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Abstract. We consider cosmological scalar field evolving under exponential potential of the
Non-minimal Derivative Coupling (NMDC) gravity model in Palatini formalism. Slow-roll
regime is assumed. GR and metric formalism NMDC cases are compared in this study. Phase
portraits show that Palatini NMDC effect restricts acceleration phase into smaller region in the
phase space. NMDC effect of the Palatini case suppresses expansion rate than that of the GR
while the metric NMDC enhances rate of expansion of the GR case.

1. Introduction
Present acceleration of the universe is confirmed by many astrophysical observations, such as
Supernova type Ia (SN Ia) [1, 2, 3], Cosmic Microwave Background (CMB) Anisotropies [4],
large-scale structure surveys, and X-ray luminosities from galaxy clusters [5]. The dark energy
is believed to be responsible for the acceleration. Dark energy could be in the form of dynamical
fields, therefore many scalar field models are proposed in order to explain the present accelerated
expansion (see e.g. [6] and references therein) as well as inflation in the early universe [7, 8].
Modifications of the gravitational theory can be performed by changing geometrical sector in the
Einstein-Hilbert action of which the acceleration can be attained in many ways at both early
and late times [9, 10]. Coupling between scalar sector and geometry can be found in classes
of scalar-tensor theories [11]. These contain non-minimal coupling (NMC) term between the
Ricci scalar and a scalar field (see e.g. [12]). The NMC model can be extended to coupling of
the Einstein tensor to derivative of the scalar field dubbed a non-minimal derivative coupling
(NMDC) theory [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The NMC and NMDC are found as a
subclass of Horndeski’s theory [23] which is the most generalized case of the action with at most
second-order derivative of the metric and of the scalar field. Metric NMDC theory allows inflation
by enhanching friction even in steep potentials with theoretically natural models parameters
and helps supressing the tensor-to-scalar ratio [19]. A version of NMDC theory as proposed
by [18] was investigated in metric formalism which regards the metric as a dynamical field.
Alternative ideas lies on symmetrical properties of the manifold space. Riemannian manifold
possesses isometry property and the metrical field is consistent with it. A space that possesses
the diffeomorphism symmetry, allows connection and the metric to be separated dynamical fields
so that these fields are varied independently. This approach is called Palatini formalism which



gives different equations of motion from the metric approach unless considering GR [24]. The
Palatini NMDC action is given by
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negligible here. Previous works [25, 27] showed that positive κ results in superluminal graviton
speed. Albeit the V ∝ ϕ4 potential with κ > 0 could pass the CMB constraint [4], it is with
only by large amount of fined-tuning. Moreover, the negative κ case with V ∝ ϕ2 fails the CMB
constraint. Hence both V ∝ ϕ2 and V ∝ ϕ4 are not likely to be viable. With this reason, we
consider κ < 0 and use V = V0e

−λϕ/MP instead of the power-law (chaotic) potential.

2. Equations of motion in the slow-roll regime
Giving the scenario of the NMDC gravities, it is interesting to view comparative graphical
presentations of the dynamics. In doing such, we consider sets of the autonomous system
in GR, metric NMDC and Palatini NMDC gravities in slow-roll regime so that the slow-roll
approximations 0 ≪ |ϕ̇2| ≪ 1; |Ḧ/H| ≪ |Ḣ| ≪ |H2|; |4Ḣκ| ≪ 1, can be applied [25].

2.1. Metric NMDC Gravity
Considering scalar field as the only species in inflationary epoch, ρtot ≡ ρϕ = εϕ̇2/2 + V ; ptot ≡
pϕ = εϕ̇2/2− V . Friedmann and the Klein-Gordon equations are [21]
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One can set an autonomous system:

ϕ̇ = ψ , ψ̇ ≃ −Vϕ − 3Hψ(ε− 3κH2)

ε− 3κH2
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2.2. Palatini NMDC Gravity
From the Palatini action (1), the Friedmann and the Klein-Gordon equations are given by
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An autonomous system can be derived as follows :

ϕ̇ = ψ , ψ̇ ≃ −Vϕ − 3Hψε

ε− (15/2)κH2
, Ḣ ≃ Vϕψ

6M2
P
H
. (7)

1 A different version of Palatini NMDC was investigated before in [26].



3. Acceleration condition for exponential potential
Exponential potential has similar motivation as the NMDC models, i.e. it is motivated by
low-energy effective theories of quantum gravities [28]. Therefore in this study, we consider
exponential potential, V = V0 exp(−λϕ/MP) . Acceleration condition is obtained by taking
ä/a ≡ Ḣ +H2 > 0.

3.1. Metric NMDC Gravity
In the metric case, we use approximation H ≈

√
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)
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acceleration condition,
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3.2. Palatini NMDC Gravity
Considering binomial approximation for |κ| ≪ |M2

P/V | and late time ϕ̇ ≈ −MPVϕ/
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acceleration condition is given by
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4. Results
We plot the phase portraits of the 3-dimensional autonomous systems both of the metric (Eq.(4))
and the Palatini (Eq. (7)) cases. The GR case is portraited by taking κ = 0. Fig. 1 shows the
phase portrait for the three cases and the acceleration region (as described by Eqs. (8) and (9))
are presented. Fig. 2 shows evolution of H as e-folding number N grows in the three cases.

(a) (b) (c)

Figure 1. Phase portrait for an NMDC scalar field under exponential potential, with parameter
V0 = 1; κ = −0.5; ε = 1; MP = 1.0; λ = 1.0 for three cases: (a) GR (b) metric NMDC and (c)
Palatini NMDC cases; red curves are trajectories from some chosen initial conditions.

5. Conclusion
We present phase portraits of non-minimal derivative coupling scalar field under exponential
potential, V = V0 exp(−λϕ/MP) in metric and Palatini formalism. Previous works [25, 27]
showed difficulty of the theory to be viable with chaotic inflation potentials, motivating



Figure 2. H plotted over e-folding number N in GR, metric NMDC and Palatini NMDC cases.

consideration of exponential potential with the negative κ case of the theory. In the slow-
rolling regime, Acceleration conditions are derived in three cases. As seen in Fig. 1, there is
only one attractor in all cases. However, Palatini NMDC gives smaller acceleration region and
restricts the attractor into that smaller region. It is seen from Fig. 2 that Palatini NMDC effect
suppresses expansion rate than that of the GR case while the metric NMDC effect enhances the
expansion rate from that of the GR case.
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