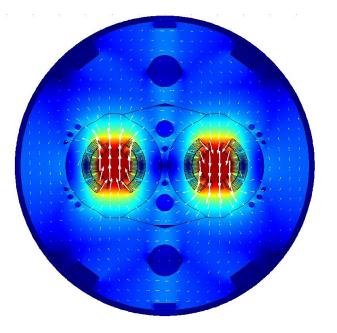
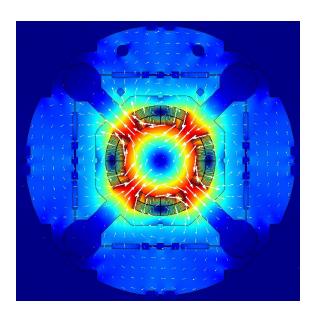


Protection-related studies on HL-LHC Nb₃Snbased magnets in SM18

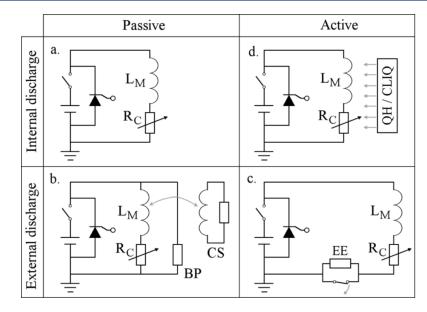

M. Mentink, E. Ravaioli Thanks to H. Bajas, A. Verweij, G. Willering

22 August 2018


HL-LHC Nb₃Sn magnets

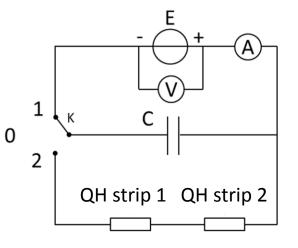
11 T dipole magnet

- To replace NbTi MB magnets in RB circuit (modified RB)
- Enhanced field strength, so same field integral is achieved with reduced length
 → Creates free space for collimator
- Nominal quench protection: Quench heaters
- SM18 tests: QHs + CLIQ

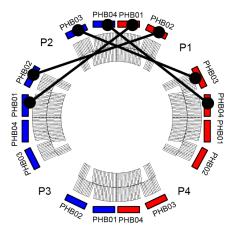


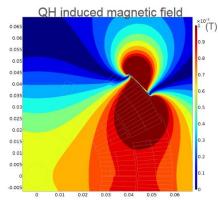
MQXF quadrupole magnet

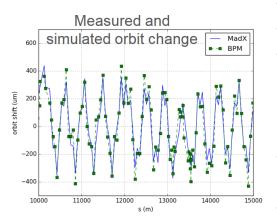
- To replace LHC inner triplet with NbTi MQXA/MQXB magnets
- Enhanced field strength for enhanced focusing
- Nominal quench protection: Quench heaters + CLIQ
- SM18 tests: QHs + CLIQ



Quench protection is:


- Detection of a quench in a fast, reliable, and redundant manner
 - Traditional method: Voltage taps
 - Novel means: For instance stray capacitance monitoring, acoustic monitoring, quench antennas, fiber-optics
- Fast discharge of the magnet
 - Self-protection (relatively fast quench propagation \rightarrow passive internal discharge)
 - External discharge (passive: coupled coil, active: external dump resistor)
 - Active quench initiation though heating (For instance quench heaters and / or CLIQ)
 → Used for HL-LHC Nb₃Sn-based magnets

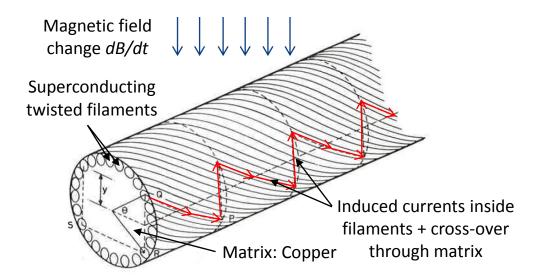



Quench heater circuit

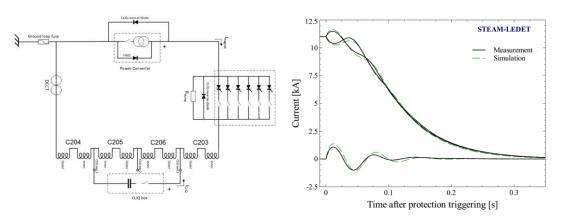
MQXF heater scheme

Fast magnetic field transient due to QH

QH impact on beam (MB magnet) Quench heaters (QHs)


- Resistive heater strips in close thermal contact to the coil
- Powered by discharging a capacitor over two strips in series
- QH discharge → Magnet is heated to above current sharing temperature → Stored energy is discharged over magnet

Implications


- Good: Conceptually straight-forward
- Efficient for inducing a normal zone
- Challenge #1: Different electric potential versus coil, with minimal insulation layer in between → Increased potential for insulation issues
- Challenge #2: Delamination issues (MQXF inner layer heater)
- Challenge #3: Produces rapid *dB/dt* over bore at moment of discharge, which affects the beam [1]

[1]. Valette – Presented at 7th HL-LHC coll. Meeting (2017)

Quench protection basics: CLIQ

Inter-filament coupling losses in superconducting strands

Circuit, CLIQ unit parallel to two of four coils

Currents after CLIQ discharge

Coupling-Loss Induced Quench system (CLIQ)

STEAM

- Capacitor is discharged, parallel to part of a magnet
- Creates oscillating currents → Time varying magnet fields *dB/dt* over superconducting cables
- *dB/dt* → Inter-filament coupling losses (+ Inter-strand coupling losses) → Heating → Magnet is brought to normal state

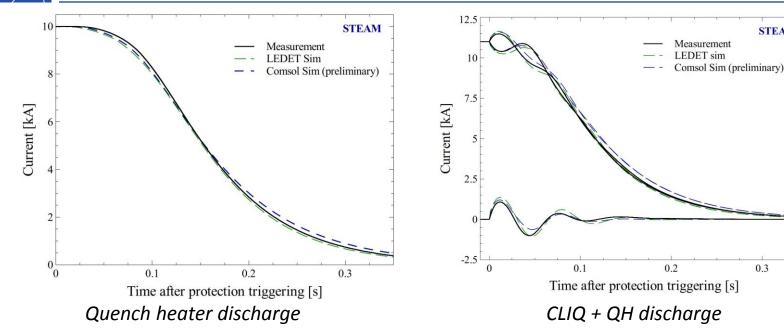
Implications

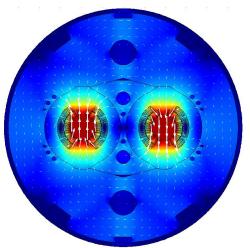
- Good: Magnet is very quickly brought to normal state
- Good: Robust
- Challenge #1: Relatively new technology and conceptually much harder to understand than quench heaters
- Challenge #2: Relatively complex modelling required

Protection studies in SM18 (In collaboration with TE-MSC), objectives:

- For finding potential problems in short magnet models and prototypes
- For ensuring that we understand the protection-related behavior of magnets
- For validating quench simulation tools which are then use to understand the behavior of magnets powered by circuits → Modified RB circuit, HL-LHC inner triplet

Procedure


- Definition of test plan: Discharges using quench heaters, CLIQ, extraction, and combination of methods
- Preliminary calculation of expected behavior with simulation tools
- Execution of test plan
- Comparison of measured behavior versus expected behavior, and documentation


Simulation tools within our section

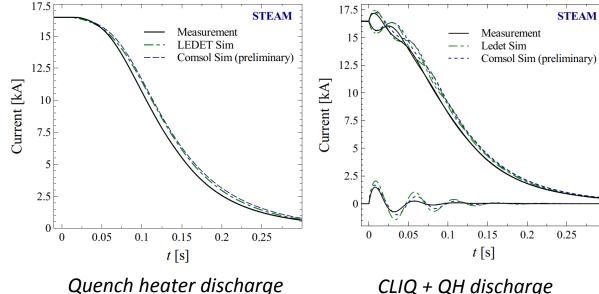
- Variety of tools, depending on magnet type and protection method
- For magnets with CLIQ:
 - LEDET [1]: Previously validated
 - Comsol [2]: Partially validated, currently being validated for new features
 - TALES [3]: No longer supported

[1]. Ravaioli et al., Cryog. 80, p 346 (2016).
[2]. Bortot et al, IEEE TAS 27, p. 4001305 (2017)
[3]. Maciejewski, Master thesis, (2014)

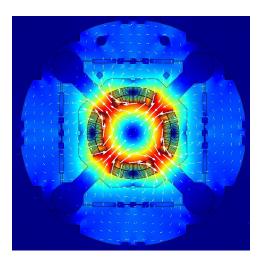
11T, MBHDP102 double-aperture short model **STEAN**

- Magnet could only be measured up to 11 kA (due to a conductor limitation)
- Particular to this magnet: Different conductor properties in both apertures (copper fraction, RRR) leading to energy transfer from one aperture to the other during quench, increased hot-spot temperature, increased voltage-to-ground at the electrical midpoint

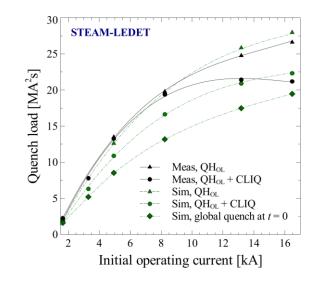
STEAM


0.3

- Sole free parameter: $f_{\rm rho, eff} \rightarrow$ Affects effectiveness of inter-filament coupling losses, but with modest impact on quench behavior
- With CLIQ, I_{nom} : Over 100 K reduction in hot-spot temperature •
- Observed results are generally consistent with expectations



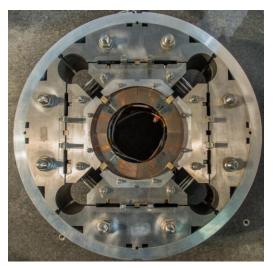
MQXFs5, short model



Quench heater discharge

- Measured up to nominal current •
- Sole free parameter: $f_{\rm rho, eff} \rightarrow$ Affects effectiveness of inter-filament coupling losses, but with modest impact on quench behavior
- Quench load: QL= $\int I^2 dt \rightarrow$ Indicative of hotspot temperature
 - Higher quench load \rightarrow Higher hotspot temperature
 - Measured Quench load higher than expected at lower currents, and somewhat lower than expected at higher currents
- For MQXF magnets, combination of CLIQ and QHs works very well at nominal current, more efficiently than expected \rightarrow Subject of ongoing investigation

Quench load, simulation vs observation

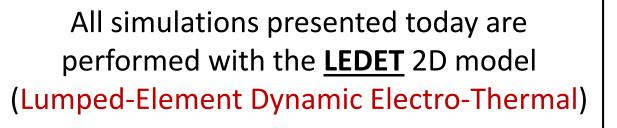


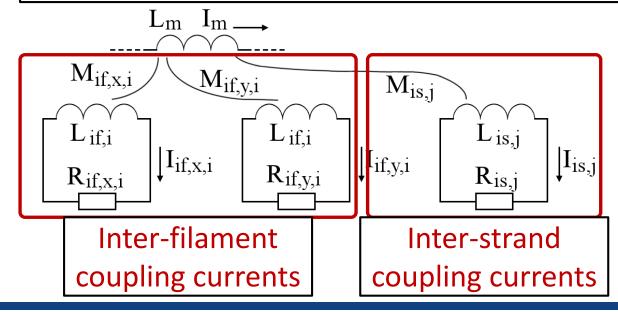
Continuous measurement campaign in SM18, to understand behavior of HL-LHC short model magnets and prototypes

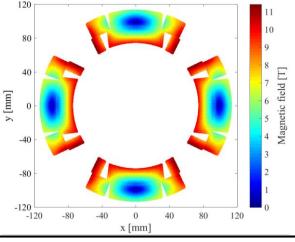
Measurements + simulations demonstrate that both Nb₃Sn magnet types are protected at all current levels

STEAM effort to compare modelling results to experimental observations

- Continuous development and tweaking of simulation tools
- Measurements versus simulations: Protectionrelated behavior is generally well understood
- Simulation tools + validated models used to predict behavior of HL-LHC circuits, such as modified RB and HL-LHC inner triplet

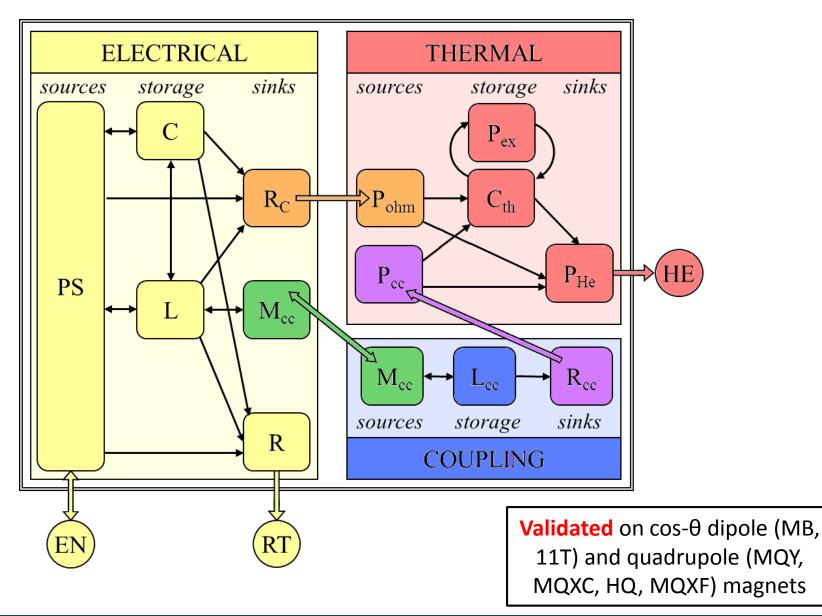

MQXF cross-section




11 T coils during production

The **interaction** between the superconducting magnet and the local coupling currents is modeled with an array of **RL dissipative loops mutually coupled** with the magnet self-inductance

SHAM


Example: HL-LHC 12 T Nb₃Sn quadrupole magnet (MQXF)

- 2x 16000 IFCL loops
- 400 ISCL loops

[1] E. Ravaioli, "CLIQ", PhD thesis, 2015 [2] E. Ravaioli et al., Cryogenics 2016

LEDET (Lumped-Element Dynamic Electro-Thermal)

