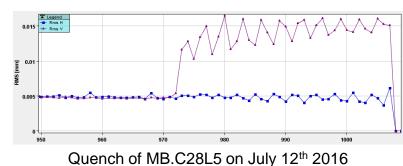
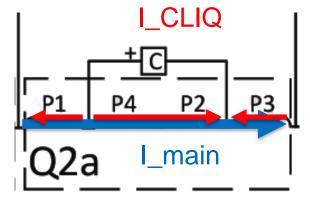


Quench Heaters, CLIQ and triplet quench: Effect of beam screen shielding and other transient effects in magnets; consequences for protection electronics

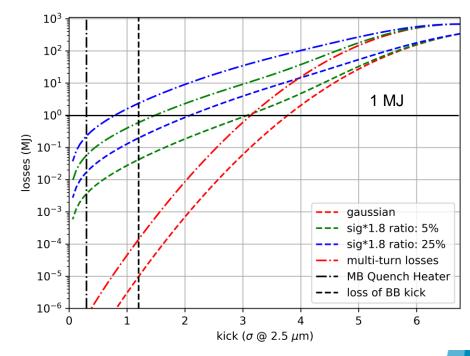

Matthieu Valette, B. Lindström, E. Ravaioli, D. Wollmann CERN



PE section rehearsal for the 8th HiLumi meeting, CERN, 11th October 2018

Introduction

- During LHC operation and dedicated LHC MDs: Quench Heaters (QH) kick the beam when discharging
- CLIQ (used to protect MQXF) will discharge 2 kA in the triple circuit.



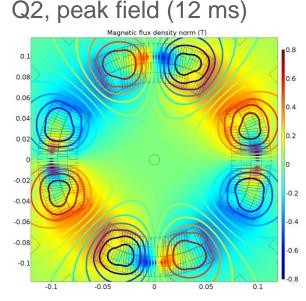
CLIQ discharge in Q2a

Acceptable orbit shifts in the HL-LHC

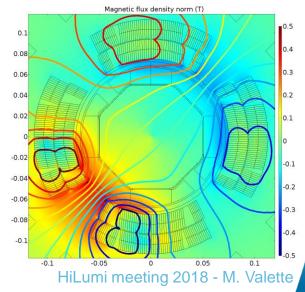
- Damage limit of LHC collimators for fast (<1 ms) losses: 1 MJ
- Conservative assumptions on the beam distribution:
 - Any sustained orbit shift larger than 0.8 σ must be avoided

LH-LHC magnets with QH

- From triggering: spurious firing of 1 QH circuit as main failure case
- Review of expected kicks lead to an update of connection schemes
- Some kicks are still critical (Q2b, Q2a, Q3a)


	Expected kicks from QH protecting HL-LHC magnets				
	Magnet	L (m)	I _{QH} (A)	Β (μΤ)	Kick (σ)
	MB	14.3	80	450	0.4
	MQ	3.1	80	430	0.1
	IPD (D1, D2, D34)	9.45	200	1.25	0.4
	New IPD (MBXF, MBRD, 11T)	7.78	168	Quad- rupole field	0.
	MQXF (Q2b)				
	HF (old)	7.15	200	643	1.7
	LF (old)			700	1.8
	HF (new)			472	1.28
	LF (new)			412	1.08

HL-LHC optics v1.3 with ATLAS crossing bump



Effect of a CLIQ discharge

- Same as QH, a spurious discharge is assumed as the main failure case.
- From connection scheme:
 - Q2: quadrupole field
 - Q3: dipole field of 48 mT
- Assuming a sine function to the max field distortion:
 - Q2: β-beating => OK
 - Q3: kick of 1 σ/ turn critical

Q3, peak field (20 ms)

Beam screen shielding

- For copper (8 T, 30 K, RRR=10) $\rho = 6.6 \times 10^{-10}$ Ω.m
- Skin depth for $\tau_{QH} = 20 \ \mu \text{s}$ (50 kHz) :
 - $\delta = 20 \ \mu m \ < 80 \ \mu m$ (BS copper layer)
- Field change driving the eddy currents: $\frac{dB_{QH}}{dt} = 67 T. s^{-1}, \qquad j \sim 1 A. mm^{-1}$

Eddy current decay time:

$$\tau = \frac{L_{eddy} S_{BS}}{\rho_{Cu} l_{magnet}} \propto \frac{1}{\rho_{Cu}} \sim 10 \ ms$$

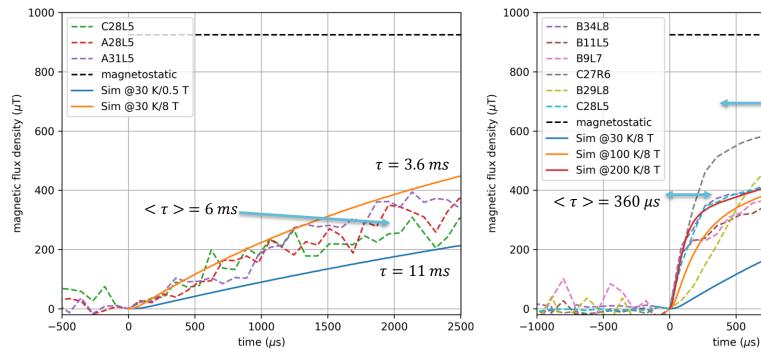
Magnetic field transients in MB magnets: Beam measurements vs FEM Simulation

- Beam measurements during quenches and MD:
 - Using 570 BPMs per beam, reconstruction of the kick from the orbit:
 - Assuming +/-50 µm resolution: +/-40 µT @6.5 TeV +/-150 µT @450 GeV
- FEM Simulations done with COMSOL:
 - Eddy currents in Beam screen (RRR=100)
 - Inter filament & inter strand coupling currents (IFC & ISC) in the superconductor.
 - Magneto-resitivity

Comparison: measurements vs simulations

Measurements @450 GeV

Measurements @6.5 TeV


 $\langle \tau \rangle = 7 ms$

1000

 $\tau = 3.6 \, ms$

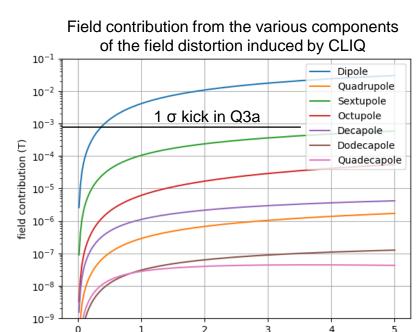
2000

1500

 Resistivity if off by a factor 2

- Two phases transient:
 - coil shielding ?
- Initial resistivity off by 1 order of magnitude
- Reproducible with 200 K BS temperature

HiLumi meeting 2018 - M. Valette


Conclusion on protection from spurious QH discharges

- Despite mitigation via improved connection schemes, some QH kicks from the MQXF magnets with large β-function remain critical.
- Simulation models need to be improved to reproduce the measured behavior.
- Measurements with the MQXF beam screen (different geometry) need to be performed.
- Assuming similar behavior as MB BS: reduction of the field/kick <60% max for 1 ms (~11 turns)
- We need a fast (<8 turn) interlock on spurious QH firing.

Shielding during a CLIQ discharge

- A triplet quench event, and inconsistency of shielding effects for QH lead to a full revalidation of the simulations for CLIQ discharges.
- Assuming the shielding behavior is correct: 1 σ kick reached after 350 µs (~3.5 turns).

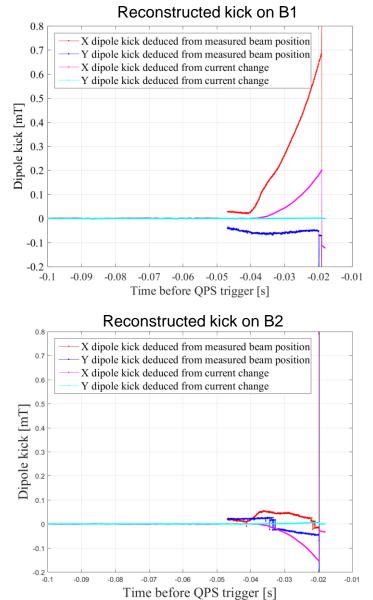
2

time (ms)

1

4

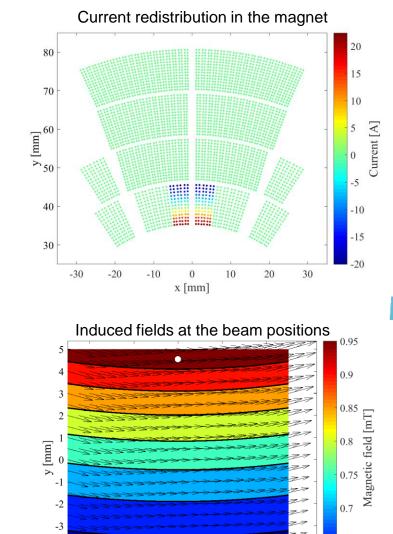
5


Conclusion on protection from spurious QH discharges

- The shielding from CLIQ discharges in the MQXF must be measured to confirm what fields level can be reached within 1 ms (critical time for interlocking on currents).
- As of the previous simulations: a fast interlock (<150 µs) would be needed to protect against a spurious CLIQ discharge.
- Current change in the magnet after 100 μ s: $\Delta I = 15 A (\sim 0.1\%)$

Triplet quench event

- A recent quench of Q1R1 lead to a large orbit drift leading to a dump due to losses.
- This event was not picked up by the QPS.
- The current change in the magnet is only responsible for a third of the observed kick.



HiLumi meeting 2018 - M. Valette

Reproduction of the field distortion

- IFC & ISC effects are also too weak/slow to explain the field change of 700 µT.
- Current redistribution in 6 half-turns along the whole length of the magnet allows the necessary field to be reconstructed.
- This event was too slow (10 ms) to be shielded by the beam screen.

2

x [mm] HiLumi meeting 2018 - M. Valette 0.65

Consequences for the MQXF

- A large symmetric quench, quenching half the cross section of six turns along the 6.37 m of the MQFA.1R1 allows reproducing the observed orbit drift.
- This quench was likely caused debris from the outgoing beam (B1, on top) and was facilitated by the loss of He super-fluidity (T_{He} > 2.15 K).
- If such an event were to happen with HiLumi intensities: collimator damage is expected (upgrade of QDS needed for Run 3 ?).
- The QDS of the MQXF will include comparison of voltages across all pole combinations and protect against a similar event (cf. Jens & Ernesto).
- The protection would still be vulnerable against a quench with double symmetry or other unforeseen failures (need for an FMCM-like interlock on the triplet circuit ?).

General conclusion

- Spurious Quench Heater/CLIQ discharges can give large kicks to the beam and need to be interlocked against.
- Interlocks protecting against such failures should be made fast (< 1 turn).
- Models used to reproduce the magnetic transient should be improved to reproduce LHC events.
- CLIQ /QH discharges in test models of the MQXF should be measured to benchmark models and identify critical timescales.

Outlook

- The MQXFS4b is being tested this week in SM18.
 - Measurements of single QH circuit discharge and CLIQ firing are planned.
- An LHC MD is planned for block 4 (Oct 30th), the parameters affecting beam screen resistivity (BS temperature, magnet current) will be scanned further to investigate the discrepancy between model and measurements.

Thank you for your attention

HiLumi meeting 2018 - M. Valette