Odei Rey Orozco MPE-PE Section meeting

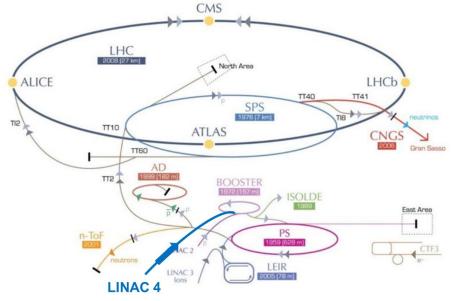
Acknowledgements: A. Apollonio, J. Uythoven, Linac4 team

Outline

Linac4 at CERN

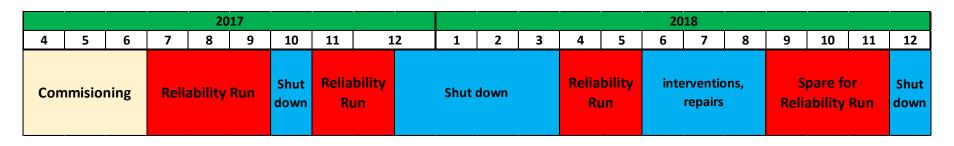
- □ Linac4 Reliability Run
 - Fault tracking
 - Performance
- Modelling vs Reliability Run
- Summary and Outlook

Linac4 at CERN

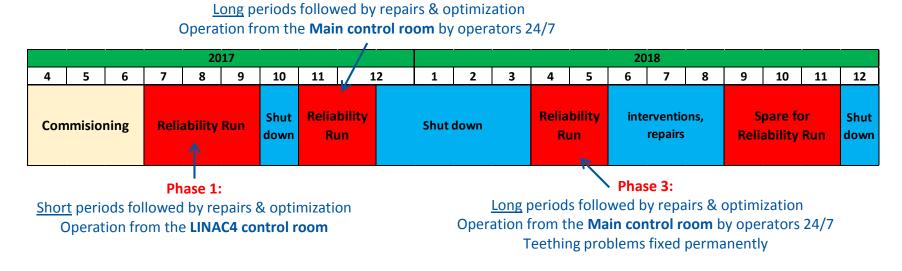


Linac4 at CERN

4	5keV		3MeV	50Me	V 100	MeV 16	0MeV
H ⁻ Source	LEBT	RFQ .	MEBT	DTL			Transfer Line
	Low Energy Beam Transfer	Radio- Frequency Quadrupol	Dearn	Drift Tube Linac	Coupled Cell Drift Tube Linac	Pi Mode Structure	


- Linac4 will replace Linac2 in the CERN Injector complex from 2020 (after LS2)
- Availability-critical accelerator: target > 95% availability
- Linac4 will provide beam for LHC and other accelerators
- Linac4 "pure" commissioning ended before the start of the Reliability Run
- Until now, Linac4 running at half the nominal current

LINAC 4 PARAMETERS				
lon species	Н-			
Output energy	160 MeV			
Bunch frequency	352.2 MHz			
Max. reprate	2 Hz			
Beam pulse length	400 us			
Source current	80mA			
RFQ output current	70mA			
Linac current	40mA			
Beam power	5.1kW			
Linac transverse emittance	0.4 pi mm*mrad			



Goals

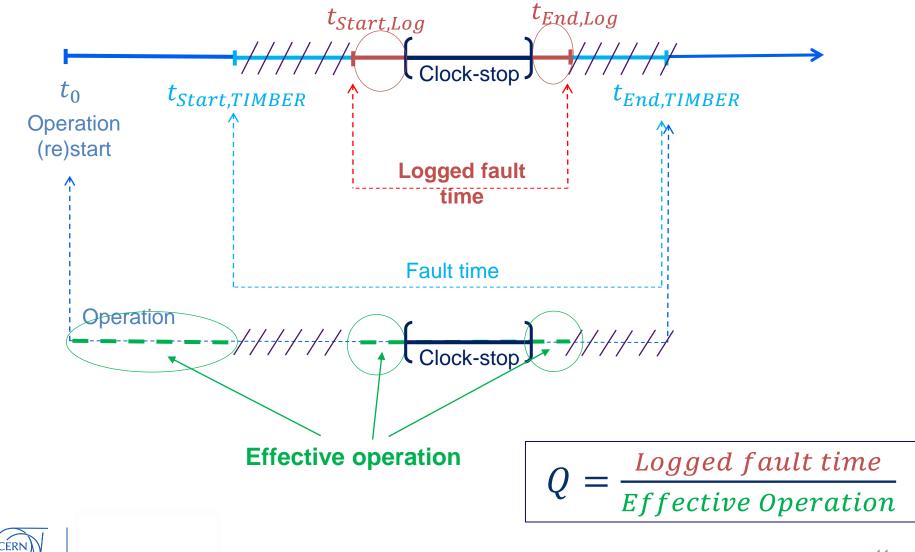
- Ensure a smooth transition from commissioning to operation Train operators, necessary software development
- Find any weak point and improve them in time for final operation
- Achieve a **beam availability above 90%** Importance of the Accelerator Fault Tracking system Verify Linac4 availability modelling
- Derive lessons for the MYRTE project

Phase 2:

- Operational without major problems for over <u>15 weeks</u> in total [17-07-2017, 15-05-2018] Achieved beam availability > **91%** of the operating time (spec. 95%)
- Experts contact and intervention only during working hours Night and weekend shifts not considered
- Registration of the faults with the *Accelerator Fault Tracker*** Working well, team motivated for tracking the faults
- Restart of the Reliability Run foreseen for mid-September 2018

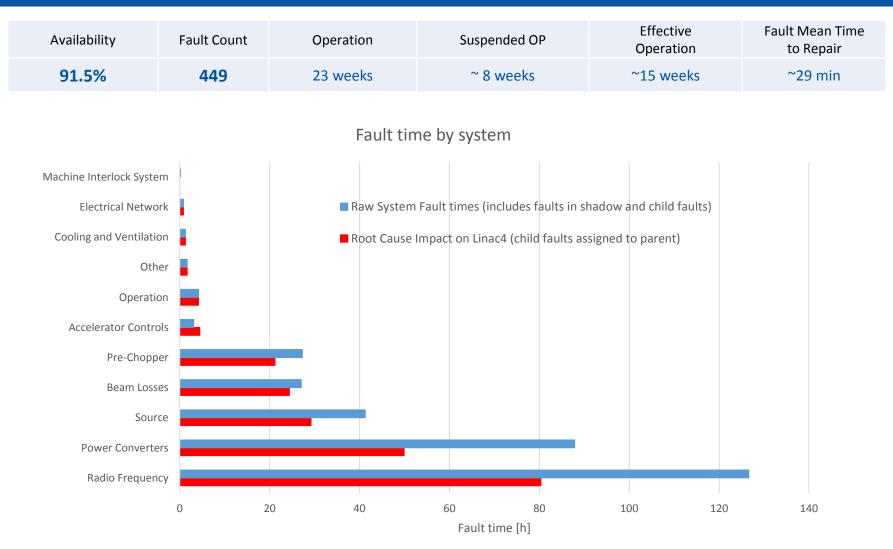
Linac4 Fault Tracking

Linac4 Fault tracking

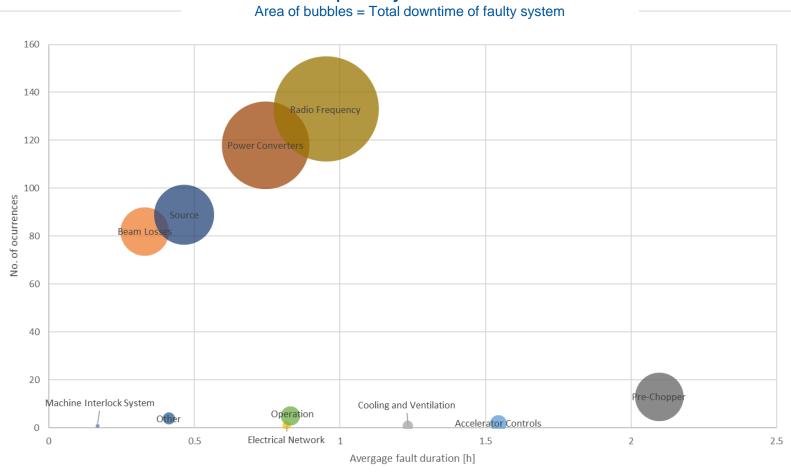

- Registration of the faults with the *Accelerator Fault Tracker*
- Predefined **Fault Tree** to classify the faults
- Linac4 fault classification = Faults in the Linac4 availability model
- Weekly follow-up and analysis of the faults, logbook and alarm system verification
- Need to **exclude clock-off times** (weekend shifts, MD, etc.) → custom-made code for fault analysis
- From September, feature to exclude clock-off times implemented in AFT

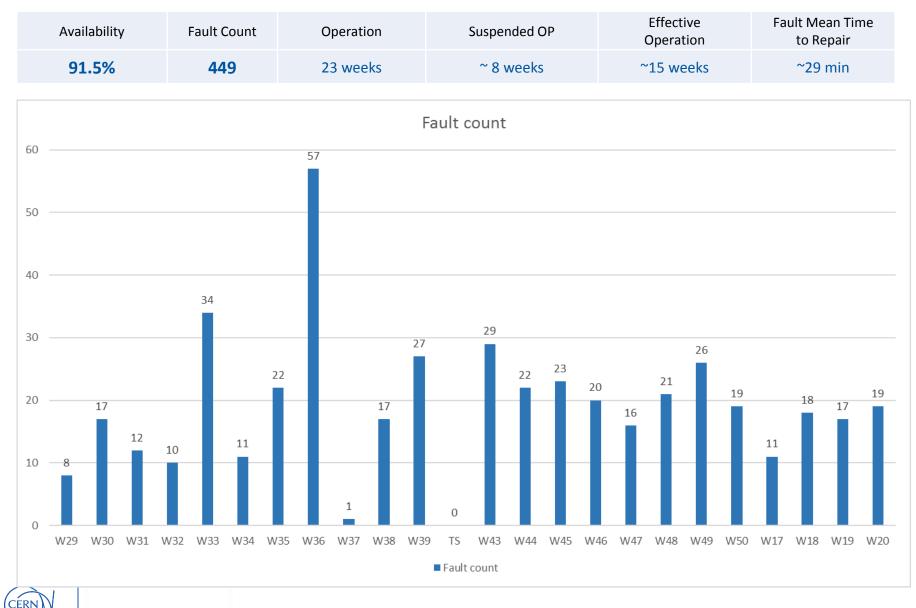
Linac4 Fault tracking

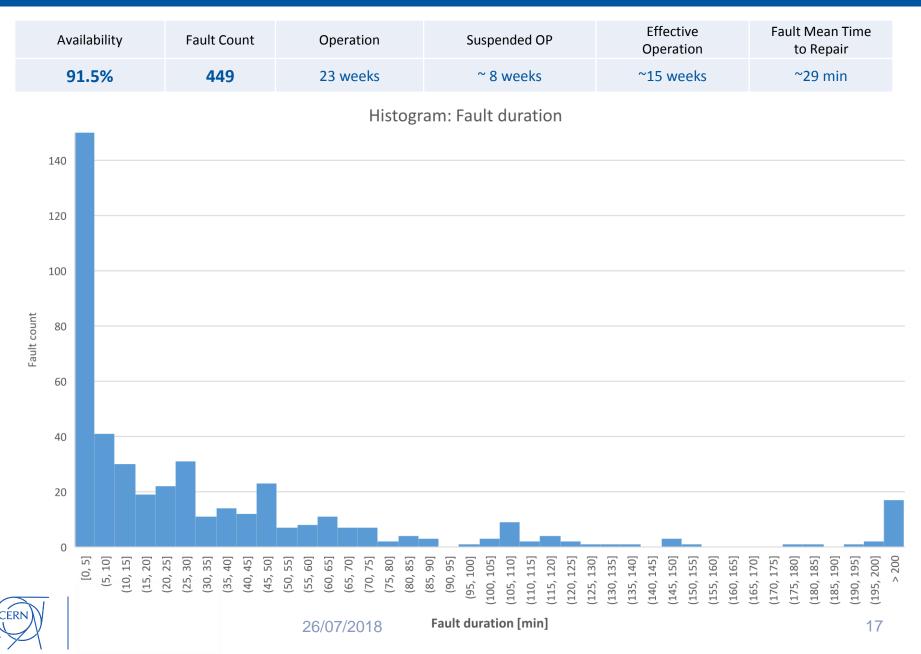
Linac4 Fault tracking



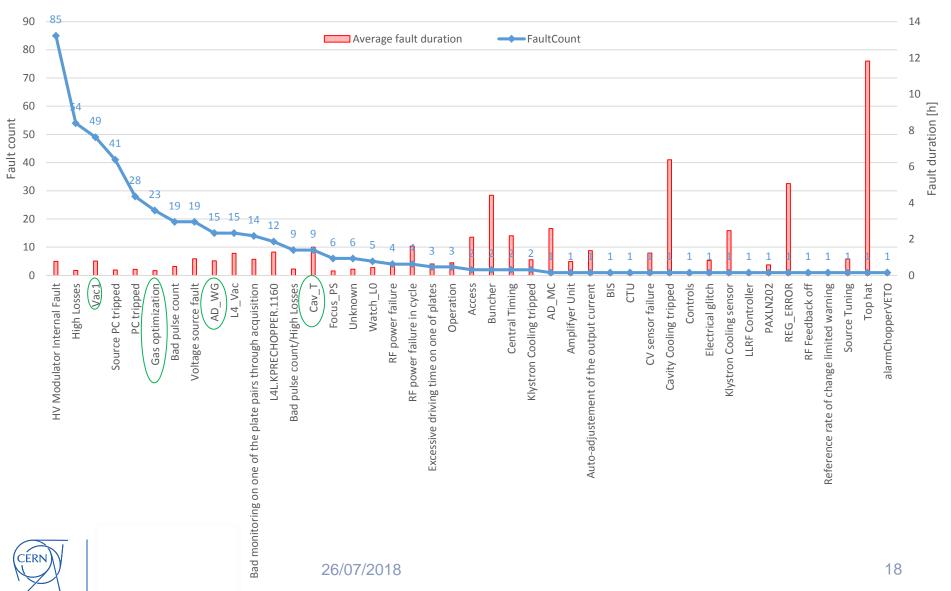
Linac4 performance during the Reliability Run





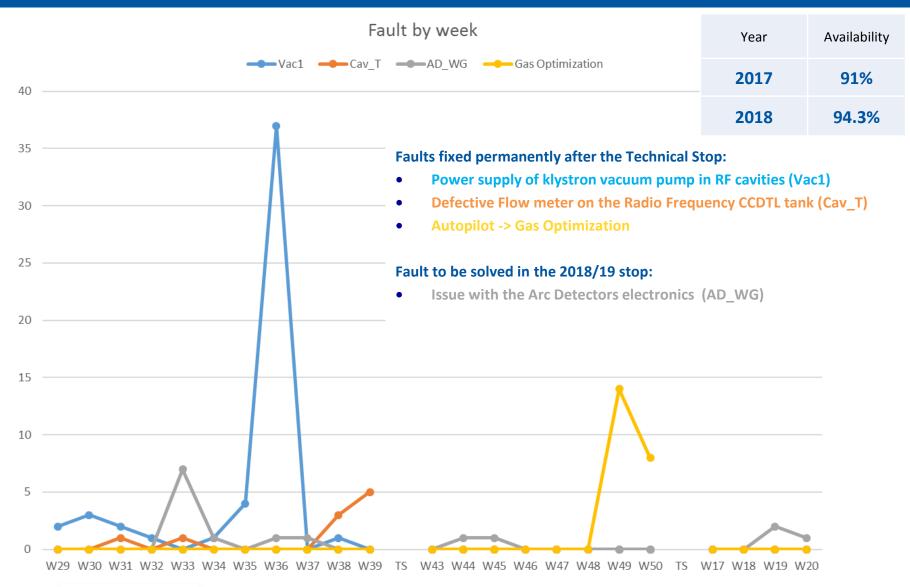

Availability	Fault Count	Operation	Suspended OP	Effective Operation	Fault Mean Time to Repair
91.5%	449	23 weeks	~ 8 weeks	~15 weeks	~29 min

Fault frequency vs fault duration



CERN

Fault count/ average duration per fault type


Observations

- Teething problems identified -> Strategies for mitigation implemented before Phase 3 (2018) Radio Frequency Systems:
 - Arc Detectors (AD_WG, to be fixed after the TS 2018)
 - <u>Power supply of klystron vacuum pump in RF cavities (Vac1)</u>
 - Defective flow meter of a CCDTL tank (Cav_T)

Pre-Chopper: feedthrough to vacuum exchanged twice

- Recurrent and long faults: RF Modulators, Power Converters, Pre-Chopper, Source <u>Strategy</u>: accept increased downtime in favour of understanding and finding the root cause
 - Power Converters: HV modulator Internal fault-> found aluminium chips in insulator oil for old LEP klystrons -> Systematic cleaning considered
 - Possible redesign of the Pre-Chopper feedthrough to vacuum
- Identification of areas that need strengthening
 - Clearer procedures for the Source
 - <u>Autopilot (Gas optimization</u>): Automatic regulation of the source parameters that can end up compromising the beam transmission in the LES
 - For the coming RR, Autopilot will be OFF -> the faults should not appear. In the future, the application will be optimised

Linac4 RR data → Model Input

	OP / Fault count	OP / Fault count* (without child faults)	Raw DT /Fault count	Root DT /Fault count
System	MTTF data set 1 [h]	MTTF data set 2* [h]	MTTR data set 1[h]	MTTR data set 2** [h]
Accelerator Controls	1289.61	1289.61	1.54	1.54
Access Management	859.74	859.74	3.62	3.62
Beam Losses	31.45	34.39	0.33	0.30
Cooling and Ventilation	2579.2	2579.21	1.23	1.23
Electrical Network	2579.21	2579.21	0.82	0.812
Machine Interlock System	2579.21	2579.21	0.17	0.17
Operation	515.84	515.84	0.83	0.83
Other	644.80	644.80	0.41	0.41
Power Converters	21.86	31.84	0.74	0.43
Pre-Chopper	198.40	198.40	2.1	1.57
Radio Frequency	19.39	19.84	0.95	0.60
Source	28.98	32.24	0.46	0.32

Results – no parallel faults simulated

	Availability	Fault Count	Downtime [h]	Fault Mean Time to Repair
Linac4 RR	91.2%	452 (396*)	226.7	~35 min
Linac4 model [set 1-1]	88.6%	399	294.3	~ 45 min
Linac4 model [set 2-1]	89.7%	356	264.7	~ 45 min
Linac4 model (set 1-2)	91.9%	415	207.7	~30 min
Linac4 model (set 2-2)	92.7%	367	187.8	~30 min

Results – no parallel faults simulated

	Availability	Fault Count	Downtime [h]	Fault Mean Time to Repair
Linac4 RR	91.2%	452 (396*)	226.7	~35 min
Linac4 model [set 1-1]	88.6%	399	294.3	~ 45 min
Linac4 model [set 2-1]	89.7%	356	264.7	~ 45 min
Linac4 model (set 1-2)	91.9%	415	207.7	~30 min
Linac4 model (set 2-2)	92.7%	367	187.8	~30 min

	Set 1	Set 2
MTTF	OP / Fault count	OP / Fault count* (without child faults)
MTTR	Raw DT/Fault count	Root DT / Fault count

Less failures simulated:

- No parallel faults -> Faults with lower MTTF ignored during off time

- No parent-child relation considered -> Lower MTTF considered

Less failures but higher repair, why?

Results – no parallel faults simulated

	Availability	Fault Count	Downtime [h]	Fault Mean Time to Repair
Linac4 RR	91.2%	452 (396*)	226.7	~35 min
Linac4 model [set 1-1]	88.6%	399	294.3	~ 45 min
Linac4 model [set 2-1]	89.7%	356	264.7	~ 45 min
Linac4 model (set 1-2)	91.9%	415	207.7	~30 min
Linac4 model (set 2-2)	92.7%	367	187.8	~30 min

	Set 1	Set 2
MTTF	OP / Fault count	OP / Fault count* (without child faults)
MTTR	Raw DT/Fault count	Root DT / Fault count

Less component failures simulated

- No parallel faults-> Faults with lower MTTF ignored during off time

Less failures but higher repair, why?

Results – no parallel faults simulated

	Availability	Fault Count	Downtime [h]	Fault Mean Time to Repair
Linac4 RR	91.2%	452 (396*)	226.7	~35 min
Linac4 model [set 1-1]	88.6%	399	294.3	~ 45 min
Linac4 model [set 2-1]	89.7%	356	264.7	~ 45 min
Linac4 model (set 1-2)	91.9%	415	207.7	~30 min
Linac4 model (set 2-2)	92.7%	367	187.8	~30 min

	Set 1	Set 2
MTTF	OP / Fault count	OP / Fault count* (without child faults)
MTTR	Raw DT/Fault count	Root DT / Fault count

Less component failures simulated:

- No parallel faults -> Faults with lower MTTF ignored during off time

- No parent-child relation considered -> Lower MTTF considered

More failures but lower repair time

Results – no parallel faults simulated

	Availability	Fault Count	Downtime [h]	Fault Mean Time to Repair
Linac4 RR	91.2%	452 (396*)	226.7	~35 min
Linac4 model [set 1-1]	88.6%	399	294.3	~ 45 min
Linac4 model [set 2-1]	89.7%	356	264.7	~ 45 min
Linac4 model (set 1-2)	91.9%	415	207.7	~30 min
Linac4 model (set 2-2)	92.7%	367	187.8	~30 min

	Set 1	Set 2
MTTF	OP / Fault count	OP / Fault count* (without child faults)
MTTR	Raw DT/Fault count	Root DT / Fault count

Less component failures simulated:

- No parallel faults -> Faults with lower MTTF ignored during off time

Summary and Outlook

Summary and Outlook

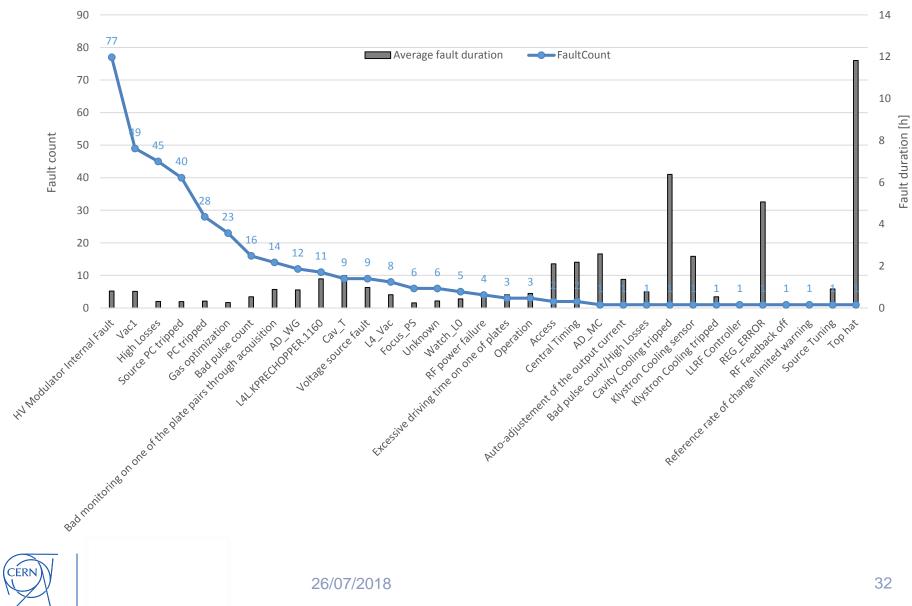
• LINAC4 Reliability Run

Successful experience, identification of issues beyond the possibilities during commissioning

Achieved beam availability >91% of the operating time (91% in 2017, 94.3% in 2018) Lessons learnt:

- Accept increased downtime in favour of understanding and finding the root cause
- Systematic cleaning considered of HV modulator
- Possible redesign of the Pre-Chopper feedthrough to vacuum
- Clearer procedures for the Source are needed
- The Accelerator Fault Tracking is working well (clock-off time to be tested) People motivated, weekly reviews of faults Clean inconsistencies between logbook and AFT
- Detailed availability modelling LINAC4 done
 Simulations showed realistic predictions
 Synchronisation of failure catalogue and Fault Tracking

Thanks for your attention!



Back-up slides

Linac4 Availability

2017 Fault count/ average duration per fault type

Linac4 Availability

1.2 12 10 1 10 9 8 8 0.8 8 Fault duration [h] 7 Fault count 0.6 6 0.4 4 3 3 0.2 2 1 1 1 1 1 1 1 1 1 1 1 Bad nontrome on one of the plate pairs through actustion 0 0 LA. KRECHOPPER. 160 Excessive driving time on one of plates HV Modulator Internal Fault Votage source failt Source PC tripped FOCUS HighLosses Unknown Operation 1301 14,130 Access CERN 26/07/2018

2018 Fault count/ average duration per fault type