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Abstract. We construct the general formula of one-loop amplitude at four-point vertices using
Ossola, Papadopoulos, and Pittau (OPP) method. The incoming and outgoing particles are
defined as arbitrary massless particles, and the intermediate state contains arbitrary particles
inside. In this works, the amplitude is reconstructed via finding four-type rational coefficients.
First, box coefficient is extracted using the four-cut technique with linear algebra. We found
that triangle and bubble coefficients can be extracted using three-cut and two-cut technique
with Cauchy residue theorem instead of with discrete Fourier sum like the original version of
the OPP. Tadpole coefficient can be dropped out, because its scalar integral, which contains
only UV divergence, is completely absorbed by renormalization.

1. Introduction
Nowadays, searching for a sign of new physics in particle collision experiment is done through
high experimental statistics. The highly efficient next to leading order (NLO) calculation
is required in order to check theoretical and experimental matching. However, direct NLO
calculation is not easy, when the number of vertices increases. the number of loop integral is
increased extremely. In present, the Ossola, Papadopoulos, and Pittau (OPP) [1] method is
found to be an effective tool to construct one-loop amplitude in form of a linear combination of
4-types of Master Integral (MI) [2] multiplied with rational coefficients.

In this research, we will explore details calculation of one-loop four-point vertices amplitude
using the OPP method. All external particles are assigned to be massless particles while
the internal intermediate particles are arbitrary. The amplitude will be written in form of a
linear combination of four master integral multiplied with rational coefficients, ie., box, triangle,
bubble, and tadpole. In the next section, we will introduce the basic construction of the OPP
method based on the integrand reduction technique by the multiple-cut method. In section 3,
the box coefficient is calculated by solving linear algebra. The triangle and bubble coefficients
are calculable by the Cauchy residue theorem while in the original version of OPP calculation
used discrete Fourier summation. The reason is that within triangle and bubble numerators,
both can be rewritten as Laurent series [3] when the amplitude is cut by the Cutkorsky’s rule [4].
Each coefficient will be on the different complex pole order. Therefore, they can be extracted
using the Cauchy residue theorem. This is the different point to the original OPP calculation.



2. The OPP method
In general, the 4-point one-loop amplitude is generated by Feynman’s rule. It contains many
types of tensor integral, which depend on the numerator N(p). It can be generally written as

iA =

∫
d4p

(2π)4
N(p)

D0D1D2D3
, (1)

where p is a loop momentum. Traditionally, the propagator is defined by momentum flow in the
loop as D0 = p2 − m2

0, D1 = (p + k1)
2 − m2

1, D2 = (p + k1 + k2)
2 − m2

2, D3 = (p − k4)
2 − m2

3,
when we take all external legs are incoming k1 + k2 + k3 + k4 = 0. We would like to express the
equation (1) in the form of the linear combination of MI multiplied by the rational coefficient as

iA = c
(0123)
0 I0123 +

3∑
i<j<k

c
(ijk)
00 Iijk +

3∑
i<j

c
(ij)
000Iij +

3∑
i

c
(i)
0000Ii +R, (2)

where c0, c00, c000, c0000 and R are box-, triangle-, bubble-, tadpole-coefficients and rational
part respectively. The numerator of equation (1) is rewritable in term of rational coefficient plus
irreducible scalar product (ISP) via Aguila and Pittau works [5] as

N(p) = ∆
(0123)
0 (p) +

∑
i<j<k

∆
(ijk)
00 (p)

∏
l ̸=ijk

Dl +
∑
i<j

∆
(ij)
000(p)

∏
k ̸=ij

Dk +
∑
i

∆
(i)
0000(p)

∏
j ̸=j

Dj , (3)

when ∆i0i1..in(p) contains a rational coefficient plus ISP, c̃(p). It will not be reduced to n − 1
point MI, however, it will vanish after integrating out of loop momentum.∫

d4p

(2π)4
∆(i0i1..in)(p)

Di0Di1 ..Din

=

∫
d4p

(2π)4
c(i0i1..in) + c̃(i0i1..in)(p)

Di0Di1 ..Din

= c(i0i1..in)Ii0i1..in (4)

Their definitions are defined as following below

∆
(0123)
0 (p) = c

(0123)
0 + c̃

(0123)
0 p.ω, (5)

∆
(ijk)
00 (p) = c

(ijk)
00 +

3∑
l=1

(
cl0((p+ r0).eab)

l + c0l((p+ r0).eba)
l
)
, (6)

∆
(ii+2)
000 (p) = c

(ii+2)
000 + c̃

(ii+2)
000 (2((p+ r0).(ka − kb))

2 − (p+ r0).eab(p+ r0).eba) + ..., (7)

where ωµ = [2γµ1⟩[13]⟨32⟩ − ⟨2γµ1]⟨13⟩[32] and eµab = ⟨kaγµkb]. The choices of a, b have to
correspond with the equation (4). Then, we apply the multiple cuts to the equation (1). The
propagator D−1

i which is cut will be substituted by the Dirac delta function δ(Di), and the
amplitude which is cut will be turned to the imaginary part. We cut 4-propagators (0123),
3-propagators (ijk), and 2-propagators (i, i+ 2) respectively. We obtain

∆
(0123)
0 (p) = N(p)|D0=D1=D2=D3=0, (8)

∆
(ijk)
00 (p) = D−1

i0

(
N(p)−∆

(0123)
0 (p)

)
|Di=Dj=Dk=0, (9)

∆
(ii+2)
000 (p) = D−1

i5
D−1

i6
(N(p)−∆

(0123)
0 (p)−

∑
i0<i1<i2

∆
(i0i1i2)
00 (p)Di4)|Di=Dj=0, (10)

where i0 ̸= i, j, k, i4 ̸= i1, i2, i3 and i5, i6 ̸= i, i + 2. We drop out the 1-cut propagator and the
adjacent 2-cut propagators because their scalar integrals contain only an UV-divergence. They
can be canceled out by cyclic permutation when the amplitude is sum overall possible channel.



3. Rational coefficients
4-cut propagators appear four-constrained equations, D0 = D1 = D2 = D3 = 0. It gives us the
two solutions of loop momentum p±, which is shown in the equation (A.1). The overall xi are
completely solved, thus the coefficient can be solved using a linear equation.

c
(0123)
0 =

N(p+) +N(p−)

2
(11)

c̃
(0123)
0 =

N(p+)−N(p−)

2p+.ω
(12)

3-cut propagators, the constrained equation is not enough to solve all variables of xi on equation
(A.2). However, the equation (6) can be expanded as Laurent series of x3 or x4. We found that
each coefficient is attached on different complex pole order, thus it is solvable by Cauchy residue.

c
(ijk)
00 =Res

(
x−1
3 ∆

(ijk)
00 (p1)

)
x3=0

, (13)

c
(ijk)
l0 =(−1)l (Cijk)

l Res
(
xl−1
3 ∆

(ijk)
00 (p1)

)
x3=0

, (14)

c
(ijk)
0l =(−1)l (Cijk)

l Res
(
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4 ∆

(ijk)
00 (p2)

)
x4=0

, (15)

The definitions of p1,2 and Cijk are shown in (A.2) and Table (A1). Finally, 2-cut propagators
use Cauchy residue theorem similar to 3-cut propagators.

c
(i,i+2)
000 = Res

(
Res

(
C̃i,i+2(x2, x4)∆

(i,i+2)
000 (p3)

)
x2=0

)
x4=0

, (16)

where C̃i,i+2(x2, x4) = x−1
2 x−1

4 + (4/3)x−3
2 x−1

4 x
(i,i+2)
3 (0, 1)) and p3, x

(i,i+2)
3 (x2, x4) are shown

on equation (A.3) and Table (A2). However, rational part R cannot be detected by unitarity
cut. Their origin comes from the small dimensional part of the amplitude. We can follow the
reconstruction R in [6].

4. Calculational example
The example is QED photon-photon scattering, which leading order appears at four pointed
one-loop level. All mi in Di are set equally. The numerator is writable from Feynman’s rule

N++++(p) = −e4Tr[(/p+m)/ϵ+1 (/p+ /k1 +m)/ϵ+2 (/p+ /k1 + /k2 +m)/ϵ+3 (/p− /k4 +m)/ϵ+4 ]. (17)

The other two channels of amplitude are obtained by interchanging the momentum index 3 ↔ 4
and 2 ↔ 3. Putting equation (17) into (8)-(16) and using the method in [6]

iA++++ = −8ie4m4(Ibox(s12, s14,m) + Ibox(s12, s13,m) + Ibox(s13, s14,m)) +
e4

4π2
, (18)

where sij = (ki + kj)
2 and Ibox(s12, s14,m) = I0123. The scalar MIs existing are symbolically

calculated in the condition sij ≪ m, where ω is incoming photon’s energy.

iA++++ ≈ −e4(s212 + s14s12 + s214)

240π2m4
= −α2(3 + cos2 θ)ω4

15m4
, (19)

where θ is the scattering angle. This result is in agreement with the result of Karplus [7].



5. Conclusions
We found that box-coefficient is solvable using linear algebra while triangle and bubble
coefficients are solvable using the Cauchy residue theorem. However, the adjacent bubble and
tadpole coefficients are ignored in our processes, the amplitude is obtained correctly.

Appendix A.
This section shows the parametrized loop momentum in various cut channel and its solution.

pµ± = kµ1x1 + kµ2x2 + eµ12x
±
3 + eµ21x

±
4 , (A.1)

where x1 = s−1
12 M21 − 1, x2 = s−1

12 M10, x3 = c(4e12.k4)
−1F∓, x4 = c(4e21.k4)

−1F±, which

Mij = m2
i −m2

j , c = M03 − s14x1 − s13x2 , F± = 1±
√

1 + 4s13s14c−2
(
s−1
12 m

2
0 − x1x2

)
.

pµ1 = −rµ0 + kµad1 + kµb d2 + eµabx3 + (2sabCijkx3)
−1 eµba,

pµ2 = −rµ0 + kµad1 + kµb d2 + (2sabCijkx4)
−1 eµab + eµbax4, (A.2)

Table A1. a and b are the choices of parametrized momentum, and d1, d2, Cijk are solutions
of (A.2) in several cut channels of 3-cut propagators.

Cut (ijk) r0 a b d1 d2 Cijk

012 0 1 2 s−1
12 M21 − 1 s−1

12 M10 2s12(M01M12 −m2
1s12)

−1

013 0 1 4 s−1
14 M03 s−1

14 M10 2s14(M10M03 −m2
0s14)

−1

023 0 3 4 s−1
12 M03 s−1

12 M32 + 1 2s12(M03M32 −m2
3s12)

−1

123 k1 2 3 s−1
14 M32 − 1 s−1

14 M21 2s14(M12M23 −m2
2s14)

−1

pµ3 = −rµ0 + (ka + kb)
µn+ (ka − kb)

µx2 + eµabx
(i,i+2)
3 (x2, x4) + eµbax4,

x
(i,i+2)
3 (x2, x4) =

1

16s2abx4

(
s2ab(1− 4x22) +M2

i,i+2 − 2sab(m
2
i +m2

i+2))
)
, (A.3)

Table A2. a and b are the choices of parametrized momentum, and n are solutions of (A.3) in
several cut channels of the nonadjacent 2-cut propagators.

Cut (ij) r0 a b n

02 0 1 2 (2s12)
−1M20 − 2−1

13 k1 1 4 (2s14)
−1M13 + 2−1
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