A caching DPM

Volatile Pools

Oliver Keeble on behalf of the DPM team




The client view

The volatile area is accessed by path
- /dpm/cern.ch/home/dteam/volatile

Reads from a volatile pool work normally if the
file Is there

If the file Is not there, it Is retrieved
« The FULL FILE Iis retrieved (no chunks)
« The client will block while this happens

Writes into a volatile pool go into the volatile pool
(if there Is space)




Volatile pools and caches in a nutshell

This functionality requires a working DOME installation

Marking a pool as “Volatile” triggers the cache-like behaviour for
that pool.

« Others stay like before

This creates a data cache that works seamlessly and
Interchangeably with all the data protocols: HTTP, Xrootd, GridFTP

Not supported for SRM




Volatile pools and caches in a nutshell

If the requested file is not there, DPM will try to fetch it
from an external source

Two scripts are required
one does stat()
the other one retrieves the new file

If there’s no space in the pool, DPM will remove some
files from it before invoking the pull script. It's volatile!

The oldest file on the fs selected for write will be
removed

No access time awareness




Volatile pools and caches in a nutshell

The file retrieval activity is properly queued and
scheduled. A GET storm will behave in a
coordinated manner

No more than N retrievals per server

No more than M retrievals overall

Clients peacefully wait their turn, it's transparent
Space reporting will work as usual




What can be interfaced

- A DPM volatile pool can cache virtually any source of files, remote
or not

- We provide two simple example scripts that fake an external
source, just to show the parameters

« These are called only if the file is not resident

- Who does the integration will have to adapt these two scripts or
executables to his own external source

- This script will probably need credentials of some kind to do its work

Head $> 1ls -1 /usr/share/dmlite/filepull
—rwxr-xr-x. 1 root root 303 Apr 19 17:16 externalstat example.sh

Disk $> 1ls -1 /usr/share/dmlite/filepull

—rwxr—-xr-x. 1 root root 587 Apr 19 17:16 externalpull example.sh#




Setup

Create a volatile pool and add filesystems

« Ensure pool default filesize > largest file you will
cache

Create a QT on that pool

Assign the QT to your /volatile path
Configure the stat script on the head node
Configure the pull script on the disk servers
See the DPM deployment guide for more

« https:/twiki.cern.ch/twiki/bin/view/DPM/DpmSetupDp
mCache

And the DOME reference for all the detalls

« http://lcgdm.web.cern.ch/dome-documentation




Setup

dmlite-shell> pooladd VolPool filesystem V
dmlite-shell> poolmodify VolPool defsize 4000000000
dmlite-shell> fsadd ..

dmlite-shell> quotatokenset /my/volatile/path ..

# grep filepuller /etc/domehead.conf
head.filepuller.stathook:
/usr/share/dmlite/filepull/externalstat example.sh

# grep filepuller /etc/domedisk.conf
disk.filepuller.pullhook:
/usr/share/dmlite/filepull/externalpull example.sh

- Other config options are available, for example controlling the
number of concurrent pulls

«  https:/itwiki.cern.ch/twiki/bin/view/DPM/DpmSetupDpmCache




Example stat script

- One scripts to perform stat() towards the remote
endpoint

- Returns filesize/checksum or error if not found
#!/bin/sh
# usage: externalstat.sh <1lfn>
# This is an example script for the DOME file pull hooks
# This script will make DOME believe that there is an external file
# that has 123456 as its size
# The companion pulling script will have to create such a file when

nvoked

echo ">>>>> STAT 123456"

{CERN%?




Example pull script

One script to pull the file. Ret: OK or error

#!/bin/sh
# usage: externalpull.sh <1fn> <pfn>
This 1s an example file puller script, that creates a fake file <pfn>

by pulling 1t from nowhere using dd
If querying an external system, the query should be based on the <l1fn>

# Let’s claim we’re doing something complex and heavy
sleep 5

# Pull the file
dd "of=$2" "if=/dev/urandom" bs=123456 count=1

{CERN%?




Wlth the default setup you can..

start empty
> gfal 1ls davs://dpm/volatile

# see a file that isn’t there (stat script is triggered)
> gfal-1ls -1 davs://dpm/volatile/not there

# get a file (pull script is triggered)
> gfal-cat davs://dpm/volatile/tf01

# see it in the namespace
> gfal-1ls -1 davs://dpm/volatile/tf01l

# remove it
> gfal-rm davs://dpm/volatile/tf01

# notice that it’s “still there” (stat script is triggered)
> gfal-1s -1 davs://dpm/volatile/tf01

# upload a file (--just-copy to avoid an initial stat)
> gfal-copy —-just-copy file:///etc/services davs://dpm/volatile/tf02




Scenarios

Cache + primary storage

- A satellite site can accelerate access to a nearby
custodial storage system

-+ This could allow a group of nearby sites to
consolidate their storage

Cached access to a federation

« The upstream server can in fact be a federator such
as Dynafed

« This would transparently accelerate access to a
federation

Federating the cache
- Possible — depends on the desired behaviour




Possible extensions

Client blocking

« We could redirect clients to the origin rather than
blocking them

- Lower latency, more WAN traffic
Federating the cache
- A federator always sees the cache as full

« If it redirects a client there, the pull is
triggered

We could implement a way to query cache
residency to make this more flexible




Summary

A contribution to the “caching conversation”
happening in WLCG now.

We are interested in understanding more about
what caching scenarios suit smaller sites

- Please let us know your experience

More detalls in the two talks by Alessandra
Doria, Silvio Pardi and Davide Michelino




