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Abstract. Optical vortex is a mode of light whose phase distribution varies as exp(il𝜙), where l 

is called the topological charge of the vortex and 𝜙 is an azimuthal angle in the plane 

perpendicular to the propagating direction. The vortex beam of charge l carries an orbital 

angular momentum of 𝑙ℏ and has its application in manipulating micrometer-sized particles. A 

common method to detect topological charges of optical vortices is interference with a tilted 

Gaussian beam. In this work, we study the interference pattern of two obliquely-incident vortex 

beam with different topological charges, created by spatial light modulators (SLMs). We find 

fork-like fringes similar to those observed from the interference between a vortex and Gaussian 

beam. The fringe difference between the top and the bottom of the fork equals the difference 

the topological charges of the two vortices, as predicted by the theory. When the topological 

charges are the same and the fork pattern disappears. The tilted angle between the vortex beam 

affects the fringe spacing: the larger the tilt angle the smaller the fringe spacing. When the tilt 

angle radial from the defect canter. We suggest the result can be used to detect a topological 

charge of a vortex beam. 

1.  Introduction 

 

The phase distribution  of an optical vortex (OV) on the plane perpendicular to the propagation axis 

changes linearly with the azimuthal angle 𝜙 and can be written as   = l𝜙, where l is typically an 

integer and usually called the topological charge of the vortex. Such phase distribution causes the 

wavefront to be helical and the vortex inherits an orbital angular momentum of 𝑙ℏ.  The orbital angular 

momentum of optical vortices has been first studied by Allen et al. [1] and can be applied in several 

topics, such as classical and quantum communications [2–4], trapping and manipulating micrometer-

sized particles [5], and plasmonics [6–10].  Various techniques have been used to determine 

topological charges of optical vortices. The most common technique is interfering with tilted Gaussian 

beam [11]. Other techniques include investigating Talbot patterns of optical vortex’s diffraction 

through gratings [12], using Stokes polarimetry and a Shack–Hartmann wavefront sensor [13], an 

ultracompact array of elliptical nanoholes [14], single-slit diffraction of an optical beam with phase 

singularity [15], an annular triangle aperture [16], interference intensity analysis [17], a diamond-

shaped aperture [18], and a hole wheel [19].  



 

 

 

 

 

 

The interference patterns of two vortex beams with different topological charges have only been 

studies for the case of composite optical vortices, where two collinear beams of optical vortices with 

different topological charges have been superimposed to form new composite vortices [20-21].  In this 

paper, we study the interference pattern of two obliquely-incident vortex beam with different 

topological charges, created by spatial light modulators (SLMs). We suggest the result can be used as 

an active method to detect topological charges of vortex beams. 

2.  Theoretical Simulation  

 

We use Laguerre-Gaussian beams to represent optical vortices. A Laguerre-Gaussian beam to 

topological charge l propagating along the z-axis can be expressed as [22] 
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Where ( )xy1tan −=  is the azimuthal angle in the plane perpendicular to the z-axis.  
l

pL  is 

generalized associated Laguerre polynomial.  ( )w z is the laser beam waist at the position  z, and zR is 

Rayleigh range. To generate off-axis interference patterns we rotate both beams about the x-axis for an 

angle   using the rotation matrix 
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The first optical vortex beam with topological charge l1 is rotated for an angle +  

(counterclockwise) and superimposed with the second vortex beam with topological charge l2 that is 

rotated clockwise an angle − (clockwise), as shown in figure 1. The interference intensity is observed 

on the plane z = 0. 

 

 
 

Figure 1. Shows the pathway of light used to create the optical vortex, first vortex ( 1l ), and the second 

vortex  ( 2l ). 

 

 



 

 

 

 

 

 

3.  Experiment 

A 4-mw diode laser (𝜆=633nm) is used in our experiment as a coherent source for the interference of 

two vortex beams. The laser source is expanded by an optical telescope to a diameter of about 15 mm 

in order to cover the whole polarizer beam splitter (PBS), (THORLABS,CCM1-PBS252M 620-

1000nm). The PBS splits the laser into two equally-intended beam, one goes to the first SLM 

(LC2012,Holoeye Photonics AG with resolution of 1024x768 pixels, transmitive) and the other goes 

to the second SLM (PLUTO, Holoeye Photonics AG with resolution of 1920x1080 pixels, reflective). 

A series of gray-level images are loaded and displayed onto SLM1 and SLM2 screen, varying the 

spatial phases on the SLM screens, producing the optical vortices with integer-valued topological 

charges. The optical vortices from both SLMs are superimposed at the CCD camera screen after being 

translated through a mirror2, and then the second BS (THORLABS<CM1-BS252M 700-1100nm) 

 

 

 
 

 

Figure 2.  The setup for interference of two optical vortex beams. SLM1 and SLM2 are used to 

generate integer-valued topological defect charges. See text for more details. 

4.  Results and Discussions 

 

We find fork-like fringes similar to those observed from the interference between a vortex and a 

Gaussian beam. The fringe difference between both ends of the fork equals the difference between the 

topological charges of the two vortices 

Figure 3. shows comparisons between experimental and stimulation results. The interference 

patterns in Figure 3a and 3b are from the topological charges of l1 = 2 and l2 = −3. The results show 

similar fork-like patterns with the number of bright fringes on the left (NL) of the fork is 3 and the right 

(NR) is 8. This result shows that the difference between the fringes at the right side and the left side of 

the fork yields the relation NR − NL = l1 − l2. In Figure. 3c and 3d, with the topological charges of l1 = −5 

and l2 = −4, the number of fringes on the left is 7 and on the right is 6, yielding NR − NL = l1 − l2 = −1. In 

Figure 3e and 3f, with the topological charges of l1 = −5 and l2 = −5, the number of fringes on the left 

is equal to the right, yielding NR − NR = l1 − l2 = 0. 
Our simulation also reveals that, when the rotated beams are on the y-z plane, as shown in Figure 

1., the interference fringes are along the x-axis (perpendicular to the plane of the rotated beams). 

When the tlited angle   is small the spacing between the fringes is wider. In Figure 3b, 3d, and 3f, we 

adjust the tilted angle  such that the fringe spacing matches our experimental results.  



 

 

 

 

 

 

 
 

Figure 3. Off-axis interference patterns between two optical vortices produced by our SLMs with the 

topological charges of l1 = 2 and l2 = −3 (3a), l1 = −5 and l2 = −4 (3c), l1 = −5 and l2 = −5 (3e). Fig. 3b, 3d 

and 3f are corresponding simulation results using the same topological charges as fig. 3a, 3c and 3e 

respectively.  

5.  Summary 

 

we have studied the interference pattern of two vortex beams with different topological charges, 

created by spatial light modulators (SLMs). We find fork-like fringes similar to those observed from the 

interference between a vortex and a Gaussian beam. The fringe difference between the two sides of the 

fork equals the difference between the topological charges of the two vortices, as predicted by the 

theory. When the topological charges are the same and the fork pattern disappears. We suggest the 

result can be used as an alternate method to detect a topological charge of an unknown vortex beam. 
The conventional method, which use a Gaussian beam as a reference beam may be disadvantage when 

detecting large topological defect charges because the fringe difference is large and may be hard to 

observe. Our method has an advantage of adjusting the topological charges of the reference beam to 

match that of the unknown vortex charges until the fork pattern disappears.  
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