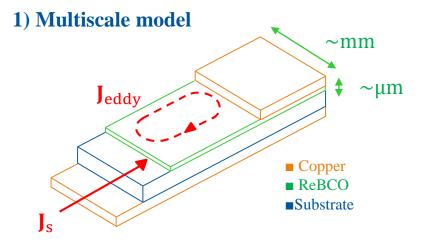
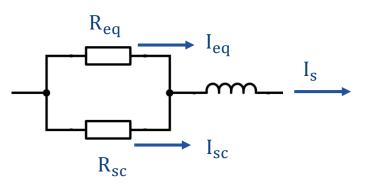


A Hybrid T-A Field Formulation for the Magnetoquasistatic Analysis of HTS Magnets

L. Bortot^{1,2}, M. Mentink¹, S. Schoeps², A. Verweij¹

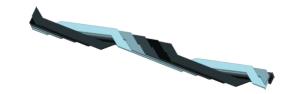

Bundesministerium für Bildung und Forschung

Special Thanks: B. Auchmann, F. Grilli (KIT), M. Maciejewski, M. Prioli, E. Ravaioli, J. Van Nugteren


This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 05E12CHA)

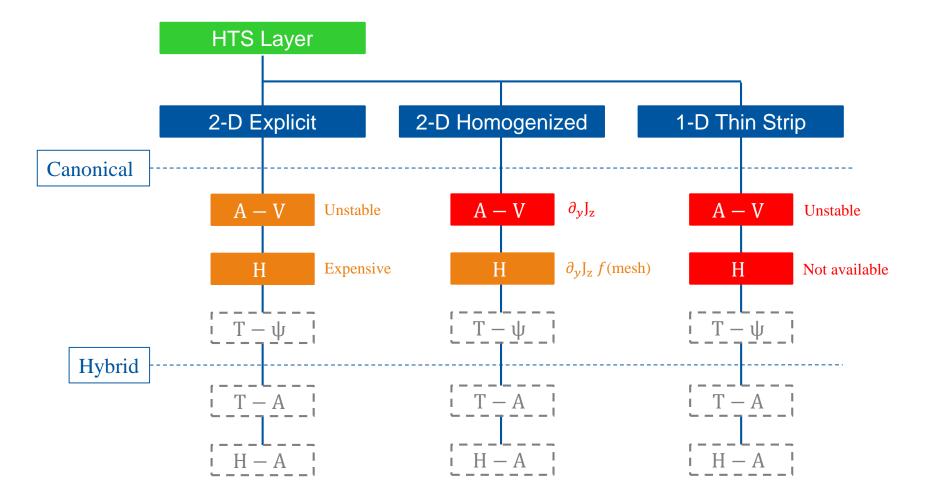
Rationale

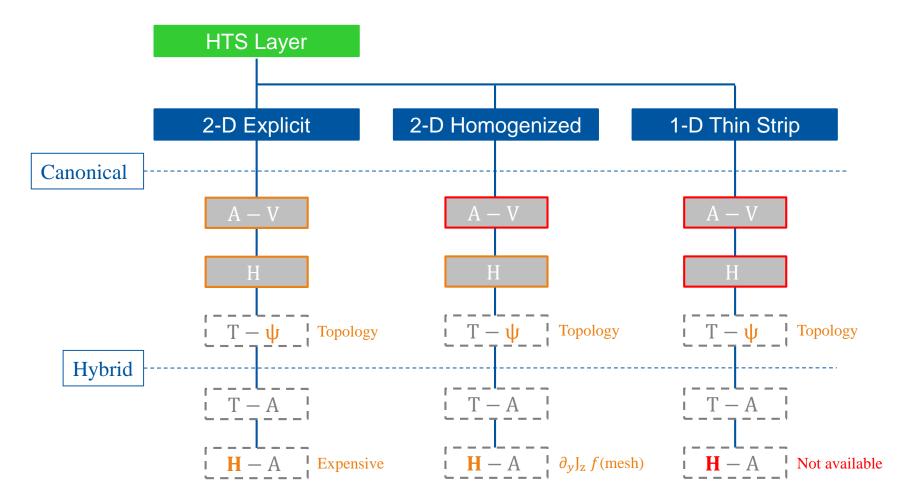
- 20+ Tesla dipoles for future high-energy particle accelerators
- Simulation of the electrodynamics in HTS tapes and cables (then magnets, and circuits)


3) Current sharing regime

2) HTS resistivity Nonlinear, field dependent, anisotropic

$$\sigma_{\text{SC}}^{-1} = \frac{E_{\text{c}}}{J_{\text{c}(\text{B})}} \left(\frac{J}{J_{\text{c}(\text{B})}}\right)^{n-1}$$

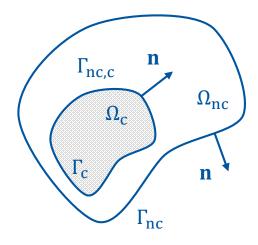

4) Complex cable geometry


An ideal numerical formulation should be accurate, robust, computationally fast

Last Time...Link

...Some Steps Forward

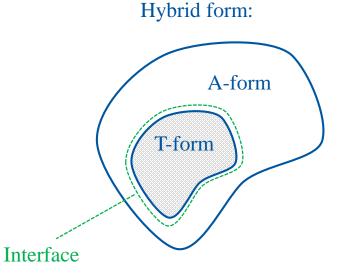
- A unstable
- H expensive
- ψ complex for nontrvial geometries
- \rightarrow One does not simply choose a T-A hybrid form (Semicit.)



Hybridisation via Domain decomposition

The following approach might answer the simulation needs:

Domain decomposition:



Domains Ω_{nc} , $\Omega_{c} \in \mathbb{R}^{3}$,

- $\Omega_{\rm nc}$: $\sigma = 0$ (e.g. iron yoke)
- Ω_c : $\mu = \mu_0$ (e.g. magnet coil)

Boundaries Γ_{nc} , $\Gamma_{c} \in \mathbb{R}^{2}$

Interface $\Gamma_{nc,c} \in \mathbb{R}^2$

Outline

□ Fundamentals of Vector Fields Theory

□ Hybrid T-A Field Formulation

□ Numerical Implementation

□ Applications

Conclusions and Outlook

01 - Fundamentals

T-A Form in a Nutshell

Reformulation of Maxwell equations in terms of current (T) and magnetic (A) vector potentials.

What is needed:

Maxwell Equations

- Magnetoquasistatic Hypothesis
- Uniqueness of Solution

Vector Potentials

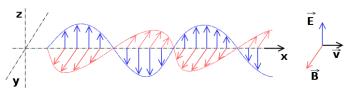
- Helmholtz decomposition (curl + divergence)
- Interface conditions
- Gauge fixing

Discretization technique

• Finite Element Method

Numerical solver

• Galerkin Method (Weighted residuals)


.. and, of course, a volunteer sorcerer

Maxwell Equations

In vacuum (*):

 $\nabla \times \mathbf{E} = -\partial_{t} \mathbf{B}$ $\nabla \times \mathbf{B} = \mu_{0} \mathbf{J} + \mu_{0} \varepsilon_{0} \partial_{t} \mathbf{E}$ $\nabla \cdot \mathbf{E} = \rho \varepsilon_{0}^{-1}$ $\nabla \cdot \mathbf{B} = 0$ + material laws $\mathbf{B} = \mu_{0} \mathbf{H}, \ \mathbf{D} = \varepsilon_{0} \mathbf{E}, \ \mathbf{J} = \sigma \mathbf{E}$

Solution for $\mathbf{J} = \mathbf{0}, \rho = 0$

Symbols:

- **E**, **D** electric field strength / density
- H, B magnetic field strength / density
- ρ , J electric charge / current density
- μ_0 vacuum magnetic permeability
- ϵ_0 vacuum electric permittivity
- σ electric conductivity

Features:

- 4 independent variables (x, y, z, t)
- 2 equations (Faraday, Ampere-Maxwell) in 6 unknowns $B_{x,y,z} E_{x,y,z}$
- 2 time-boundary conditions (Gauss laws)
- known field sources $(\mathbf{J}, \boldsymbol{\rho})$

Magnetoquasistatic Hypothesis

• Dimensional analysis for arbitrary vector field **F**

$$F = f \cdot \mathcal{F}$$
$$\nabla F \approx F/\ell$$
$$\partial_t F \approx F/\tau$$

 $\begin{array}{ll} f, \, \mathcal{F} & \mbox{reference quantity / non dimensional vector} \\ \ell, \, \tau & \mbox{characteristic spatial dimension / time constant} \\ c = (\epsilon \mu)^{-1/2} & \mbox{speed of light} \end{array}$

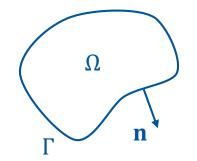
• Ampere-Maxwell Law: $J = J_f + J_d$ (free and displacement currents). One can obtain [1]:

 $\frac{H_d}{H_f} \approx \left(\frac{\ell}{\tau c}\right)^2$, $\frac{J_d}{J_f} \approx \frac{\varepsilon}{\tau \sigma}$

- If, compared to the dynamics of the device
 - $\tau \gg \ell/c$ "instantaneous" light propagation
 - $\tau \gg \epsilon/\sigma$ "instantaneous" charge relaxation

Then $J_d = \partial_t \mathbf{D} \approx 0$

(Always true for small, conductive devices at power frequencies)

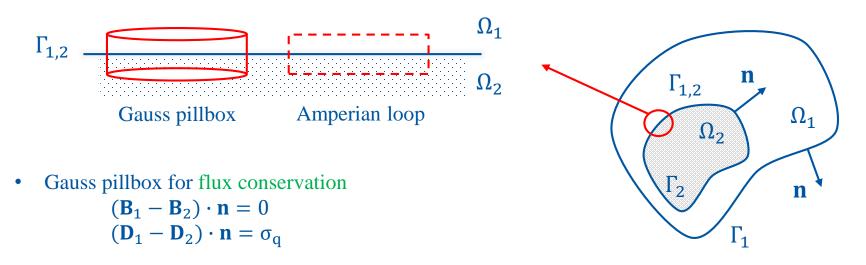

Uniqueness of Solution

Domain $\Omega \in \mathbb{R}^3$ with Γ as contour

Poynting vector: $\mathbf{P} = \mathbf{E} \times \mathbf{H}$ Conservation of energy: $\nabla \cdot \mathbf{P} = -\mathbf{E} \cdot \partial_t \mathbf{D} - \mathbf{H} \cdot \partial_t \mathbf{B} - \mathbf{E} \cdot \mathbf{J}$

Uniqueness Theorem, using the properties of **P** (e.g. [1]):

- **E**, **B** unique on Ω if
- \mathbf{E}_0 , \mathbf{B}_0 known on Ω at $t = t_0$
- $\mathbf{E} \times \mathbf{n} \text{ OR } \mathbf{H} \times \mathbf{n} \text{ known on } \Gamma, \forall t$


Two boundary conditions (BC) of practical importance, PEW and PMW

Perfect Electric Wall $\sigma = \infty$ $\mathbf{E} \times \mathbf{n} = 0$ $(\mathbf{B} \cdot \mathbf{n} = 0)$ Ω Ω Γ $\mu = \infty$ $\mathbf{H} \times \mathbf{n} = 0$ $(\mathbf{B} \times \mathbf{n} = 0)$ Ω Γ $\mu = \infty$ $\mathbf{H} \times \mathbf{n} = 0$ $(\mathbf{B} \times \mathbf{n} = 0)$ Ω $\mu = \infty$ $\mathbf{M} \times \mathbf{n} = 0$ $(\mathbf{B} \times \mathbf{n} = 0)$

Interface conditions

Domains $\Omega_1, \Omega_2 \in \mathbb{R}^3$ with Γ_1, Γ_2 as contour and $\Gamma_{1,2}$ as interface Magnetic charge / current densities ignored (weakly related with the known universe)

- Amperian loop for potential conservation
 - $(\mathbf{H}_1 \mathbf{H}_2) \times \mathbf{n} = \mathbf{K}_s$ $(\mathbf{E}_1 \mathbf{E}_2) \times \mathbf{n} = 0$

 σ_q , K_s surface electric charge / current density.

Interface conditions [1] (IC) must always hold true!

Helmholtz decomposition

- If $\mathbf{F} \in \mathbb{R}^3$ well-behaving field (sufficiently smooth, rapidly decaying at $\mathbf{r} \to \infty$) then [1]:

 $\mathbf{F} = \mathbf{F}_{T} + \mathbf{F}_{L}$ $\mathbf{F}_{T} \text{ curling, non diverging (i.e. } \nabla \cdot \mathbf{F}_{T} = 0)$ $\mathbf{F}_{L} \text{ diverging, non curling (i.e. } \nabla \times \mathbf{F}_{L} = 0)$

• Vice-versa, given a scalar field $\phi \in \mathbb{R}^3$ and a solenoidal vector field $\mathbf{A} \in \mathbb{R}^3$, both well behaving, then it exists a field **F** such that

 $\nabla \cdot \mathbf{F} = \boldsymbol{\varphi}, \ \nabla \times \mathbf{F} = \mathbf{A}$

 \rightarrow F determined by knowing its curl and divergence

• Curiosity: What if $\nabla \cdot \mathbf{F} = 0$, $\nabla \times \mathbf{F} = 0$?

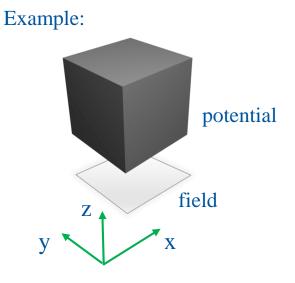
 $\nabla \times \nabla \varphi = 0 \rightarrow \mathbf{F} = -\nabla \varphi$ $\nabla \cdot (-\nabla \varphi) = 0 \rightarrow \nabla^2 \varphi = 0$

- Laplacian (relaxed) nature of the field
- "Hidden" in both \mathbf{F}_{T} and \mathbf{F}_{L} , and determined only by BC.
- Caveat: A non-curling, non-diverging field can still contain energy!

Potentials – Gauge invariance

B, E fields fulfil Helmholtz criteria, rewritten as

$$\begin{split} \mathbf{B} &= \nabla \times \mathbf{A}_{\mathrm{B}} - \nabla \boldsymbol{\varphi}_{\mathrm{B}} - \partial_{\mathrm{t}} \mathbf{A}_{\mathrm{B}}' \\ \mathbf{E} &= \nabla \times \mathbf{A}_{\mathrm{E}} - \nabla \boldsymbol{\varphi}_{\mathrm{E}} - \partial_{\mathrm{t}} \mathbf{A}_{\mathrm{E}}' \end{split}$$


Potentials gauging (fixing the "integration constants"):

- 6 new equations (traditionally $A_E = 0$, $A_B = A'_E$)
- BC for ϕ on Γ , ∇ · for **A** on Ω
- (IC reformulated in terms of potentials)

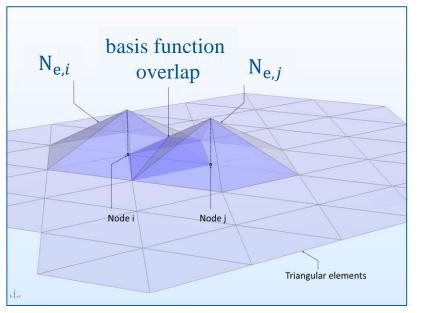
Any gauge is fine! (though some are "numerically" better)

e.g. classic Coulomb gauge $\nabla \cdot \mathbf{A}_{B} = 0$, $\phi_{B} = 0$

- Why potentials? (*)
 - More variables, equations, conditions
 - IC: **B**,**D** tangent and **H**,**E** normal are discontinuous.
 - potentials continuous, discontinuities embedded in their derivative

Invariance to:

- z coordinate
- axial rotations of $\pi/2$



Discretization Technique

Fundamental lemma of calculus of variations [1] (variational formulation):

$$f = 0 \iff \int f \cdot w \, d\Omega = 0 \quad \forall w \in C_0(\mathbb{R})$$

f = 0 generic field equation (e.g. Laplacian)w weighting (test) function: continuous, vanishing at infinity

Source: COMSOL blog

FEM approach (e.g.[2]):

1.
$$f \approx F \cdot N_e$$

- 2. $w = N_e \rightarrow Galerkin method$
- 3. We solve $\int (F \cdot N_e) \cdot N_e d\Omega = R$ (R=residual) looking for R_{min}
- 4. Discretization (equations assembled per node)
- 5. Algebraic problem $[N_e] \cdot F = 0$
- 6. Numerical solver (Newton-Raphson)

N.B. If $\Omega_{N_e} \rightarrow 0$, then $F \cdot N_e \rightarrow f$

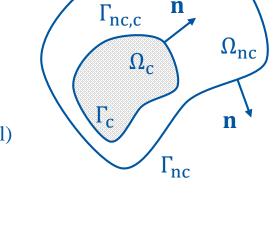
Jost, Jurgen, Jürgen Jost, and Xianqing Li-Jost. Calculus of variations. Vol. 64. Cambridge University Press, 1998.
 Sayas, Francisco-Javier. "A gentle introduction to the Finite Element Method." Lecture notes, University of Delaware (2008).

02 - Hybrid T-A field formulation

Domain decomposition

Domains Ω_{nc} , $\Omega_c \in \mathbb{R}^3$, Ω_{nc} : $\sigma = 0$, Ω_c : $\mu = \mu_0$ Γ_{nc} , Γ_c as contour and $\Gamma_{nc,c}$ as interface

- Equations on Ω_{nc}
 - $$\begin{split} \rho &= 0, \ \textbf{J} = \textbf{0} & (\text{no sources}) \\ \textbf{B} &= \nabla \times \textbf{A} & (\text{magnetic vector potential}) \\ \textbf{E} &= -\partial_t \textbf{A} & (\text{Faraday law}) \\ \nabla \cdot \textbf{A}_B &= 0, \ \varphi_B &= 0 + \varphi_E = \textbf{0} & (\text{radiation gauge [1]}) \ (*) \end{split}$$

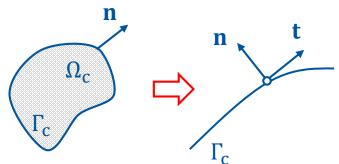

• Equations on Ω_c

$$\begin{split} \mathbf{H} &= \mathbf{T} - \nabla \psi & (\psi \text{ is the magnetic scalar potential [2]}) \\ \nabla \times \mathbf{T} &= \mathbf{J} & (\text{electric vector potential [3]}) \\ \nabla \cdot \mathbf{T} &= \nabla^2 \psi & (\text{Gauss law}) \end{split}$$

$$\begin{split} \nabla\times\sigma^{-1}\nabla\times\mathbf{T} &= -\mu_0\partial_t(\mathbf{T} - \nabla\psi) \quad \text{on } \Omega_c \\ \psi &= f(x, y, z, t) \qquad \qquad \text{on } \Gamma_{\mathrm{nc}} \end{split}$$

[1] Arfken, G. B., et al. "Mathematical methods for physicists." (1999).

[2] Biro, O., et al. "On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents." *IEEE Trans Mag* (1989).
[3] Carpenter, C. J. "Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies." *Proceedings of the Institution of Electrical Engineers*. 1977.



Thin Strip approximation

 $\boldsymbol{\Omega}_{c} \rightarrow \boldsymbol{\Gamma}_{c} \in \mathbb{R}^{2} \text{, } \boldsymbol{J} \boldsymbol{\cdot} \boldsymbol{n} = \boldsymbol{0} \text{, } \boldsymbol{J} \in \mathbb{R}^{2}$

 $\psi = 0$ on Γ_{nc} (gauge choice, ψ on a surface)

T as stream function, $\mathbf{T} = T \mathbf{n}$: $\nabla \times \mathbf{T} = \nabla \times (T \mathbf{n}) = T (\nabla \times \mathbf{n}) + \nabla T \times \mathbf{n}$ but $\nabla \times \mathbf{n} = 0$ (true for any surface unit normal vector) hence $\nabla \times \mathbf{T} = \nabla T \times \mathbf{n}$ (*)

Equations for Γ_{c} $\nabla \times \sigma^{-1}(\nabla T \times \mathbf{n}) = -\mu_{0}\partial_{t}(T \mathbf{n})$ $\nabla \times \mathbf{T} = \mathbf{J}$ $\nabla \cdot \mathbf{T} = 0$ remember Helmholtz, well posed field

• IC on $\Gamma_{nc,c}$

Formulations "welded" via the continuity of $\mathbf{B} \cdot \mathbf{n}$ and $\mathbf{E} \times \mathbf{n}$, in terms of T and A $\mu_0 \partial_t T \mathbf{n} = \partial_t (\mathbf{B} \cdot \mathbf{n}) \mathbf{n} = \partial_t (\nabla \times \mathbf{A} \cdot \mathbf{n}) \mathbf{n}$ $\sigma^{-1} (\nabla T \times \mathbf{n}) = \mathbf{E} \times \mathbf{n} = -\partial_t \mathbf{A} \times \mathbf{n}$

(*) Carpenter (1977) relied on V × T.
Rodger (1988) introduced ∂_t(VT × n), where ∂_t brings symmetry to the weak form.
Biro (1992) used ∂_t(V × T n), a hybrid version of Carpenter-Rodger
Zhang (2017) followed Carpenter with V × T, but he claimed no IC are needed in his approach.

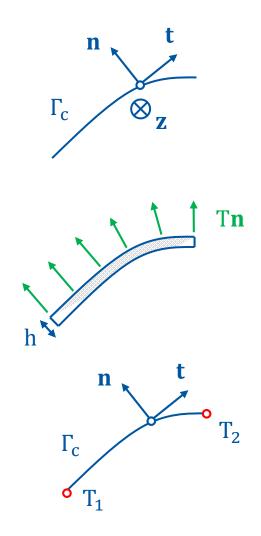
External Source: Current Excitation

 $\Omega_{c} \rightarrow \Gamma_{c} \in \mathbb{R}^{2}, \, \textbf{J} \cdot \textbf{n} = \textbf{0}, \, \textbf{J} \in \mathbb{R}^{2}$

External current excitation i_s . One can show that [1]:

$$i_{s} = \int \mathbf{J} \cdot \mathbf{z} \ d\Omega_{c}$$

= $\int \nabla \times \mathbf{T} \cdot \mathbf{z} \ d\Omega_{c}$ (Stokes)
= $\int \mathbf{T} \cdot \mathbf{t} \ d\Gamma_{c}$
= $\int (\mathbf{T}\mathbf{n}) \cdot \mathbf{t} \ d\Gamma_{c}$ (stream function)

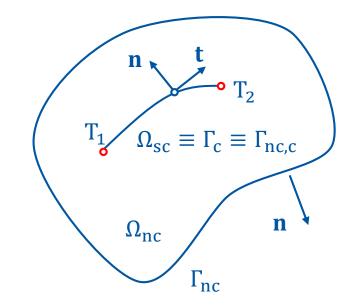

Now, $(T\mathbf{n}) \cdot \mathbf{t} = 0 \forall$ point, except edges

 $\int (\mathbf{T}\mathbf{n}) \cdot \mathbf{t} \ \mathrm{d}\Gamma_{\mathrm{c}} = \mathrm{h}(\mathrm{T}_{1} - \mathrm{T}_{2})$

Two Dirichlet conditions per tape:

 $T_1 = \alpha, \alpha \in \mathbb{R}$ $T_2 = i_s/h - T_1$

Stokes + thin strip allows to Surface integral \rightarrow two scalar, linear equations



To Sum Up...

Hybrid T-A form – Thin Strip Approximation $\Omega_c \rightarrow \Gamma_c \in \mathbb{R}^2$, $J \cdot n = 0$, $J \in \mathbb{R}^2$

- Equations on Ω_{nc} $\nabla \times \mu^{-1} \nabla \times \mathbf{A} = \mathbf{0}$ $\mathbf{A} \times \mathbf{n} = \mathbf{0}$ on Γ_{nc} (PEW) with gauge $\nabla \cdot \mathbf{A} = 0$, $\Phi = 0$
- Equations on Γ_c $\nabla \times \sigma^{-1} (\nabla T \times \mathbf{n}) = -\mu_0 \partial_t T \mathbf{n}$ with gauge $\nabla \cdot \mathbf{T} = 0, \quad \psi = 0$
- Equations on interface $\Gamma_{nc,c}$ $\mu_0 \partial_t T \mathbf{n} = \partial_t (\nabla \times \mathbf{A} \cdot \mathbf{n}) \mathbf{n}$ $\nabla T \times \mathbf{n} = -\sigma \partial_t \mathbf{A} \times \mathbf{n}$
- External source

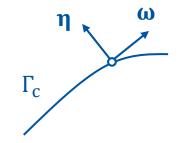
$$i_{source} = h(T_1 - T_2)$$

Compatible with the STEAM co-sim framework [1]:

- Current-driven, via i_{source}
- Flux linkage as $\varphi(\mathbf{A})$

[1] Garcia, Idoia Cortes, et al. "Optimized field/circuit coupling for the simulation of quenches in superconducting magnets." *IEEE Journal on Multiscale and Multiphysics Computational Techniques* 2 (2017): 97-104.

03 – Numerical Implementation



Formulation in 2D

The general T-A form is characterized for a 2D domain

Local reference frame (ω, η) on $\Gamma_c \rightarrow T: T(\omega)$

Faraday law: $\nabla \times \sigma^{-1} (\nabla T \times \mathbf{\eta}) = -\mu_0 \partial_t T \mathbf{\eta}$

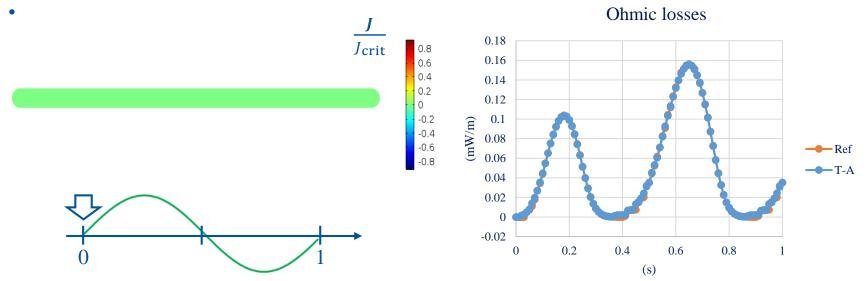
Vector calculus identity: $\nabla \times (\mathbf{F} \times \mathbf{G}) = \mathbf{F}(\nabla \cdot \mathbf{G}) - \mathbf{G}(\nabla \cdot \mathbf{F}) + (\mathbf{G} \cdot \nabla)\mathbf{F} - (\mathbf{F} \cdot \nabla)\mathbf{G}$

Faraday law, left hand part: $\sigma^{-1} \nabla T (\nabla \cdot \eta) - \eta (\nabla \cdot \sigma^{-1} \nabla T) + (\eta \cdot \nabla) \sigma^{-1} \nabla T - (\sigma^{-1} \nabla T \cdot \nabla) \eta$

1) $\nabla \cdot \mathbf{\eta} = 0$ true for any surface unit normal vector2) $(\mathbf{\eta} \cdot \nabla) \sigma^{-1} \nabla T = 0$ $T \neq T(\mathbf{\eta})$ 4) $(\sigma^{-1} \nabla T \cdot \nabla) \mathbf{\eta} = 0$ $\mathbf{\eta} \neq \mathbf{\eta}(\omega)$

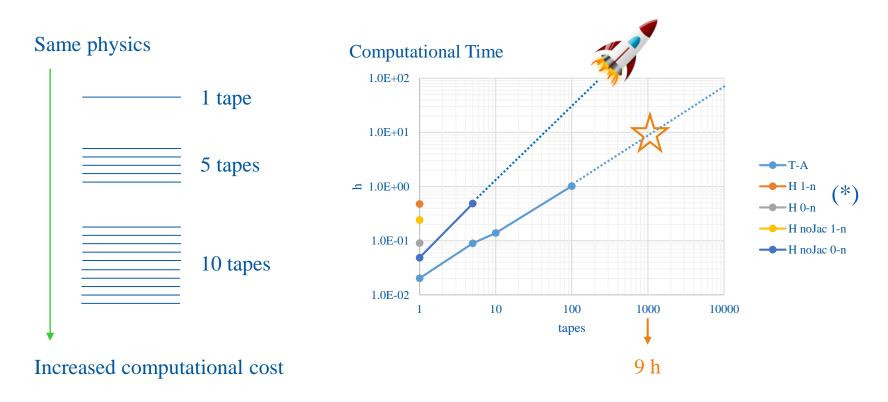
 $-\mathbf{\eta}(\nabla \cdot \sigma^{-1} \nabla T) = -\mu_0 \partial_t T \mathbf{\eta}$ Elliptic partial differential equation of type $\nabla \cdot \alpha \nabla u = f$

The weak form is easily implementable in a numerical solver


Validation

Active community in the field of HTS modeling

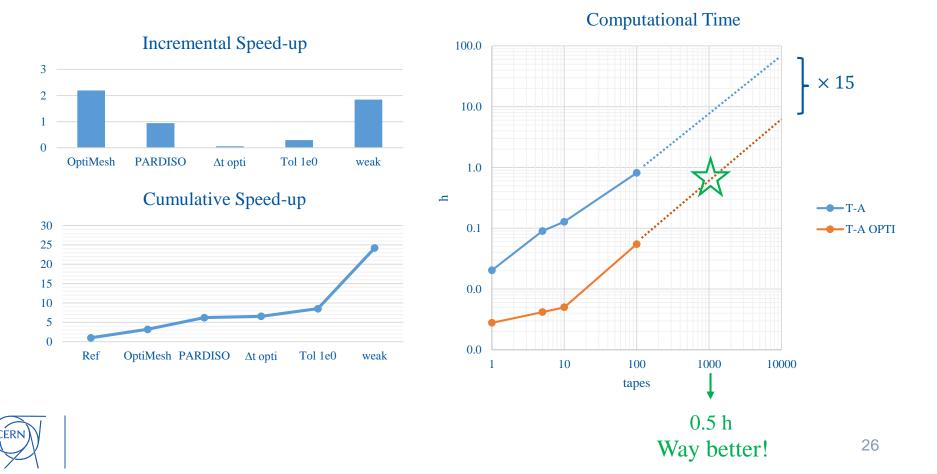
Reference models are available. Here, Link is used for crosscheck


- Single HTS tape in self-field
- Source: $I_s = I_0 \sin(2\pi t)$, $I_0 = 0.5I_{crit}$ $t \in [0; 1]$
- $2e^3$ unknowns, simulation time 9 s

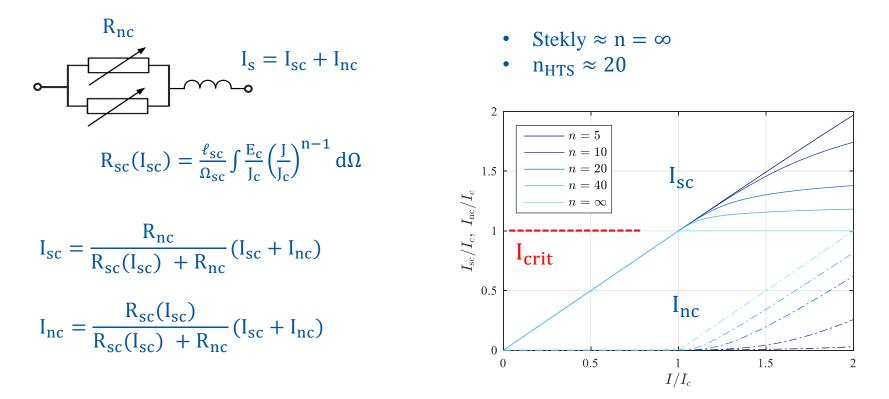
Scalability: H vs T-A Form

Forecasts on expected computational time (Disclaimer: forecasts may not match reality!)

Results of qualitative analysis:


- H-form: well...
- T-A form: humm...

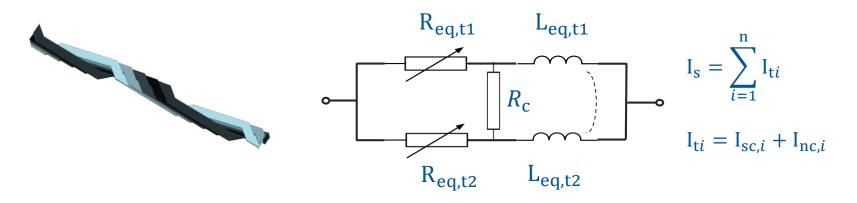
Scalability: T-A Form Optimization


Optimization implemented on:

- 1. Mesh OptiMesh
- 2. Solver PARDISO, Δt opti, tol $1e^0$
- 3. Formulation Weak form b-PDE

Current Sharing in Tape

In HTS, the Stekly approximation [1] is no longer valid [2] (slow quench propagation):


Implicit equations \rightarrow Algebraic constraints in the solver

[1] Z. Stekly, J. Zar et al., "Stable superconducting coils," IEEE Trans.Nucl. Sci., vol. 12, no. 3, pp. 367–372, 1965. [2] Van Nugteren, J. *High temperature superconductor accelerator magnets*. Diss. Twente U., Enschede, 2016.

Current Sharing in Roebel Cable

• Roebel cable (only 2 tapes represented in the network model)

Full transposition assumption:

- $R_{eq,t1} = R_{eq,t2} = R_{eq}$
- $L_{eq,t1} = L_{eq,t2} = L_{eq}$

No current redistribution, (as $R_c = +\infty$), conservative Even distribution of I_s between the tapes

Should be good for:

- Localized quenches (small normal zone, slow propagation velocity)
- Homogeneously distributed losses (e.g. quench-back)

Any better ideas?

Rationale (cont'd)

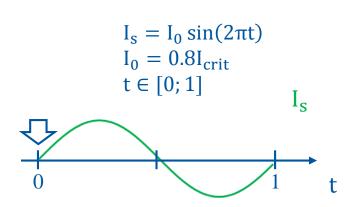
- 20+ Tesla dipoles for future high-energy particle accelerators
- Simulation of the electrodynamics in HTS tapes and cables (then magnets, and circuits)

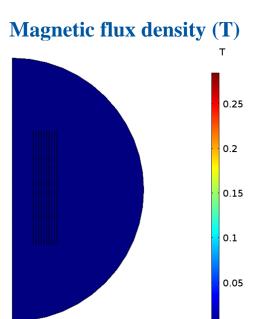
Main challenges

- 1) Multiscale model
- Domain decomposition
- Thin strip approximation, model order reduction

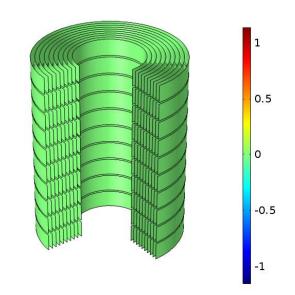
2) HTS resistivity

- **T** vector potential for conductive domains
- 3) Current sharing regime in tape
- Algebraic constraints in the solver
- 4) Complex geometries
- Full transposition assumption


04 – Applications

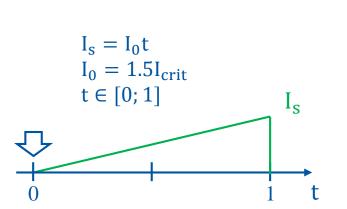


Solenoid

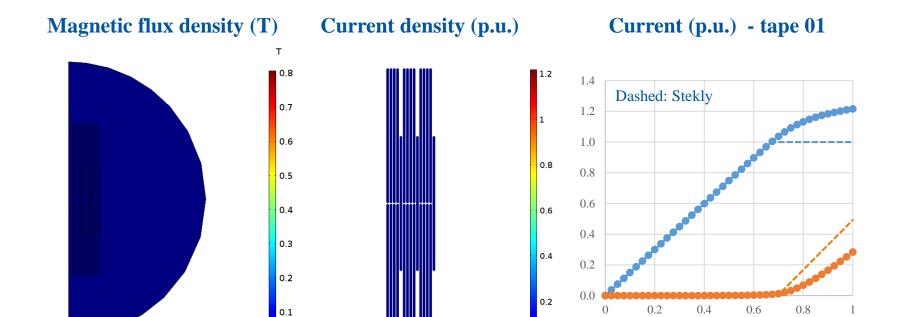

Model features

- 2D Axisymmetric
- 100 tapes, aspect ratio 1e⁴
- $J_{crit,0} = 1e^{10} [Am^{-2}]$
- 20e³ unknowns

Current density (p.u.)



Simulation time: 200 s


Roebel cable

Model features

- 2D
- 3 cables (27 tapes), aspect ratio 1e⁴
- $J_{crit,0} = 1e^{10} [Am^{-2}]$
- 12e³ unknowns

-Isc1 (A) -Inc1 (A)

Simulation time: 120 s

Hybrid T-A: Summary and Outlook

Formulation

- 1. Field and interface equations
- 2. Thin line approximation

Implementation

- *1.* \mathbb{R}^2 domain
- 2. Current sharing regime
- 3. Applications (solenoids, Roebel cables)

- Numerically stable
- Computationally efficient
- Reasonably simple

What is next

- Rigorous mathematical assessment (e.g. de Rahm currents)
- HTS material database
- Thermal equations
- Crosscheck with other codes
- 2D model of FRESCA2 + FEATHER2 insert
- FEM 2 LUMPED modeling, for circuital analysis
- Co-simulation interface
- Automatic model generation (SIGMA-HTS module)
- 3D modelling (equations are in place)
- ...

Thank you for your attention! 33

www.cern.ch

Annex 01 - A form

Domain decomposition

Domains Ω_{nc} , $\Omega_c \in \mathbb{R}^3$, Ω_{nc} : $\sigma = 0$, Ω_c : $\mu = \mu_0$ Γ_{nc} , Γ_c as contour and $\Gamma_{nc,c}$ as interface

- $\begin{array}{c|c}
 \Gamma_{nc,c} & \mathbf{n} \\
 \Omega_{c} & \Omega_{nc} \\
 \Gamma_{c} & \mathbf{n} \\
 \Gamma_{nc} & \mathbf{n} \\
 \end{array}$

• Equations on Ω_{nc}

$$\begin{split} \rho &= 0, \, \boldsymbol{J} = \boldsymbol{0} & (\text{no sources}) \\ \nabla \times \mu^{-1} \nabla \times \boldsymbol{A} &= \boldsymbol{0} & \text{on } \Omega_{\text{nc}} \\ \boldsymbol{A} \times \boldsymbol{n} &= \boldsymbol{0} & \text{PEW on } \Gamma_{\text{nc}} \end{split}$$

- Equations on Ω_c $\rho = 0, \mathbf{J} = \sigma \mathbf{E}$ $\nabla^2 \mathbf{A} = \mu_0 \sigma \partial_t \mathbf{A}$ on Ω_c
- Equations on interface $\Gamma_{nc,c}$

 $(\nabla \times \mathbf{A}_1 - \nabla \times \mathbf{A}_2) \cdot \mathbf{n} = 0$ $(\mu_1^{-1} \nabla \times \mathbf{A}_1 - \mu_2^{-1} \nabla \times \mathbf{A}_2) \times \mathbf{n} = \mathbf{0}$ $\partial_t (\mathbf{A}_1 - \mathbf{A}_2) \times \mathbf{n} = 0$

A form – Thin Line Approximation

- $\Omega_{c} \rightarrow \Gamma_{c} \in \mathbb{R}^{2}, \, \textbf{J} \cdot \textbf{n} = \textbf{0}, \, \textbf{J} \in \mathbb{R}^{2}$
- Equations on Ω_{nc} $\nabla \times \mu^{-1} \nabla \times \mathbf{A} = \mathbf{0}$ $\mathbf{A} \times \mathbf{n} = \mathbf{0}$ PEW on Γ_{nc}
- Equations on Γ_c A = At $\nabla^2(At) = \mu_0 \sigma \partial_t(At)$ on Ω_c

 $\partial_{t}(\mathbf{A}_{1}-\mathbf{A}_{2})\times\mathbf{n}=0$

 $i_{source} = h \int \sigma \partial_t (A\mathbf{t}) d\Gamma_c$

• Equations on interface $\Gamma_{nc,c}$ $(\nabla \times \mathbf{A}_1 - \nabla \times \mathbf{A}_2) \cdot \mathbf{n} = 0$ $(\mu_1^{-1} \nabla \times \mathbf{A}_1 - \mu_2^{-1} \nabla \times \mathbf{A}_2) \times \mathbf{n} = h \mathbf{J}$

Field source

 $\mathbf{n} \mathbf{n} \mathbf{r}$ $\Omega_{sc} \equiv \Gamma_{c} \equiv \Gamma_{nc,c}$ $\Omega_{nc} \mathbf{n}$ Γ_{nc}

•

Annex 02 - H form

Domain decomposition

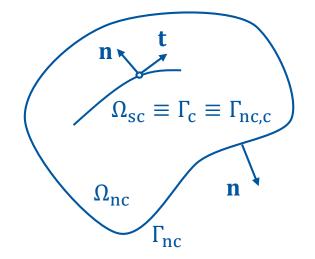
Domains Ω_{nc} , $\Omega_c \in \mathbb{R}^3$, Ω_{nc} : $\sigma = 0$, Ω_c : $\mu = \mu_0$ Γ_{nc} , Γ_c as contour and $\Gamma_{nc,c}$ as interface

Equations on Ω_{nc} $\rho = 0, \mathbf{J} = \mathbf{0}$ (no sources) $\nabla \times \sigma \nabla \times \mathbf{H} - \mu \partial_t \mathbf{H} = \mathbf{0}$ on Ω_{nc} $\nabla \cdot (\mu \mathbf{H}) = 0$ on Ω_{nc} $\mathbf{E} \times \mathbf{n} = 0$ PEW on Γ_{nc} N.B. numerically, $\sigma \neq 0 \forall \Omega$ $\begin{array}{c|c} \Gamma_{nc,c} & \mathbf{n} \\ & & \\ &$

• Equations on Ω_c

$$\begin{split} \rho &= 0, \, \mathbf{J} = \, \nabla \times \mathbf{H} \\ \nabla \times \, \sigma \nabla \times \mathbf{H} - \mu \partial_t \mathbf{H} = \mathbf{0} & \text{on } \Omega_c \\ \nabla \cdot (\mu \mathbf{H}) &= 0 & \text{on } \Omega_c \end{split}$$

• Equations on interface $\Gamma_{nc,c}$


 $\begin{aligned} (\mu_1 \mathbf{H}_1 - \mu_2 \mathbf{H}_2) \cdot \mathbf{n} &= 0 \\ (\mathbf{H}_1 - \mathbf{H}_2) \times \mathbf{n} &= h \mathbf{J} \\ (\sigma_1 \nabla \times \mathbf{H}_1 - \sigma_2 \nabla \times \mathbf{H}_2) \times \mathbf{n} &= 0 \end{aligned}$

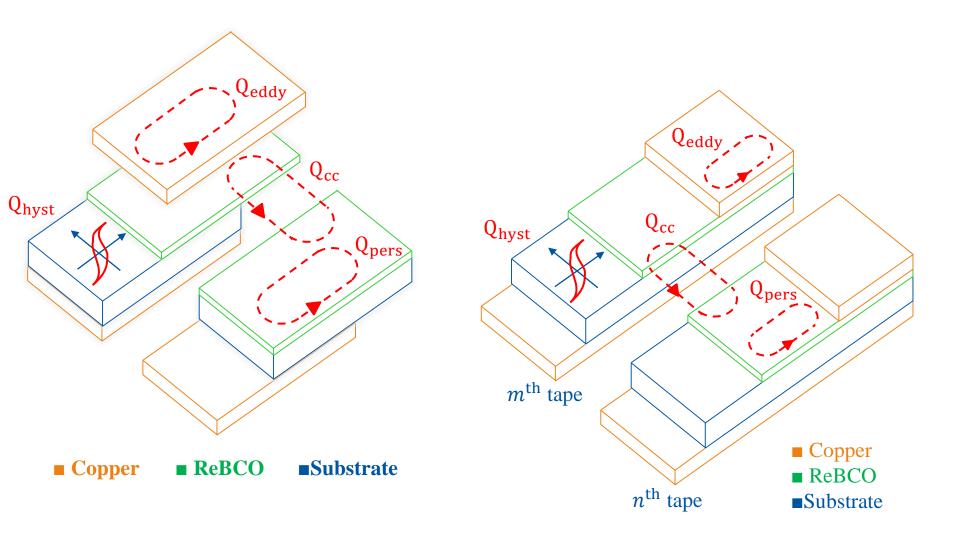
H form – Thin Line Approximation

 $\Omega_{c} \rightarrow \Gamma_{c} \in \mathbb{R}^{2}, \, \textbf{J} \cdot \textbf{n} = 0, \, \textbf{J} \in \mathbb{R}^{2}$

Equations on Ω_{nc} $\rho = 0, \mathbf{J} = \mathbf{0}$ (no sources) $\nabla \times \sigma \nabla \times \mathbf{H} - \mu \partial_t \mathbf{H} = \mathbf{0}$ on Ω_{nc} $\nabla \cdot (\mu \mathbf{H}) = 0$ on Ω_{nc} $\mathbf{E} \times \mathbf{n} = 0$ PEW on Γ_{nc} N.B. numerically, $\sigma \neq 0 \forall \Omega$

• Equations on Γ_c

$$\begin{split} \rho &= 0, \mathbf{J} = \ \mathbf{\nabla} \times \mathbf{H} \\ \mathbf{\nabla} \times \ \sigma \mathbf{\nabla} \times \mathbf{H} - \mu \partial_t \mathbf{H} = \mathbf{0} \quad \text{on } \Gamma_c \\ \mathbf{\nabla} \cdot (\mu \mathbf{H}) &= 0 \quad \text{on } \Gamma_c \end{split}$$


Interface $\Gamma_{nc,c}$ $(\mu_1 \mathbf{H}_1 - \mu_2 \mathbf{H}_2) \cdot \mathbf{n} = 0$ $(\mathbf{H}_1 - \mathbf{H}_2) \times \mathbf{n} = h\mathbf{J}$ $(\sigma_1 \nabla \times \mathbf{H}_1 - \sigma_2 \nabla \times \mathbf{H}_2) \times \mathbf{n} = 0$ Incompatible conditions: on Γ_c , **H** cannot be both divergence-free and discontinuous!

• Field source

 $i_{source} = \int \nabla \times \mathbf{H} \ d\Gamma_c$

Backup Slides

