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Abstract. In this work, the disease spreading under SEIR framework (susceptible-exposed-
infected-recovered) and agent-based model was investigated via discrete magnetic spin and 
Monte Carlo simulation. The defined systems were two-dimensional square-lattice-like, where 
the spins (representing susceptible, exposed, infected, and recovered agents) were allocated on 
lattice sites. Taking flu-like disease as a case study, the latent period was fixed at a quarter of 
infectious period. Then, the system size, the spin population density, and the infectious period 
were varied to observe its influence on uninfected population. In the simulation, each spin was 
randomly allocated on the lattice and interacted with its first and second neighbouring spins for 
disease spreading. The magnetization profiles, representing normalized agents in each state, were 
recorded. From the results, good agreement between the simulation and real spreading results 
was qualitatively evident. The uninfected susceptible (survivor) results can be categorized into 
2 distinct phases depending on the values of infectious periods. The critical infectious period, 
which separates low and high survivor phases, was then extracted and power-law scaled with the 
population density. With this scaling formalism, one can use for specifying the overcrowd 
situation that conveys epidemic to pandemic, which may benefit epidemiologists and 
government for future health related policies issuance and deployment. 

1.  Introduction 
Herd immunity is an indirect social-induced immunity, which help protecting susceptible agents in the 
community from getting disease infection [1]. The herd immunity occurs when a substantial portion of 
a population (or herd) have immunity (either from vaccination or being recovered from the illness) 
against the infection. This immune agents then play their roles as protective shield to susceptible agents 
from infectious agents throughout social interaction. As a result, the herd immunity can effectively stop 
the disease spreading, which helps people who do not yet develop immunity, e.g. some small children 
who are too young to be vaccinated, people with immunodeficiency syndrome, and those who are too 
weak to receive vaccination. However, when immunization rate declines, the herd immunity also falloffs 
which leads to an increase of new infectious cases. As the herd immunity depends on how immune 
agents obstruct infectious contacts, to pursue fundamental understanding of how herd immunity varies 
with the dynamics of the disease spreading is rather complicated, especially in a finite system where 
fluctuation is important. This is as the number of disease contacts is influenced by many factors, such 



 
 
 
 
 
 

as the number of populations, the social interactions, latent period, infectious period, etc. Nonetheless, 
one way-out to the problem can be arranged by sociophysics. 

Sociophysics is a field of science which uses mathematical tools inspired by physics to understand 
the behavior of human in society. For instance, the disease spreading modeling can be thought of using 
mathematical tools sharing between the field of epidemiology and physics [2]. Specifically, modern 
disease spreading techniques can be categorized as deterministic compartment and stochastic agent-
based models [3]. The deterministic is to assign rate of state changing among subgroups to calculate 
number of agents in each state over time, which is comparable with mean-field theory in statistical 
mechanics. It is applicable for large populations, but usually fails in small group as fluctuation is 
ignored. In addition, the stochastic agent-based investigates everyone to find the course of disease 
spreading and is appropriate only for small communities. It is the technique resembling the dynamics of 
discrete spins in statistical physics, which can be simulated using Monte Carlo simulation. As this work 
aims to investigate the herd immunity characteristic in finite system associated with the mentioned 
degrees of freedom, we then used the discrete Potts spin model with stochastic Monte Carlo simulation. 
The purpose is to model infectious disease spreading in bounded finite system with emphasizing on the 
herd immunity (interpreted via number of susceptible agent survived from the disease at the end of 
epidemic, i.e. the survivors). Also, in this work, the common contagious flu-like disease (with latent 
period of about a quarter of infectious period [4]) was chosen for a case study.  

2.  Theories and methodologies 
In epidemiology, one typically categorizes agents in the system into subcategories corresponding to state 
of disease spreading dynamics, i.e. the susceptible (S), the exposed (E) the infected/infectious (I), and 
the recovered (R). With discrete similarities between these subcategories and discrete Potts spin in 
Physics, the spin model could then be used to investigate the infectious disease system and forms a 
branch of sociophysics. In this context, the 4-state Potts spin  becomes appropriate, where its spin 
states {1,2,3,4} can be used to represent {S,E,I,R} states of the agent. The model for investigating this 
system can be proposed based on spin Hamiltonian and the change of spin’s/agent’s states bases on the 
minimization of a cost function. Specifically, in magnetic system, the cost function can be the 
Hamiltonian of the subsequent states. Therefore, for disease spreading system, the cost function could 
be written as functions of spins in SEIR states and the interaction between S and I spins [2],[5]. The 
change of spin from a current state i to i+1 (S E, E I, or I R) was based on the reduction of 
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In equation (1), the term ,1 ,3i jij
J  refers to interaction between S and I agents. The parameter 

J  = 1 (being the interaction strength among spins) was set as unit of the interaction strength. The sum 
<ij> takes only on 1st  and 2nd  nearest neighbour spins to mimic the real space disease transmission. The 
spin i denotes the agent positioning on location i, with value being one of the Potts’ states. The 
Kronecker delta function is , 1

i k  for i = k and 0 otherwise. Then, 0
,2 ,3i i i i

H t t t  is 

the temporal self-interacting local field term responsible for the change from E I (when being in 
exposed state up to latent period) or I R (when being infectious up to infectious period). H is the 
Heaviside step function which is 1 for 0

i it t t  and 0 otherwise. The parameter 0it  denotes the initial 

time for the spin being in the state i, while 
i

t  is the latent or infectious periods for i = 2 or 3, 

respectively. For i = 1 or 4, 
i

t  is discarded as ,2 ,3 0
i i

.  

Then, to update the system via Monte Carlo simulation [5], the initial conditions were firstly set. 
Specifically, the system size (N = L2), the spin concentration (c), and infectious period (D) were varied 
from L = 100 to 200, c = 0.001 to 0.100, and D = 1 to 600 Monte Carlo steps per spin (mcs), respectively. 
As considering flu-like disease, latent period was set to 0.25 of the infectious period [4]. Also, one mcs 
was set as the unit of simulation time, being equal to random allocation of N spins. For each condition, 



 
 
 
 
 
 

all n = cN spins (agents), were randomly allocated into the two-dimensional array in computer memory. 
Then, one spin was assigned in the I state and the other were in the S state. After that, all spins were 
allowed to have states changed in accordance with the minimization of the Hamiltonian. Specifically, 
the change of spin state at location i from i  i +1 is allowed only when 0iH . Time to perform 
this in one round was assigned as 1 mcs. These procedures repeated until there is no I and E agent left 
in the system (up to 2000 mcs). For each condition, 1000 independent runs were performed to average 
out random noises, where the sub-category magnetization was extracted, i.e. [5]  
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3.  Results and discussions 
From the results, the time dependence characteristic of normalized number of agents in {S,E,I,R} states, 
or {mS, mE, mI, mR}, were found in good agreement with typical disease spreading behavior [3]. Except 
only N, the parameters c, D and time are significant parameters. Specifically, as seen in figure 1(a), mS 
drops due to disease transmission which triggers out the rise of E agents (and mE). Furthermore, when 
time passes, E agents turn to I agents (see mI), which become new sources of disease transmission. With 
further decreasing in S agents, mI reaches maximum and declines, resulting in a peak-like function. This 
is as for I agents being in infectious state equal to D, they recover to R agents with immunity to the 
disease obtained. Note that S no longer changes when all E and I agents vanish. In addition, since E 
agents are the result of S-I contacts, it signifies D as a key parameter. By defining the S agents survived 
from infection as survivor S , the normalized survivor mS  (= mS at t ) yields several characteristics 
with varying D, e.g. see figure 1(b). Specifically, at small D, each I agent has less time to distribute the 
disease, giving less chance to infect S agents. Hence, S agents have more chances to survive from 
adopting the disease. However, with longer D, I agents have longer time to spread the disease, and when 
the D is large enough, all S agents get infected [6], i.e. pandemic situation.  

 
Figure 1. (a) The number of SEIR agents simulated at D of 100 mcs, and (b) the number of S 
agents with varying D from 2 to 80 mcs. In the figures, N = 1002 and c = 0.01 were fixed. 

 
As suggested in figure 1(b), mS  is a of function D. Interestingly, mS  presents a somewhat similar 

behaviour to temperature dependent ferromagnetic magnetization. There are 2 distinct phases associated 
to high and low survivors, like low and elevated temperature phases in ferromagnetic. Therefore, it is of 
interest to extract the so called critical infectious period DC, which separates high survivor phase from 
low survivor phase. This could be done via the extract of D from where mS  has maximum gradient. 
However, due to fluctuations, even the average from 1,000 independent runs, there are still some small 
rises and falls among data points on D domain. Therefore, the average data was smoothed and 
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interpolated with natural smoothing spline, and the DC was then extracted from the smoothed D that 
yields maximum slope magnitude. Furthermore, in the vicinity of DC, the fluctuation in mS  was found 
extreme like critical fluctuation in phase transition phenomena topic [7]. Therefore, we also managed to 
retrieve DC via the standard variation of the mS , as shown in figure 2(b), where the peak was used to 
locate DC. In addition, figure 2 shows that DC shifts to lower D with increasing c. This is as the larger c 
the more chances the I agents can distribute their disease. Consequently, D does not need to be very high 
to cause pandemic (no survivor left). Note that in figure 2(a), mS  at D = 1 mcs for various c are different 
as the results were normalized with N. Then, for having one S agent out, the low c system was affected 
the most. This one S agent missing effect perishes at higher c. Further, at very high c, D = 1 mcs may 
lie in the low survivor phase, causing mS  to decrease with increasing c. As figure 2 tells how survivor 
(the indirect ‘herd immunity’) and its standard deviation depend on c and D parameters, it is of interest 
to perform quantitative analysis on the DC. The non-linear power law regression was performed for 
fitting DC and c, which gives DC  = 0.1196c-1.049 (R2 = 0.9994) and DC = 0.0964c-1.056 (R2 = 0.9982) for 
mS  and its standard deviation results, respectively. As seen, the fitted parameters are close, suggesting 
the same DC characteristic.  

 
Figure 2. (a) mS  and (b) its standard variation as a function of infectious period D. The results 
were simulated at N = 1002, D = 100 mcs, and c = [0.001, 0.070]. The curves were used for visual 
aids. 

4.  Conclusions 
In this work, the disease spreading was investigated using SEIR model, the discrete spin Hamiltonian 

and the Monte Carlo simulation. The time dependent behaviour of the subgroup magnetization was 
investigated and used to define low and high survivor phases. The critical infectious period used to 
separate these phases was found to depend the population density, where the power law relationship was 
suggested. From the power law function, it reveals the inherited ‘herd immunity’ of the system, which 
one can use to issue policies in overcoming the pandemic for a disease with particular infectious period, 
such as how to control the population density to discontinue the disease spreading.  
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