

Production of ⁶He for Beta-Beam Experiments via a Two Target Irradiation Setup Concept, Simulations & Development: Tsviki Hirsh^{1,2}, Michael Hass² et al. Simulations, Poster : Achim Stahl³, Marcel Weifels³, Markus Lauscher³

Core of the Saraf Facility is a proton/deuteron LINAC which is being commissioned in two phases.

2008/9 Phase I : 5.2 MeV deuteron beam with 2mA beam current

20013 Phase II: 40 MeV deuteron

RCS

Upcoming Beta-Beam experiments need of intense source of ions such as ⁶He and ⁸Li. One way of realizing such a source is currently being explored at the SARAF facility at the Soreq Nuclear Research in Israel.

This poster will try to give an overview of the production concept, the specifics of the SARAF condition as well the general aspects of the project.

beam with 2mA beam current.

One research aspect will be the production and extraction of ⁶He and ⁸Li using the deuteron beam.

Production Concept

Deuterons impinging on the light, primary target produce fast neutrons, which subsequently produce the desired ⁶He in the ⁹Be-cylinder via the ⁹Be(n,α)⁶He reaction.

By exchanging the ⁹Be-cylinder with a ¹¹B-cylinder ⁸Li can be produced via the ¹¹B(n,α)⁸Li reaction.

The ⁹Be(n,2n)⁸Be reaction is very useful since it moderates and multiplies the incoming neutrons. As one can see fast neutrons with an energy above 4 MeV are required.

This is a problem especially for phase I where only 5.2 MeV deuterons are available.

Thus a primary target with a high Q-Value for (d,xn) reactions is required.

Also of interest is the angular distribution of the neutrons since only forward-headed neutrons reach the secondary target.

Cross-Section: ⁹Be(n,2n)⁸Be

Helper Reaction

Phase I : Fast Neutron yield

<u>Cutline</u>: (N/s): fast neutrons per second (40°: regarding d-beam); MP: melting point

Isotope	(N/s)	(N/s) under 40°	Nat. Ab.	Q-Val. (MeV) ,	MP. ($^{\circ}$ C)
⁷ Li	$8,37 \cdot 10^{12}$	$1,27 \cdot 10^{12}$	92,41	15,03	181
⁹ Be	$2,75 \cdot 10^{12}$	$4,89 \cdot 10^{11}$	100	4,36	1287
¹¹ B	$2,08 \cdot 10^{12}$	$3,44 \cdot 10^{11}$	80,1	13,73	2075
$^{13}\mathrm{C}$	$1,45\cdot 10^{12}$	$2,78 \cdot 10^{11}$	$1,\!07$	5,32	4489
⁷ LiF	$4,00\cdot 10^{12}$	$6,29\cdot 10^{11}$	-	_	848
¹¹ BN	$1,24 \cdot 10^{12}$	$2, 12 \cdot 10^{11}$	-	-	2967

The neutron yield was calculated using TALYS⁴.

⁷Li has the highest yield however the low melting point makes it unsuitable as a solid target, a liquid jet target could be used. Among the suitable materials for a solid target are LiF, ⁹Be and BN. In all cases sufficient cooling is required.

This is a blueprint of the solid LiF target which is to be tested. Vapor deposited on the copper is a thin LiF layer. The target is cooled by pressured water flowing through micro-channels perpendicular to the beam direction.

Using MCNP4b the yield of Phase II (40 MeV) is calculated for a BeO and BN (porous, for better extractability) secondary target with a primary target made of ⁷Li. The high yields are extremely promising provided an efficient extraction can be realized. SPIRAL2 is a similar facility in Ganil, France but with a primary carbon target.

Expected Yields for a BeO target: SARAF (40 MeV, 2 mA): 8·10¹² [⁶He/sec] SPIRAL2 (40 MeV, 5 mA): 2·10¹³ [⁶He/sec] Expected Yields for a BN target: SARAF (40 MeV, 2 mA): 2·10¹² [⁸Li/sec]

Hass et al., J. Phys. G: Nucl. Part. Phys., 35, 014042 (2008).

Magnitude of 10¹³ ⁶He/s!

<u>Upcoming</u>

-Production and extraction measurements in the 5.2 MeV Phase.

1)Soreq NRC, Yavne, Israel; 2)Weizmann Institute of Science, Rehovot, Israel; 3) RWTH Aachen University, Germany; 4) http://www.talys.eu/