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Rationale

• 20+ Tesla dipoles for future high-energy particle accelerators

• Simulation of the electrodynamics in HTS tapes and cables (then magnets, and circuits)

■ Copper

■ ReBCO

■Substrate

𝐉eddy

𝐉s

~mm

~μm

2) HTS resistivity

Nonlinear, field dependent, anisotropic

σSC
−1 =

Ec

Jc(B)

J

Jc(B)

n−1

3) Current sharing regime

Req

Rsc

Ieq

Isc

Is

1) Multiscale model

4) Complex cable geometry

An ideal numerical formulation should be

accurate, robust, computationally fast
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Last Time…

HTS Layer

Canonical 

T − ψ

A − V

H

T − A

Hybrid

H − A

2-D Explicit 1-D Thin Strip2-D Homogenized

T − ψ

A − V

H

T − A

H − A

T − ψ

A − V

H

T − A

H − A

Unstable

Expensive

𝜕𝑦Jz

𝜕𝑦Jz 𝑓(mesh)

Unstable

Not available

Link

https://indico.cern.ch/event/699953/contributions/3034021/attachments/1667849/2674492/180614_HTSOutlook_LB.pdf
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…Some Steps Forward

HTS Layer

Canonical 

T − ψ

A − V

H

T − A

Hybrid

𝐇− A

2-D Explicit 1-D Thin Strip2-D Homogenized

T − ψ

A − V

H

T − A

𝐇 − A

T − ψ

A − V

H

T − A

𝐇 − A

TopologyTopologyTopology

Not availableExpensive 𝜕𝑦Jz 𝑓(mesh)

• A unstable 

• H expensive

• ψ complex for nontrvial geometries

→ One does not simply choose a T-A hybrid form (Semicit.)
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Hybridisation via Domain decomposition

HTS Layer 1-D Thin Strip T − A

𝐧

Ωnc

Γnc

Ωc

Γc

𝐧Γnc,c

Domains Ωnc , Ωc ∈ ℝ3,
• Ωnc ∶ σ = 0 (e.g. iron yoke)

• Ωc ∶ μ = μ0 (e.g. magnet coil)

Boundaries Γnc, Γc ∈ ℝ2

Interface Γnc,c ∈ ℝ2

The following approach might answer the simulation needs:

Domain decomposition:

A-form

T-form

Interface

Hybrid form:
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01 - Fundamentals



T-A Form in a Nutshell
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Maxwell Equations

• Magnetoquasistatic Hypothesis

• Uniqueness of Solution

Vector Potentials

• Helmholtz decomposition (curl + divergence)

• Interface conditions

• Gauge fixing 

Reformulation of Maxwell equations in terms of current (T) and magnetic (A) vector potentials.

What is needed:

Discretization technique

• Finite Element Method 

Numerical solver

• Galerkin Method (Weighted residuals)

.. and, of course, a volunteer sorcerer



Maxwell Equations

In vacuum (*):

𝛻 × 𝐄 = −𝜕t𝐁
𝛻 × 𝐁 = μ0𝐉 + μ0ε0𝜕t𝐄
𝛻 ∙ 𝐄 = ρε0

−1

𝛻 ∙ 𝐁 = 0
+ material laws  𝐁 = μ0𝐇, 𝐃 = ε0𝐄, 𝐉 = σ𝐄

Symbols:

𝐄,𝐃 electric field strength / density

𝐇,𝐁 magnetic field strength / density

ρ, 𝐉 electric charge / current density

μ0 vacuum magnetic permeability 

ε0 vacuum electric permittivity 

σ electric conductivity

Features:

• 4 independent variables (x, y, z, t)
• 2 equations (Faraday, Ampere-Maxwell) in 6 unknowns Bx,y,z Ex,y,z
• 2 time-boundary conditions (Gauss laws)

• known field sources (𝐉, ρ)

Solution for 𝐉 = 𝟎, ρ = 0

(*) The vacuum hypothesis makes the equations linear and elegant. 

Relaxing it would make the math more complex, without adding any new concept.
5
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Magnetoquasistatic Hypothesis

• Dimensional analysis for arbitrary vector field F

F = f ∙ ℱ
𝛻F ≈ F/ℓ
𝜕tF ≈ F/τ

f, ℱ reference quantity / non dimensional vector

ℓ, τ characteristic spatial dimension / time constant

c = (εμ)−1/2 speed of light

• Ampere-Maxwell Law: J = Jf + Jd (free and displacement currents). One can obtain [1]:

Hd

Hf
≈

ℓ

τc

2
,

Jd

Jf
≈

ε

τσ

• If, compared to the dynamics of the device

• τ ≫ ℓ/c “instantaneous” light propagation 

• τ ≫ ε/σ “instantaneous” charge relaxation 

Then Jd = 𝜕t𝐃 ≈ 0
(Always true for small, conductive devices at power frequencies)

[1] Le Bellac, M, et al.. "Galilean electromagnetism." Il Nuovo Cimento B (1971-1996).



Domain Ω ∈ ℝ3 with Γ as contour

Poynting vector:             𝐏 = 𝐄 × 𝐇
Conservation of energy: 𝛻 ∙ 𝐏 = −𝐄 ∙ 𝜕t𝐃 − 𝐇 ∙ 𝛛𝐭𝐁 − 𝐄 ∙ 𝐉

Uniqueness Theorem, using the properties of 𝐏 (e.g. [1]): 

𝐄, 𝐁 unique on Ω if

• 𝐄0, 𝐁0 known on Ω at t = t0
• 𝐄 × 𝐧 OR 𝐇 × 𝐧 known on Γ, ∀t

Two boundary conditions (BC) of practical importance, PEW and PMW
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Uniqueness of Solution

Ω

𝐧
Γ

σ = ∞

Γ

Ω

𝐧
𝐁

Perfect Electric Wall 

σ = ∞
𝐄 × 𝐧 =0

(𝐁 ∙ 𝐧 =0)

μ = ∞

Γ

Ω

𝐧

𝐁

Perfect Magnetic Wall 

μ = ∞
𝐇 × 𝐧 =0

(𝐁 × 𝐧 =0)

[1] Jones, D. S. The theory of electromagnetism. Elsevier, 2013.



Domains Ω1, Ω2 ∈ ℝ3 with Γ1, Γ2 as contour and Γ1,2 as interface

Magnetic charge / current densities ignored (weakly related with the known universe)

• Gauss pillbox for flux conservation

(𝐁1 − 𝐁2) ∙ 𝐧 = 0
(𝐃1 − 𝐃2) ∙ 𝐧 = σq

• Amperian loop for potential conservation

𝐇1 − 𝐇2 × 𝐧 = 𝐊𝐬

𝐄1 − 𝐄2 × 𝐧 = 0
σq, 𝐊𝐬 surface electric charge / current density.

Interface conditions [1] (IC) must always hold true! 
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Interface conditions

𝐧

Ω1

Γ1

Ω2

Γ2

𝐧Γ1,2

Γ1,2
Ω1

Ω2

Gauss pillbox Amperian loop

[1] Vágó, I. "On the interface and boundary conditions of electromagnetic fields." Periodica Polytechnica Electrical Engineering (1994).



• If F ∈ ℝ3 well-behaving field (sufficiently smooth, rapidly decaying at 𝐫 → ∞) then [1] :

𝐅 = 𝐅T + 𝐅L
𝐅T curling, non diverging  (i.e. 𝛻 ∙ 𝐅T = 0)

𝐅L diverging, non curling  (i.e. 𝛻 × 𝐅L = 0)

• Vice-versa, given a scalar field ϕ ∈ ℝ3and a solenoidal vector field 𝐀 ∈ ℝ3, both well 

behaving, then it exists a field 𝐅 such that 

𝛻 ∙ 𝐅 = ϕ, 𝛻 × 𝐅 = 𝐀
→ F determined by knowing its curl and divergence

• Curiosity: What if 𝛻 ∙ 𝐅 = 0, 𝛻 × 𝐅 = 0 ? 

𝛻 × 𝛻ϕ = 0 → 𝐅 = −𝛻ϕ
𝛻 ∙ −𝛻ϕ = 0 → 𝛻𝟐ϕ = 0

• Laplacian (relaxed) nature of the field 

• “Hidden” in both 𝐅T and 𝐅L, and determined only by BC.

• Caveat: A non-curling, non-diverging field can still contain energy!
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Helmholtz decomposition

[1] Arfken, G. B., et al. "Mathematical methods for physicists." (1999).



𝐁, 𝐄 fields fulfil Helmholtz criteria, rewritten as

𝐁 = 𝛻 × 𝐀B −𝛻ϕB − 𝜕t𝐀B
′

𝐄 = 𝛻 × 𝐀E −𝛻ϕE − 𝜕t𝐀E
′

Potentials gauging (fixing the “integration constants”):

• 6 new equations (traditionally 𝐀E = 0, 𝐀B = 𝐀E
′ )

• BC for ϕ on Γ, 𝛻 ∙ for 𝐀 on Ω
• (IC reformulated in terms of potentials)

Any gauge is fine! (though some are “numerically” better)

e.g. classic Coulomb gauge 𝛻 ∙ 𝐀B = 0, ϕB = 0

• Why potentials? (*)

• More variables, equations, conditions

• IC: B,D tangent and H,E normal are discontinuous.

• potentials continuous, discontinuities embedded in their derivative
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Potentials – Gauge invariance

xy

z

potential

field

(*) Broadly speaking, potentials are a consequence of the way we interpret the universe. See for example the excellent article:

Hammond, Percy. "The role of the potentials in electromagnetism." COMPEL (1999).

Invariance to: 

• z coordinate

• axial rotations of 𝜋/2

Example:



Fundamental lemma of calculus of variations [1] (variational formulation): 

f = 0 generic field equation (e.g. Laplacian)

w weighting (test) function: continuous, vanishing at infinity
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Discretization Technique

f = 0 ⇔ න f ∙ w dΩ = 0 ∀w ∈ C0(ℝ)

[1] Jost, Jurgen, Jürgen Jost, and Xianqing Li-Jost. Calculus of variations. Vol. 64. Cambridge University Press, 1998.

[2] Sayas, Francisco-Javier. "A gentle introduction to the Finite Element Method." Lecture notes, University of Delaware (2008).

FEM approach (e.g.[2]):

1. f ≈ F ∙ Ne

2. w = Ne → Galerkin method

3. We solve (F ∙ Ne) ∙ Ne dΩ = R

(R=residual) looking for Rmin

4. Discretization (equations assembled per node)

5. Algebraic problem [Ne] ∙ F = 0
6. Numerical solver (Newton-Raphson)

N.B.

If ΩNe
→ 0, then  F ∙ Ne → f

basis function 

overlap Ne,𝑗
Ne,𝑖

Source: COMSOL blog
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02 - Hybrid T-A field formulation
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Domain decomposition

𝐧

Ωnc

Γnc

Ωc

Γc

𝐧Γnc,c
Domains Ωnc , Ωc ∈ ℝ3, Ωnc ∶ σ = 0, Ωc ∶ μ = μ0
Γnc, Γc as contour and Γnc,c as interface

• Equations on Ωnc

ρ = 0, 𝐉 = 𝟎 (no sources)

𝐁 = 𝛻 × 𝐀 (magnetic vector potential)

𝐄 = −𝜕t𝐀 (Faraday law)

𝛻 ∙ 𝐀B = 0, ϕB = 0 + ϕE = 0 (radiation gauge [1]) (*)

𝛻 × μ−1𝛻 × 𝐀 = 𝟎 on Ωnc

𝐀 × 𝐧 = 0 on Γnc

• Equations on Ωc

H= 𝐓− 𝛻ψ (ψ is the magnetic scalar potential [2]) 

𝛻 × 𝐓 = 𝐉 (electric vector potential [3])

𝛻 ∙ 𝐓 = 𝛻2ψ (Gauss law)

𝛻 × σ−1𝛻 × 𝐓 = −μ0𝜕t(𝐓− 𝛻ψ) on Ωc

ψ = f(x, y, z, t) on Γnc

[1] Arfken, G. B., et al. "Mathematical methods for physicists." (1999).

[2] Biro, O., et al. "On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents." IEEE Trans Mag (1989).

[3] Carpenter, C. J. "Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power 

frequencies." Proceedings of the Institution of Electrical Engineers. 1977.

(*) Unclear naming, among the others: Coulomb-Weyl, Coulomb-Hamilton. Coulomb-Gibbs, Coulomb-temporal
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Thin Strip approximation

Ωc → Γc ∈ ℝ2, 𝐉 ∙ 𝐧 = 𝟎, J ∈ ℝ2

ψ =0 on Γnc (gauge choice, ψ on a surface)

𝐓 as stream function, 𝐓 = T 𝐧 :

𝛻 × 𝐓 = 𝛻 × T 𝐧 = T 𝛻 × 𝐧 + 𝛻T × 𝐧
but 𝛻 × 𝐧 = 0 (true for any surface unit normal vector)
hence 𝛻 × 𝐓 = 𝛻T × 𝐧 (*)

• Equations for Γc
𝛻 × σ−1(𝛻T × 𝐧) = −μ0𝜕t(T 𝐧)
𝛻 × 𝐓 = 𝐉
𝛻 ∙ 𝐓 = 0 remember Helmholtz, well posed field

• IC on Γnc,c
Formulations “welded” via the continuity of 𝐁 ∙ 𝐧 and 𝐄 × 𝐧, in terms of T and A

μ0𝜕tT 𝐧 = 𝜕t 𝐁 ∙ 𝐧 𝐧 = 𝜕t(𝛻 × 𝐀 ∙ 𝐧)𝐧
σ−1 𝛻T × 𝐧 = 𝐄 × 𝐧 = −𝜕t𝐀 × 𝐧

Ωc

Γc

𝐧
𝐧 𝐭

Γc

(*) Carpenter (1977) relied on 𝛻 × 𝐓.

Rodger (1988) introduced 𝜕t(𝛻T × 𝐧), where 𝜕t brings symmetry to the weak form.

Biro (1992) used 𝜕t 𝛻 × T 𝐧 , a hybrid version of Carpenter- Rodger

Zhang (2017) followed Carpenter with 𝛻 × 𝐓, but he claimed no IC are needed in his approach.
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External Source: Current Excitation

Ωc → Γc ∈ ℝ2, 𝐉 ∙ 𝐧 = 𝟎, 𝐉 ∈ ℝ2

External current excitation is. One can show that [1]:

is =  𝐉 ∙ 𝐳 dΩc

= 𝛻 × 𝐓 ∙ 𝐳 dΩc (Stokes)

= 𝐓 ∙ 𝐭 dΓc
= (T𝐧) ∙ 𝐭 dΓc (stream function)

Now, T𝐧 ∙ 𝐭 = 0 ∀ point, except edges

(T𝐧) ∙ 𝐭 dΓc = h(T1 − T2)

Two Dirichlet conditions per tape:

T1 = 𝛼, 𝛼 ∈ ℝ
T2 = is/h − T1

Stokes + thin strip allows to

Surface integral → two scalar, linear equations

Γc

𝐧 𝐭

T𝐧

Γc

T1

T2

𝐧 𝐭

h

[1] Carpenter, C. J. "Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power 

frequencies." Proceedings of the Institution of Electrical Engineers. 1977.

𝐳
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To Sum Up…

Hybrid T-A form – Thin Strip Approximation

Ωc → Γc ∈ ℝ2, 𝐉 ∙ 𝐧 = 𝟎, 𝐉 ∈ ℝ2

• Equations on Ωnc

𝛻 × μ−1𝛻 × 𝐀 = 𝟎
𝐀 × 𝐧 = 𝟎 on Γnc (PEW)

with gauge

𝛻 ∙ 𝐀 = 0, ϕ = 0

• Equations on Γc
𝛻 × σ−1(𝛻T × 𝐧) = −μ0𝜕tT 𝐧
with gauge

𝛻 ∙ 𝐓 = 0, ψ = 0

• Equations on interface Γnc,c
μ0𝜕tT 𝐧 = 𝜕t(𝛻 × 𝐀 ∙ 𝐧) 𝐧
𝛻T × 𝐧 = −σ𝜕t𝐀 × 𝐧

• External source 

isource = h(T1 − T2)

𝐧Ωnc

Γnc

T1

T2

𝐧 𝐭

Ωsc ≡ Γc ≡ Γnc,c

Compatible with the STEAM co-sim framework [1]:

• Current-driven, via isource
• Flux linkage as φ(𝐀)

[1] Garcia, Idoia Cortes, et al. "Optimized field/circuit coupling for the simulation of quenches in superconducting magnets." IEEE Journal on 

Multiscale and Multiphysics Computational Techniques 2 (2017): 97-104.
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03 – Numerical Implementation
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Formulation in 2D 

The general T-A form is characterized for a 2D domain

Local reference frame (ω, η) on Γc → T: T(ω)

Faraday law:  

𝛻 × σ−1 𝛻T × 𝛈 = −μ0𝜕tT 𝛈

Vector calculus identity:

𝛻 × 𝐅 × 𝐆 = 𝐅 𝛻 ∙ 𝐆 − 𝐆 𝛻 ∙ 𝐅 + 𝐆 ∙ 𝛻 𝐅 − 𝐅 ∙ 𝛻 𝐆

Faraday law, left hand part:

σ−1𝛻T 𝛻 ∙ 𝛈 − 𝛈 𝛻 ∙ σ−1𝛻T + 𝛈 ∙ 𝛻 σ−1𝛻T − σ−1𝛻T ∙ 𝛻 𝛈

1) 𝛻 ∙ 𝛈 = 0 true for any surface unit normal vector
2) 𝛈 ∙ 𝛻 σ−1𝛻T = 0 T ≠ T(η)
4) σ−1𝛻T ∙ 𝛻 𝛈 = 0 𝛈 ≠ 𝛈(ω)

−𝛈 𝛻 ∙ σ−1𝛻T = −μ0𝜕tT 𝛈
Elliptic partial differential equation of type 𝛻 ∙ α𝛻u = f

The weak form is easily implementable in a numerical solver

Γc

𝛈 𝛚
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Validation

Active community in the field of HTS modeling

Reference models are available. Here, Link is used for crosscheck

• Single HTS tape in self-field

• Source: Is = I0sin(2πt), I0 = 0.5Icrit t ∈ [0; 1]
• 2𝑒3 unknowns, simulation time 9 s

•
𝑱

𝐽crit

0 1
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

(m
W

/m
)

(s)

Ohmic losses

Ref

T-A

http://www.htsmodelling.com/?wpdmpro=original_64tapes_50a
http://www.htsmodelling.com/
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Scalability: H vs T-A Form

Forecasts on expected computational time ( Disclaimer: forecasts may not match reality!)

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1 10 100 1000 10000

h

tapes

Computational Time

T-A

H 1-n

H 0-n

H noJac 1-n

H noJac 0-n

1 tape

5 tapes

10 tapes

Same physics

Increased computational cost

(*) 1-n, 0-n: different mesh 

noJac: no Jacobian update

(*)

9 h

Results of qualitative analysis:

• H-form: well…

• T-A form: humm...
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Scalability: T-A Form Optimization

Optimization implemented on: 

1. Mesh - OptiMesh

2. Solver - PARDISO, ∆t opti, tol 1𝑒0

3. Formulation - Weak form b-PDE

0

1

2

3

OptiMesh PARDISO ∆t opti Tol 1e0 weak

Incremental Speed-up

0

5

10

15

20

25

30

Ref OptiMesh PARDISO ∆t opti Tol 1e0 weak

Cumulative Speed-up

0.0

0.0

0.1

1.0

10.0

100.0

1 10 100 1000 10000

h

tapes

Computational Time

T-A

T-A OPTI

× 15

0.5 h

Way better!
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Current Sharing in Tape

In HTS, the Stekly approximation [1] is no longer valid [2] (slow quench propagation):

Isc =
Rnc

Rsc(Isc) + Rnc
(Isc + Inc)

Inc =
Rsc(Isc)

Rsc(Isc) + Rnc
(Isc + Inc)

Is = Isc + Inc

Rsc Isc =
ℓsc

Ωsc

Ec

Jc

J

Jc

n−1
dΩ

[1] Z. Stekly, J. Zar et al., “Stable superconducting coils,” IEEE Trans.Nucl. Sci., vol. 12, no. 3, pp. 367–372, 1965.

[2] Van Nugteren, J. High temperature superconductor accelerator magnets. Diss. Twente U., Enschede, 2016.

Rnc • Stekly ≈ n = ∞
• nHTS ≈ 20

Isc

Inc

Icrit

Implicit equations →Algebraic constraints in the solver



28

Current Sharing in Roebel Cable

• Roebel cable (only 2 tapes represented in the network model)

Full transposition assumption:

• Req,t1 = Req,t2 = Req
• Leq,t1 = Leq,t2 = Leq

No current redistribution, (as Rc = +∞), conservative

Even distribution of Is between the tapes

Should be good for:

• Localized quenches (small normal zone, slow propagation velocity)

• Homogeneously distributed losses (e.g. quench-back)

Req,t1

Req,t2

𝑅c

Leq,t2

Leq,t1

Is =

𝑖=1

n

It𝑖

It𝑖 = Isc,𝑖 + Inc,𝑖

Any better ideas?
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Rationale (cont’d)

1) Multiscale model

• Domain decomposition 

• Thin strip approximation, model order reduction 

2) HTS resistivity

• T vector potential for conductive domains

3) Current sharing regime in tape

• Algebraic constraints in the solver

4) Complex geometries

• Full transposition assumption

• 20+ Tesla dipoles for future high-energy particle accelerators

• Simulation of the electrodynamics in HTS tapes and cables (then magnets, and circuits)

Main challenges
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04 – Applications
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Solenoid

Model features

• 2D - Axisymmetric

• 100 tapes, aspect ratio 1e4

• Jcrit,0 = 1e10 [Am−2]

• 20e3 unknowns

Magnetic flux density (T) Current density (p.u.) 

0 1

Is

t

Simulation time: 200 s

Is = I0 sin 2πt
I0 = 0.8Icrit
t ∈ [0; 1]



Model features

• 2D 

• 3 cables (27 tapes), aspect ratio 1e4

• Jcrit,0 = 1e10 [Am−2]

• 12e3 unknowns

32

Roebel cable

Magnetic flux density (T) Current density (p.u.) Current (p.u.) - tape 01

0 1

Is

t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Isc1 (A) Inc1 (A)

Simulation time: 120 s

Is = I0t
I0 = 1.5Icrit
t ∈ [0; 1]

Dashed: Stekly
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Hybrid T-A: Summary and Outlook

Formulation  

1. Field and interface equations

2. Thin line approximation

Implementation

1. ℝ2 domain

2. Current sharing regime

3. Applications (solenoids, Roebel cables)

What is next

• Rigorous mathematical assessment (e.g. de Rahm currents) 

• HTS material database

• Thermal equations 

• Crosscheck with other codes 

• 2D model of FRESCA2 + FEATHER2 insert

• FEM 2 LUMPED modeling, for circuital analysis

• Co-simulation interface

• Automatic model generation (SIGMA-HTS module)

• 3D modelling (equations are in place)

• … Thank you 

for your attention!

• Numerically stable               

• Computationally efficient    

• Reasonably simple
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Annex 01 – A form
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Domain decomposition

𝐧

Ωnc

Γnc

Ωc

Γc

𝐧Γnc,c
Domains Ωnc , Ωc ∈ ℝ3, Ωnc ∶ σ = 0, Ωc ∶ μ = μ0
Γnc, Γc as contour and Γnc,c as interface

𝐁 = 𝛻 × 𝐀 (magnetic vector potential)

𝐄 = −𝜕t𝐀 (Faraday law)

𝛻 ∙ 𝐀B = 0, ϕB = 0 + ϕE = 0 (radiation gauge)

• Equations on Ωnc

ρ = 0, 𝐉 = 𝟎 (no sources)

𝛻 × μ−1𝛻 × 𝐀 = 𝟎 on Ωnc

𝐀 × 𝐧 = 0 PEW on Γnc

• Equations on Ωc

ρ = 0, 𝐉 = σ𝐄
𝛻2𝐀 = μ0σ𝜕t𝐀 on Ωc

• Equations on interface Γnc,c
(𝛻 × 𝐀1 − 𝛻 × 𝑨2) ∙ 𝐧 = 0
𝜇1
−1𝛻 × 𝐀1 − 𝜇2

−1𝛻 × 𝐀2 × 𝐧 = 𝟎
𝜕t 𝐀1 − 𝐀2 × 𝐧 = 0
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A form – Thin Line Approximation

Ωc → Γc ∈ ℝ2, 𝐉 ∙ 𝐧 = 𝟎, 𝐉 ∈ ℝ2

• Equations on Ωnc

𝛻 × μ−1𝛻 × 𝐀 = 𝟎
𝐀 × 𝐧 = 𝟎 PEW on Γnc

• Equations on Γc
A= A𝐭
𝛻2(A𝐭) = μ0σ𝜕t(A𝐭) on Ωc

• Equations on interface Γnc,c
𝛻 × 𝐀1 − 𝛻 × 𝐀2 ∙ 𝐧 = 0
μ1
−1𝛻 × 𝐀1 − μ2

−1𝛻 × 𝐀2 × 𝐧 = hJ

𝜕t 𝐀1 − 𝐀2 × 𝐧 = 0

• Field source 

isource = hσ𝜕t(A𝐭) dΓc

𝐧Ωnc

Γnc

𝐧
𝐭

Ωsc ≡ Γc ≡ Γnc,c
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Annex 02 – H form
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Domain decomposition

𝐧

Ωnc

Γnc

Ωc

Γc

𝐧Γnc,c
Domains Ωnc , Ωc ∈ ℝ3, Ωnc ∶ σ = 0, Ωc ∶ μ = μ0
Γnc, Γc as contour and Γnc,c as interface

• Equations on Ωnc

ρ = 0, 𝐉 = 𝟎 (no sources)

𝛻 × σ𝛻 × 𝐇 − μ𝜕t𝐇 = 𝟎 on Ωnc

𝛻 ∙ μ𝐇 = 0 on Ωnc

𝐄 × 𝐧 = 0 PEW on Γnc
N.B. numerically, σ ≠ 0 ∀Ω

• Equations on Ωc

ρ = 0, 𝐉 = 𝛻 × 𝐇
𝛻 × σ𝛻 × 𝐇 − μ𝜕t𝐇 = 𝟎 on Ωc

𝛻 ∙ μ𝐇 = 0 on Ωc

• Equations on interface Γnc,c
(μ1𝐇1 − μ2𝐇2) ∙ 𝐧 = 0
𝐇1 − 𝐇2 × 𝐧 = hJ
σ1𝛻 × 𝐇1 − σ2𝛻 × 𝐇2 × 𝐧 = 0
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H form – Thin Line Approximation

Ωc → Γc ∈ ℝ2, 𝐉 ∙ 𝐧 = 0, 𝐉 ∈ ℝ2

• Equations on Ωnc

ρ = 0, 𝐉 = 𝟎 (no sources)

𝛻 × σ𝛻 × 𝐇 − μ𝜕t𝐇 = 𝟎 on Ωnc

𝛻 ∙ μ𝐇 = 0 on Ωnc

𝐄 × 𝐧 = 0 PEW on Γnc
N.B. numerically, σ ≠ 0 ∀Ω

• Equations on Γc
ρ = 0, 𝐉 = 𝛻 × 𝐇
𝛻 × σ𝛻 × 𝐇 − μ𝜕t𝐇 = 𝟎 on Γc
𝛻 ∙ μ𝐇 = 0 on Γc

• Interface Γnc,c
(μ1𝐇1 − μ2𝐇2) ∙ 𝐧 = 0
𝐇1 − 𝐇2 × 𝐧 = hJ
σ1𝛻 × 𝐇1 − σ2𝛻 × 𝐇2 × 𝐧 = 0

• Field source 

isource = 𝛻 × 𝐇 dΓc

Incompatible conditions:

on Γc, H cannot be both

divergence-free and discontinuous!

𝐧Ωnc

Γnc

𝐧
𝐭

Ωsc ≡ Γc ≡ Γnc,c
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Backup Slides
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■ Copper

■ ReBCO

■Substrate

Qhyst

Qeddy

Qpers

Qcc

𝑚th tape

𝑛th tape

Qhyst

Qcc

Qpers

Qeddy

■ Copper ■ ReBCO ■Substrate


