
A caching DPM
Volatile Pools

1

Oliver Keeble on behalf of the DPM team

The client view

• The volatile area is accessed by path

• /dpm/cern.ch/home/dteam/volatile

• Reads from a volatile pool work normally if the
file is there

• If the file is not there, it is retrieved

• The FULL FILE is retrieved (no chunks)

• The client will block while this happens

• Writes into a volatile pool go into the volatile pool
(if there is space)

2

Volatile pools and caches in a nutshell

• This functionality requires a working DOME installation

• Marking a pool as “Volatile” triggers the cache-like behaviour for

that pool.

• Others stay like before

• This creates a data cache that works seamlessly and

interchangeably with all the data protocols: HTTP, Xrootd, GridFTP

• Not supported for SRM

3

Volatile pools and caches in a nutshell

• If the requested file is not there, DPM will try to fetch it

from an external source

• Two scripts are required

• one does stat()

• the other one retrieves the new file

• If there’s no space in the pool, DPM will remove some

files from it before invoking the pull script. It’s volatile!

• The oldest file on the fs selected for write will be

removed

• No access time awareness

4

Volatile pools and caches in a nutshell

• The file retrieval activity is properly queued and

scheduled. A GET storm will behave in a

coordinated manner

• No more than N retrievals per server

• No more than M retrievals overall

• Clients peacefully wait their turn, it’s transparent

• Space reporting will work as usual

5

What can be interfaced

• A DPM volatile pool can cache virtually any source of files, remote

or not

• We provide two simple example scripts that fake an external

source, just to show the parameters

• These are called only if the file is not resident

• Who does the integration will have to adapt these two scripts or

executables to his own external source

• This script will probably need credentials of some kind to do its work

6

Head $> ls -l /usr/share/dmlite/filepull

-rwxr-xr-x. 1 root root 303 Apr 19 17:16 externalstat_example.sh

Disk $> ls -l /usr/share/dmlite/filepull

-rwxr-xr-x. 1 root root 587 Apr 19 17:16 externalpull_example.sh#

Setup

• Create a volatile pool and add filesystems

• Ensure pool default filesize > largest file you will
cache

• Create a QT on that pool

• Assign the QT to your /volatile path

• Configure the stat script on the head node

• Configure the pull script on the disk servers

• See the DPM deployment guide for more

• https://twiki.cern.ch/twiki/bin/view/DPM/DpmSetupDp
mCache

• And the DOME reference for all the details

• http://lcgdm.web.cern.ch/dome-documentation

7

Setup

grep filepuller /etc/domehead.conf

head.filepuller.stathook:

/usr/share/dmlite/filepull/externalstat_example.sh

grep filepuller /etc/domedisk.conf

disk.filepuller.pullhook:

/usr/share/dmlite/filepull/externalpull_example.sh

dmlite-shell> pooladd VolPool filesystem V

dmlite-shell> poolmodify VolPool defsize 4000000000

dmlite-shell> fsadd …

dmlite-shell> quotatokenset /my/volatile/path …

• Other config options are available, for example controlling the
number of concurrent pulls

• https://twiki.cern.ch/twiki/bin/view/DPM/DpmSetupDpmCache

8

Example stat script

• One scripts to perform stat() towards the remote
endpoint

• Returns filesize/checksum or error if not found

9

#!/bin/sh

usage: externalstat.sh <lfn>

This is an example script for the DOME file pull hooks

This script will make DOME believe that there is an external file

that has 123456 as its size

The companion pulling script will have to create such a file when

invoked

echo ">>>>> STAT 123456"

Example pull script

• One script to pull the file. Ret: OK or error

10

#!/bin/sh

usage: externalpull.sh <lfn> <pfn>

This is an example file puller script, that creates a fake file <pfn>

by pulling it from nowhere using dd

If querying an external system, the query should be based on the <lfn>

#

Let’s claim we’re doing something complex and heavy

sleep 5

Pull the file

dd "of=$2" "if=/dev/urandom" bs=123456 count=1

With the default setup you can…

11

start empty

> gfal-ls davs://dpm/volatile

see a file that isn’t there (stat script is triggered)

> gfal-ls –l davs://dpm/volatile/not_there

get a file (pull script is triggered)

> gfal-cat davs://dpm/volatile/tf01

see it in the namespace

> gfal-ls –l davs://dpm/volatile/tf01

remove it

> gfal-rm davs://dpm/volatile/tf01

notice that it’s “still there” (stat script is triggered)

> gfal-ls –l davs://dpm/volatile/tf01

upload a file (--just-copy to avoid an initial stat)

> gfal-copy –just-copy file:///etc/services davs://dpm/volatile/tf02

Scenarios

• Cache + primary storage

• A satellite site can accelerate access to a nearby
custodial storage system

• This could allow a group of nearby sites to
consolidate their storage

• Cached access to a federation

• The upstream server can in fact be a federator such
as Dynafed

• This would transparently accelerate access to a
federation

• Federating the cache

• Possible – depends on the desired behaviour

12

Possible extensions

• Client blocking

• We could redirect clients to the origin rather than
blocking them

• Lower latency, more WAN traffic

• Federating the cache

• A federator always sees the cache as full

• If it redirects a client there, the pull is
triggered

• We could implement a way to query cache
residency to make this more flexible

13

Summary

• A contribution to the “caching conversation”

happening in WLCG now.

• We are interested in understanding more about

what caching scenarios suit smaller sites

• Please let us know your experience

• More details in the two talks by Alessandra

Doria, Silvio Pardi and Davide Michelino

14

