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Abstract. For various experiments to investigate quantum effects, matter-wave diffraction is an 

apparent example. Particle diffractions have been measured even at the large molecular level, 

such as the C60 molecules. In order to describe the matter-wave diffraction of C60 beam, we 

assume the initial wave functions behind a grating in form of the Fourier series with a Gaussian 

distribution function. By applying the Feynman path integral, the exact wave functions of the 

molecule diffraction in the near-field regime can be derived analytically. The obtained 

probability density distributions are corresponding to interference fringes as found in the Fresnel 

diffraction. The probability of finding C60 molecules, behind the grating at the Talbot length, 

consistency with the mentioned experimental data of C60 diffractions. 

1.  Introduction 

Diffraction phenomena in the near-field regimes are based on Fresnel diffraction theory, and the Talbot 

effect is a renowned optical example. The Talbot effect, discovered by Henry Fox Talbot in 1836, was 

found when the plane-wave light passes a diffraction grating, it produces a periodic interference pattern. 

The shape has the periodicity similar to grating itself, so-called self-image, observed by locating the 

screen behind the grating at a certain distance called the Talbot length (LT) [1]. The Talbot effect has 

been widely applied in many studies and applications, such as a study of optical vortices [2], high-

contrast optical vortex detection using the Talbot effect [3], elastic wave in solid [4], x-ray Talbot 

interferometry [5], and distance measurement [6]. In addition, the Talbot effect applications have been 

used to study a quantum phenomenon, opening a new framework between the foundation of physics, 

quantum optics, and physical chemistry [7]. 

Matter-wave diffraction is one of the important tools and becomes the useful approaches to 

investigate quantum effects. There were many successfully proven matter-wave experiments, which had 

been performed with electrons [8], neutrons [9], He atom [10], and molecular I2 [11]. Not only the 

matter-wave experiments of small particle have been achieved, the diffractions have been measured 

even at the large molecular level. Such as the fullerene molecule C60 which have been considered the 

pattern diffraction under influence of an electric field for estimating the scalar polarizability of 

molecules [12]. 

In this study, we present a simple description of the matter-wave diffraction of the C60 molecules in 

the near-field regime. We assume an initial wave function behind the diffraction grating in form of the 

Fourier series modulated by a Gaussian distribution function. By applying the theory of the Feynman 

path integral [13], we calculate the exact wave functions of the molecule diffraction. Finally, we evaluate 



 

 

 

 

 

 

the probability of finding C60 molecules behind the mask grating at two Talbot length and compare our 

calculations to the experimental data [12]. 

 
Figure 1. The coherent molecular beam passes through a diffraction grating at z0 = 0, a mask grating at 

z = LT, and then a detector. The two gratings are separated by one or multiples of the Talbot length          

LT = d 2/λdB , where λdB is the de Broglie wavelength. The probability density of molecules is found with 

the detector behind the mask. The influence of an electric field between the gratings leads to a transverse 

shift of the diffraction pattern. 

 

2.  Theory and method 

In this section, we present a brief derivation of the matter-wave diffraction. A molecular beam was 

prepared for a coherent source by passing through a grating or a single slit. Therefore, we assume that 

the coherent molecular source with a Gaussian beam shape spreads along x0 axis and travels along z axis 

through the diffraction grating. The diffraction grating is placed at z0 = 0 , as shown in figure 1, the 

initial wave function may be assumed in form of the Fourier series modulated by a Gaussian distribution 

function as 
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where C is the normalized factor, and kd = 2/d with d is the grating period. The wave vector k is 

corresponding to  λdB. The factor An = sin(nf)/n is the components of the Fourier decomposition of the 

periodicity for the grating with an opening fraction f , where n = 0, ±1,±2,… [14]. The parameters x 

and z denote the full width at half maximum (FWHM) of the Gaussian distribution of the molecular 

beam. At a later time t > 0  behind the diffraction grating, the time evolution of   is described  by 
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is the propagator for a particle mass M  moving in xz plane along z axis under the influence of an electric 

force Fx along x axis. Since the initial wave has been written in the exponential form, the integral in 

equation (2) can be done analytically. Consequently, the exact wave function can be obtained as 
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with 2 /t x zC C  =  with 21 2 /x xi t M = +   and 21 2 /z zi t M = + .   

In order to describe the molecules detecting behind the mask grating (figure 1), we multiply the 

probability density  (x,z,t)2 with a step function which is corresponding to the mask grating. Therefore, 

the probability of finding the molecules behind the mask grating can be represented as 
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Here, the step function ( )jF x  is given by 
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where 0, 1, 2,...j =    and   is the transverse shift, along x-axis, between the two gratings [15]. 

3.  Results and Discussions 

We demonstrate the theoretical simulations of the molecule C60 diffraction from the obtained wave 

function. The molecular beams move through the diffraction grating with the average velocity v = 117 

m/s, then pass through the mask grating which is able to move transversely in the x-axis, as shown in 

figure 1. The two gratings with the period of d = 911 nm and the opening fraction of f = 0.45, are 

separated by two Talbot length 2LT = 2d2/ λdB = 41.7 cm. Since the molecules move freely along z-axis 

behind the diffraction grating, the corresponding probability density distribution can be simulated by 

using the absolute modulus of equation (4) with substituting time t = z/v and the Gaussian radius x  >> 

d and z  >> λdB, as shown in figure 2. 

 
Figure 2. The probability density  (x,z,t = z/v)2 at z = 2LT, according to equation (4) without the 

electric field on (a) the xz-plane and (b) the distribution along x-axis. 

 

To compare our simulations to the experimental data of the molecule counting in the Ref. [12], the 

probability density of the molecule diffractions is simulated by applying equation (8). Scanning the 

mask grating in steps of 20 nm can be involved in the theoretical calculation by changing the transverse 

shift with the same range, about 0 ≤  ≤ 2d, as done in the experiment [12]. Figure 3 shows the theoretical 

calculations in comparison to the experimental data. Both graphs express a consistent trend. The shifted 

pattern due to the electric field can be obtained by using the transverse force Fx 9.410-26 N. 
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Figure 3. The simulation versus the experiment of the probability density of finding C60 molecules at    

z = 2LT. The full circles and the open circles are the experimental graph of the molecule counting behind 

the mask with and without electric field, respectively [12]. The solid lines represent the theoretical 

calculations equation (8) with transverse force Fx 9.410-26 N and Fx = 0, respectively. 

 

4.  Conclusions 

This theoretical study presents a practical analytical and simulation scheme for matter-wave diffraction 

in the near-field regime. We applied the Feynman path integral to calculate the exact wave function. In 

addition, we considered the C60 molecules pass through a grating diffraction. Finally, the probability 

density distribution of finding the molecules behind the mask grating gave the theoretical results in 

accordance with the molecules detecting as found in the experimental data. 
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