ΛR/3. Furthermore, a nontrivial (positive) lower bound in this case exists only
when the fraction in the square root is greater than zero giving another constraint |γ| > −ΛR/3.

4. Conclusion
In this study, we have applied the massive gravity theory to the Buchdahl’s technique, and
investigated the mass-radius ratio bounds of spherically symmetric static compact objects, which
also indicate their stability properties.

There are two possibilities for the important massive parameter γ, i.e. positive γ case, and
negative γ case.

The results show that the upper mass-radius bound indeed exists in all case under different
constraints of Λ, and if the lower mass-radius limit really exists, only the case of positive γ can
be in Schwarzschild-Anti-de Sitter solution while the negative γ case can be in any space-time
solution under its strictly constraint.

In the limit γ = 0, our upper and lower bounds in both positive and negative γ cases give
the same result as the Buchdahl limits in the presence of a cosmological constant [8, 9].

To conclude, we have considered the mass-radius limits in dRGT massive gravity. The results
obtained in this analysis may be proved in the context of astrophysical observations.
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