

Radioactive-Ions Production Ring for Beta-Beams

E. Benedetto^(1,2), M. Schaumann^(1,3), J. Wehner^(1,3) ⁽¹⁾CERN, ⁽²⁾NTU Athens, ⁽³⁾ RWTH Aachen University

The idea

- Beam cooling with ionization losses, C.Rubbia et al., NIM A 568 (2006) 475-487
- Enhance β -emitters production (~10¹⁴/s) by multi passages through a thin target
- $^{7}\text{Li} + D \rightarrow ^{8}\text{Li} + p$ $^{6}\text{Li} + ^{3}\text{He} \rightarrow ^{8}\text{B} + n$
- · Compact ring and internal target
- Inverse kinematic: 25MeV Li beam and D or ³He supersonic gas-jet target
- Ionization cooling
 - · Energy losses in the target
 - · Only longitudinal component recovered in RF cavities
 - \rightarrow Transverse emittance shrinks
 - Cooling in $6D \rightarrow$ wedged shaped target & dispersion
- → see also ERIT, proton FFAG w. internal Be target for neutorn production *Y.Mori, NIM A 562 (2006) 591* (but FFAGs do not require dp/p cooling)

Wedge shaped target in dispersive region

 D_x set to ~ 50 cm

Geant4 Simulations

- · Gas-jet target modeled as solid block
- Production \rightarrow G4 hadronic model not valid at low energies of interest
- EM interactions \rightarrow Ok

Tracking w. G4 and C++ classes

• Developed classes in C++ for 6D tracking

- The reference ⁷Li particle gains 300 keV/turn (=average value lost @ target)
- PRELIMINARY: heating/cooling in the horiz/longitud according to wedge angle

The proposed lattice

RWIT

Tracking w. SixTrack

- Target implemented in SixTrack (*LHC-Collimation Version*):
 - · Collimators routine modified to include our new type of "beam obstacle"
- Kick in transverse direction (Multiple Coulomb Scattering) & energy losses
 - Vparticle randomly generated according to rms
 & mean from Moliere & Bethe-Bloch formulas
 - VERY PRELIMINARY!!! • Heating in transverse plane

• BUT RF not optimized!!!

Summary, open issues & future plans

- Preliminary studies, mainly on the 7Li beam
 - Design of a production-ring lattice, quite compact & flexible.
 - Tracking tools (SixTrack & C++ classes) in place and preliminary results
 - Interaction target-beam w. Geant4
 - Production \rightarrow G4 not adequate, use Fluka, Mars, or implement new-physics in G4
- Multiple-Coulomb scattering and energy losses → well approx w. analytical formula
 Next steps:
 - Six-Track simulations ↔ lattice & RF optimization
 - Cooling in 6D \rightarrow is it necessary coupling x-y, as proposed by [D.Neuffer]?
 - Interaction target-beam and production of radioactive isotopes
 - Requirements in terms of Li-beam intensity, emittances, longitudinal profile, max $\Delta p/p$ allowed, rep. rate, ...
- · Many technological issues:
 - Collection device: ring-shaped thin Tantalum foil + diffusion/effusion (*cfr. tecniques @ ISOLDE*) to ECR source \rightarrow very close to the circulationg beam
 - Supersonic gas-jet target technology
 - Injection
 - Vacuum

Acknowledgements

B.Holzer, A.Stahl, E.Wildner, C.Bracco, G.Folger, S.Gilardoni, C.Hansen, W. Herr, D.Neuffer, V. Previtali, F. Schmidt, V.Vlachoudis,...

