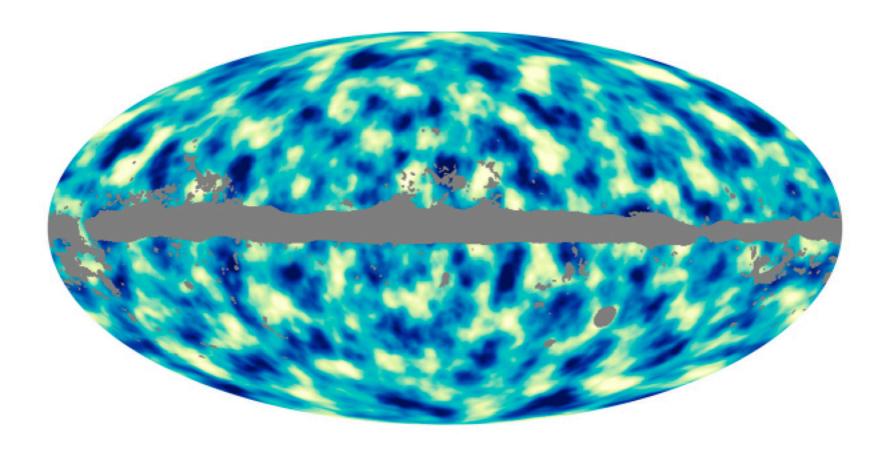
Probing Velocity Dependent Self Interacting Dark Matter

Ivone F. M. Albuquerque Universidade de São Paulo - Brazil


IDM 2018 @ Brown University

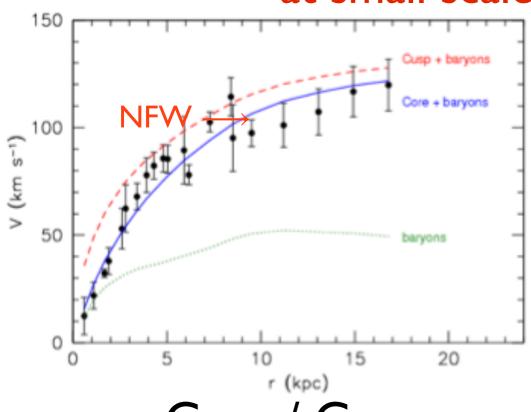
Outline

- I. CDM Small Scale Potential Problems
 - DM Self-Interaction (SIDM) as possible solution
- 2. Probing SIDM with Neutrino Telescopes
 - enhanced v flux from DM annihilation
 - estimate v flux in IceCube and Current constraints on SIDM
- 3. Velocity Dependent SIDM (vdSIDM)
 - vdSIDM model
 - Neutrino Telescopes sensitivity do vdSIDM

Collisionless CDM

Extremely successful at large scales

Date: 02 April 2013 Satellite: Planck


Depicts: All-sky map of dark matter distribution in the Universe

Copyright: ESA and the Planck Collaboration

CDM simulations fit very well large scale observations

CDM Potential Problems

at small scale structure formation

Core / Cusp

CDM: too much DM ~ few Kpc

Majority of gal rot curves: better fit by

cored profile

Too Big to Fail - Missing Satellites

9 "classic" massive SIM DM subhalos

Weinberg et al., Proc. Nat. Acad. Sci. 112 (2014) Data: F568-3 (SSDS)

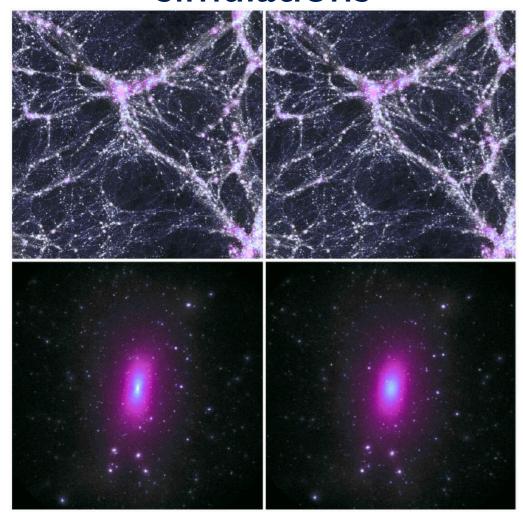
CDM simulations predict too much mass in halos and subhalos central regions

Self Interacting Dark Matter

SIDM solves Small Scale Potential Problems

(Spergel and P. Steinhardt, PRL 84, 2000)

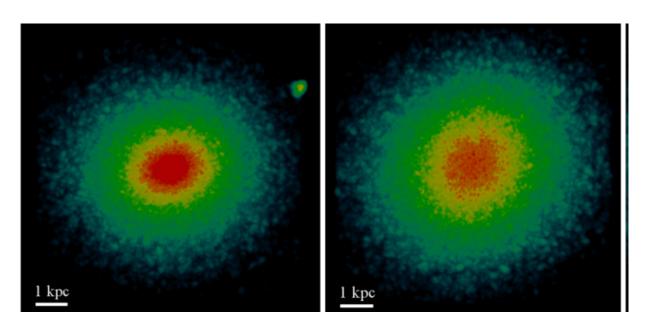
DM scatters before reaching center of galaxy


$$egin{array}{lll} rac{\sigma_{\chi\chi}}{m_{\chi}} &= 8 imes 10^{-(25-22)} \,
m{cm^2/GeV} \ = 4.5 - 450 \,
m{cm^2/g} \end{array}$$

SIDM Qualitative Effects on Halo Structure:

energy exchange isotropic velocity distribution limited sub-halo destruction

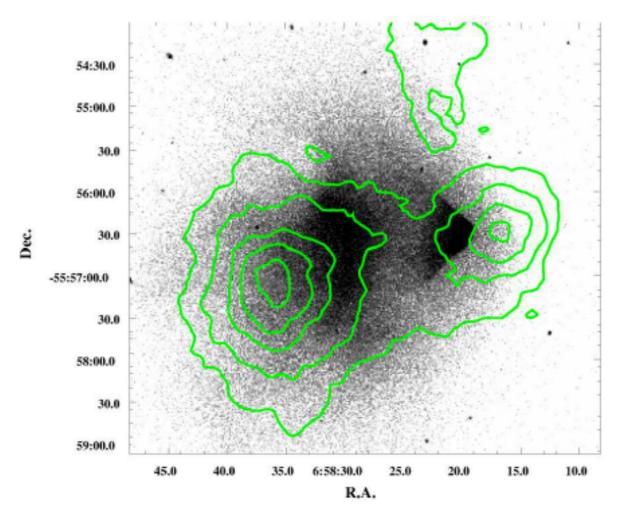
SIDM Simulations


CDM and SIDM simulations

(M. Rocha et al., MNRAS 430, 2013)

DM halos surface densities (A.Peter et al., MNRAS 430, 2013)

Dwarf Cores



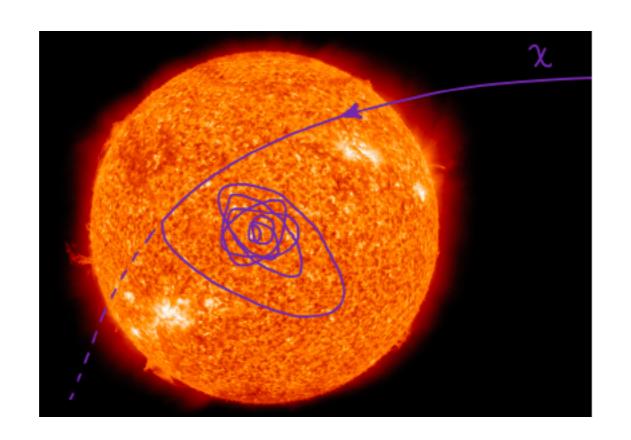
Elbert, Bullock et al., MNRAS 453 (2015)

- constant density cores:
 much reduced central density
 - subhalo content is modestly reduced

Milky Way Dwarfs Kinematics (Zavala et al., MNRAS 431, 2013) Xray image and lensing contour

SIDM Constraints

Bullet Cluster


(S. Randall et al., ApJ **679**, 2008) Xray image and lensing contour

$$rac{\sigma_{\chi\chi}}{\mathbf{m}_{\chi}}~<~\mathbf{1.25~cm^2/g}$$

SIDM will be effective if
$$0.1 < \frac{\sigma_{\chi\chi}}{m_\chi} < 1~{
m cm^2/g}$$

Probing SIDM with neutrinos

Self-Interaction enhances DM capture in the Sun

v flux from DM annihilation will also be enhanced

Independently probe SI interesting σ_{xx}/m_{xx} region

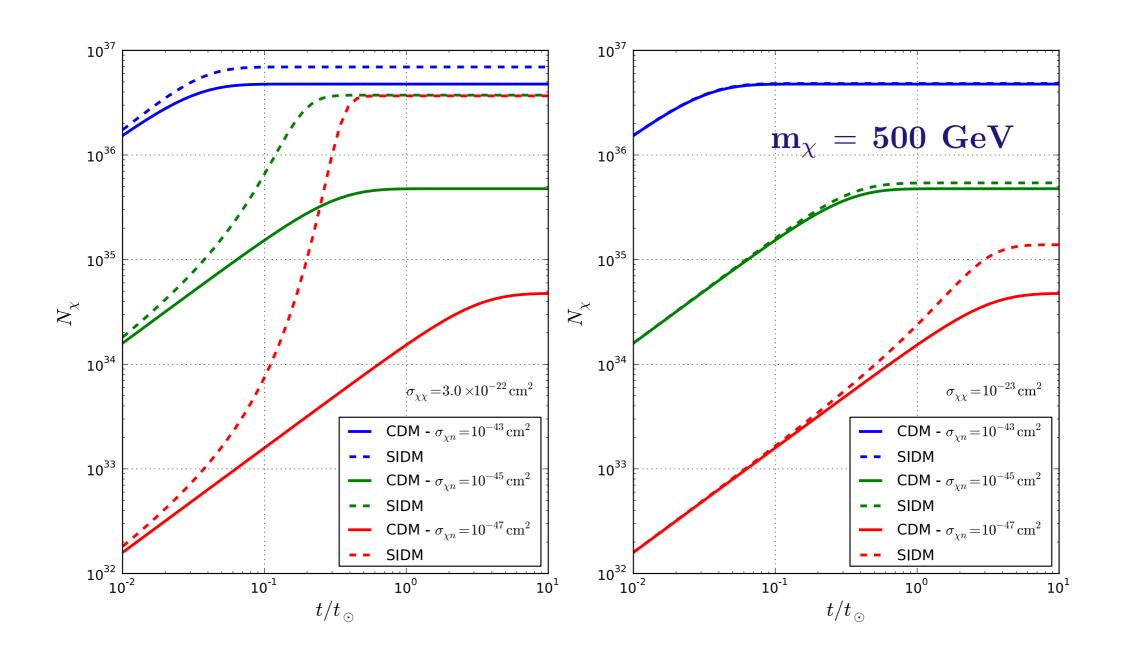
1. determine enhanced v flux (simulation) 2. compare predictions with IceCube results

SIDM enhances DM Capture

$$\dot{\mathbf{N}} = \mathbf{\Gamma}_{\mathbf{C}} + \mathbf{\Gamma}_{\chi\chi} - \mathbf{\Gamma}_{\mathbf{A}}$$

$$\dot{\mathbf{N}} = \mathbf{\Gamma}_{\mathbf{C}} + \mathbf{C}_{\mathbf{S}} \mathbf{N}_{\chi} - \mathbf{C}_{\mathbf{A}} \mathbf{N}_{\chi}^{2}$$

SIDM enhances capture in the Sun but not in the Earth SI elastic scattering ejects DM from Earth (Zentner, PRD 80, 2009)


Equilibrium among capture and annihilation rates

=> maximum annihilation rate


$$oldsymbol{\Gamma_{A}} = rac{\mathbf{C_{A}N^2}}{2} = \mathbf{f}(oldsymbol{\Gamma_{C}}, oldsymbol{\Gamma_{\chi\chi}})$$

SIDM Capture Enhancement

Expedites time scale for capture and annihilation equilibrium

Enhanced Neutrino Flux

Capture 1

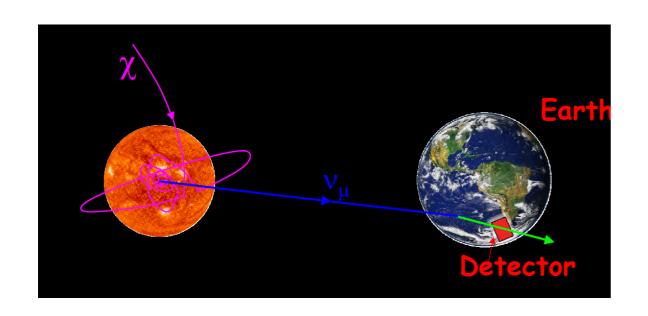
Annihilation rate 1

ν flux 🕇

 M_{χ} : 20 GeV \rightarrow 5 TeV

Annihilation Channels:

$$\chi \chi \rightarrow \mathbf{W}^+ \mathbf{W}^ \tau^+ \tau^ \chi \chi \rightarrow \mathbf{b} \overline{\mathbf{b}}$$


IceCube Results:

Winter High ($E_{\nu} > 95 \text{ GeV}$)

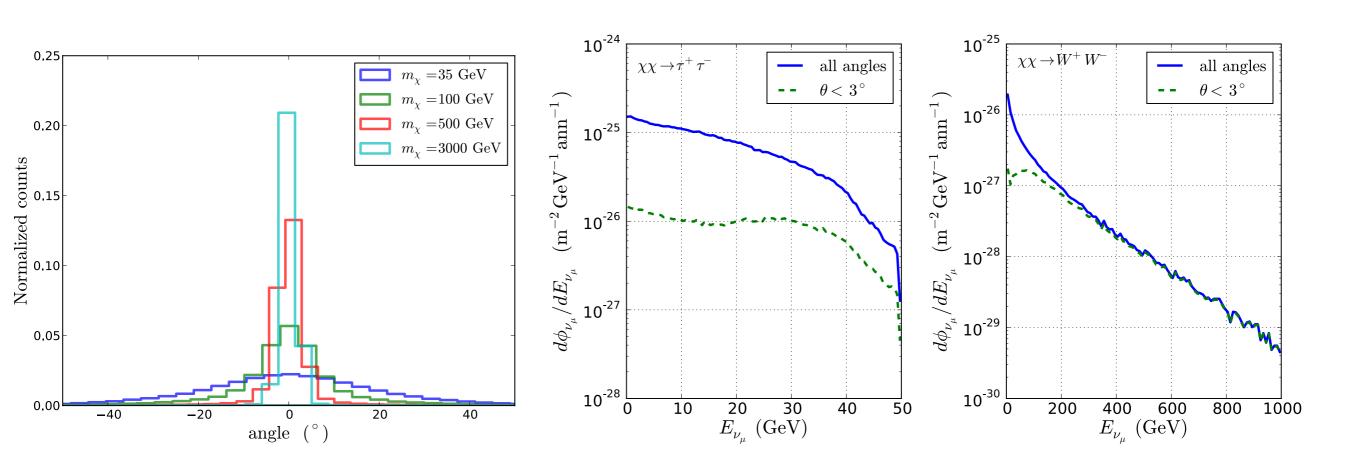
Winter Low ($E_{\nu} \leq 95 \text{ GeV}$)
Summer Low

V production and propagation

- Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson JCAP 01 2008)

=> CC and NC interactions

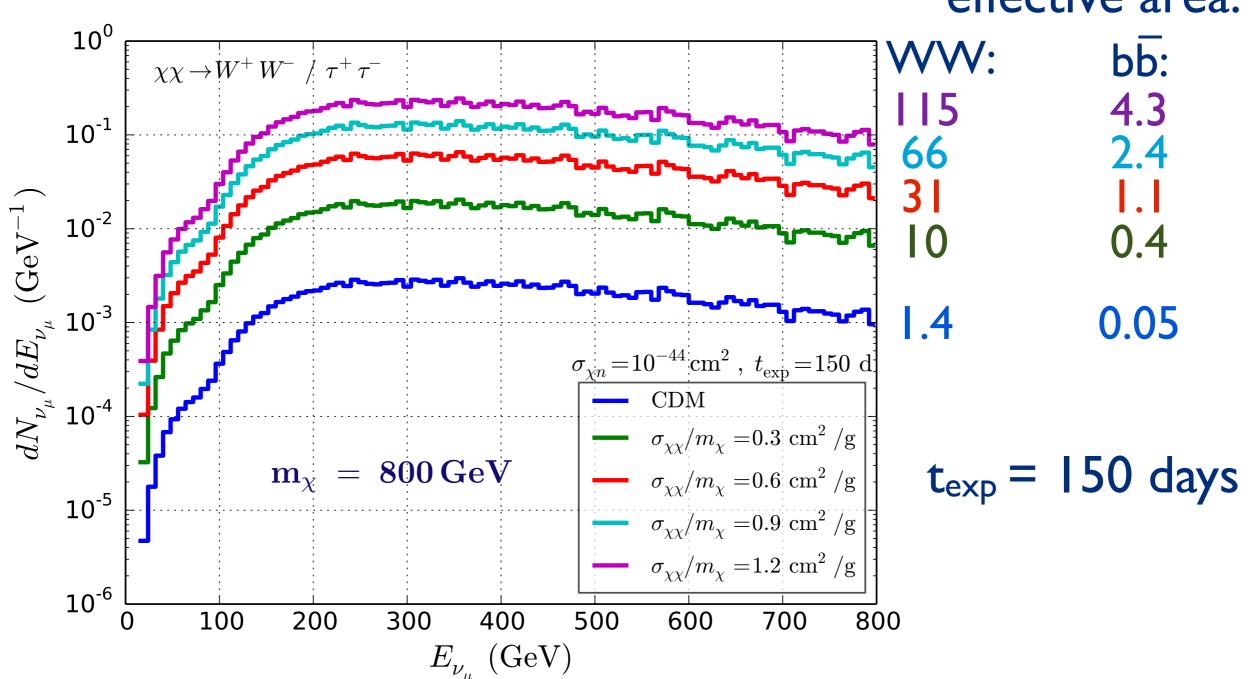

=> v oscillations

- Output: V_{μ} flux $\left(\frac{d\phi_{\nu}}{dE_{\nu}}\right)_{d}$ at the detector
- Number of μ at given angular region Ω at IceCube:

$$\mathbf{N}_{\mathbf{\mu}} = \mathbf{\Gamma}_{\mathbf{A}} \, \mathbf{t_{exp}} \, \int_{\mathbf{E_{thr}}} \, rac{\mathbf{d} \Phi_{
u_{\mu}}}{\mathbf{d} \mathbf{E}_{
u}} \, \mathbf{A_{eff}}(\mathbf{E}) \, \mathbf{d} \mathbf{E}_{
u}$$

Angular Smearing

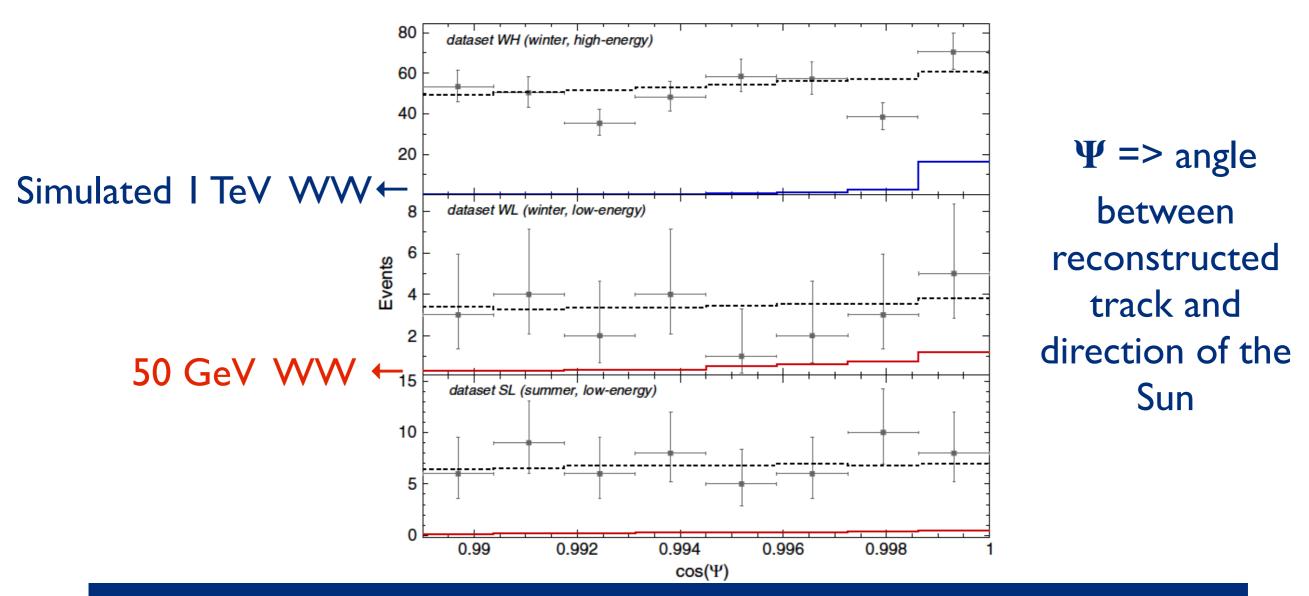
IceCube's angular resolution: ~ 4° for 100 GeV ν Energy Dependent: increases (decreases) for lower (higher) energies (M. Danninger - PhD Thesis)



 $M_{\chi} = 50 \text{ GeV}$

 $M_{\chi} = 1000 \text{ GeV}$

Energy Spectrum at Detector


IceCube-79 effective area:

IceCube-79 DM Search

IceCube coll. (PRL 110 - 2013)

- 317 data taking days (June 2010 May 2011)
- Deep Core data: summer + lower energies

Results are consistent with atmospheric bckgrd

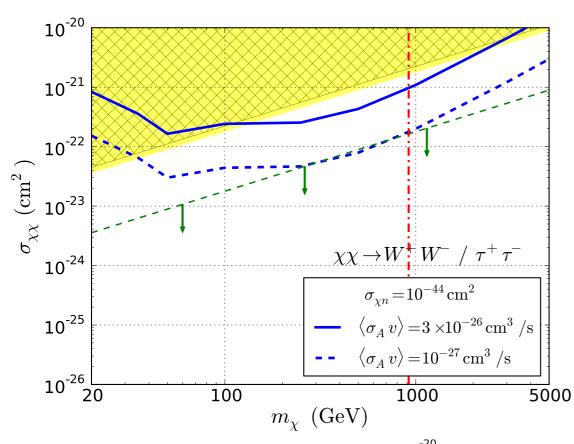
IceCube-79 DM Search

IceCube-79 results

PRL 110, 131302 (2013)

PHYSICAL REVIEW LETTERS

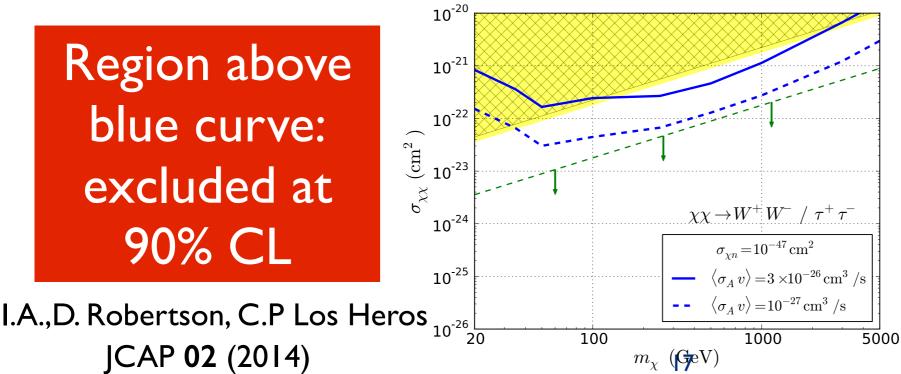
week ending 29 MARCH 2013

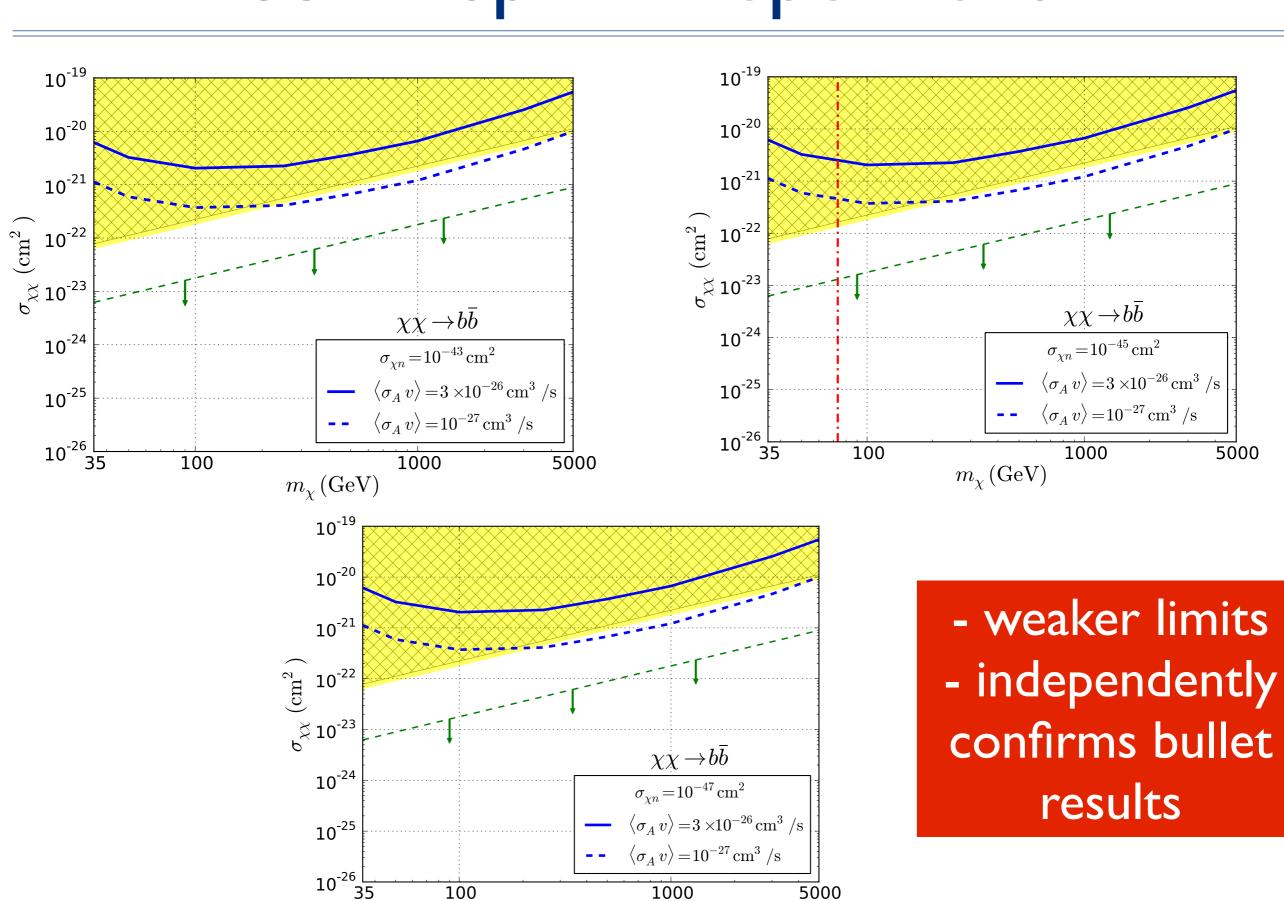

TABLE I. Results from the combination of the three independent data sets. The upper 90% limits on the number of signal events μ_s^{90} , the WIMP annihilation rate in the Sun Γ_A , the muon flux Φ_μ and neutrino flux Φ_ν , and the WIMP-proton scattering cross sections (spin independent, $\sigma_{\text{SI},p}$; spin dependent, $\sigma_{\text{SD},p}$) at the 90% confidence level, including systematic errors. The sensitivity $\bar{\Phi}_\mu$ (see the text) is shown for comparison.

m_{χ}	Channal	90	Γ_A	$\bar{\Phi}_{\mu}$	Φ_{μ}	Φ _ν	$\sigma_{\mathrm{SI},p}$	$\sigma_{\mathrm{SD},p}$
(GeV/c^2)	Channel	μ_s^{90}	(s^{-1})	$(km^{-2}y^{-1})$	$(km^{-2}y^{-1})$	$(km^{-2}y^{-1})$	(cm ²)	(cm ²)
20	$\boldsymbol{\tau^+\tau^-}$	162	2.46×10^{25}	5.26×10^{4}	9.27×10^{4}	2.35×10^{15}	1.08×10^{-40}	1.29×10^{-38}
35	$\boldsymbol{\tau^+\tau^-}$	70.2	1.03×10^{24}	1.03×10^{4}	1.21×10^{4}	1.02×10^{14}	6.59×10^{-42}	1.28×10^{-39}
35	$bar{b}$	128	1.99×10^{26}	5.63×10^{4}	1.04×10^{5}	6.29×10^{15}	1.28×10^{-39}	2.49×10^{-37}
50	$oldsymbol{ au}^+ oldsymbol{ au}^-$	19.6	1.20×10^{23}	4.82×10^{3}	2.84×10^{3}	1.17×10^{13}	1.03×10^{-42}	2.70×10^{-40}
50	$bar{b}$	55.2	1.75×10^{25}	2.06×10^{4}	1.80×10^{4}	5.64×10^{14}	1.51×10^{-40}	3.96×10^{-38}
100	W^+W^-	16.8	3.35×10^{22}	1.49×10^{3}	1.19×10^{3}	1.23×10^{12}	6.01×10^{-43}	2.68×10^{-40}
100	$bar{b}$	28.9	1.82×10^{24}	7.57×10^{3}	5.91×10^{3}	6.34×10^{13}	3.30×10^{-41}	1.47×10^{-38}
250	W^+W^-	29.9	2.85×10^{21}	3.04×10^{2}	4.15×10^{2}	9.72×10^{10}	1.67×10^{-43}	1.34×10^{-40}
250	$bar{b}$	19.8	1.27×10^{23}	1.85×10^{3}	1.45×10^{3}	4.59×10^{12}	7.37×10^{-42}	5.90×10^{-39}
500	W^+W^-	25.2	8.57×10^{20}	1.46×10^{2}	2.23×10^{2}	2.61×10^{10}	1.45×10^{-43}	1.57×10^{-40}
500	$bar{b}$	30.6	4.12×10^{22}	8.53×10^{2}	1.02×10^{3}	1.52×10^{12}	6.98×10^{-42}	7.56×10^{-39}
1000	W^+W^-	23.4	6.13×10^{20}	1.19×10^{2}	1.85×10^{2}	1.62×10^{10}	3.46×10^{-43}	4.48×10^{-40}
1000	$bar{b}$	30.4	1.39×10^{22}	4.33×10^{2}	5.99×10^{2}	5.23×10^{11}	7.75×10^{-42}	1.00×10^{-38}
3000	W^+W^-	22.2	7.79×10^{20}	1.09×10^{2}	1.66×10^{2}	1.65×10^{10}	3.44×10^{-42}	5.02×10^{-39}
3000	$bar{b}$	26.1	4.88×10^{21}	2.52×10^{2}	3.47×10^{2}	1.89×10^{11}	2.17×10^{-41}	3.16×10^{-38}
5000	W^+W^-	22.8	8.79×10^{20}	1.01×10^{2}	1.58×10^{2}	1.77×10^{10}	1.06×10^{-41}	1.59×10^{-38}
5000	$bar{b}$	26.4	6.50×10^{20}	2.21×10^{2}	3.26×10^{2}	1.63×10^{11}	4.89×10^{-41}	7.29×10^{-38}

Models which predict more events can be excluded

Probing SIDM models


$W^+W^-/\tau^+\tau^-$ - Spin Independent


Region above blue curve: excluded at 90% CL

JCAP 02 (2014)

- **Bullet Cluster**
- Halo Shapes
- SIDM too low
- --- LUX (to the left or between lines)

Spin Independent

 $m_\chi ({
m GeV})$

5000

confirms bullet

SIDM Constraints from IceCube

SIDM is severely constrained if annihilates into WW

most SIDM effective models are ruled out

• bb analysis independently confirms bullet cluster results

SIDM can solve CDM potential small scale problems if:

Annihilation produces lower energy neutrinos

Self-scattering is velocity dependent

vdSIDM Enhances DM Capture and Annihilation

Why velocity dependent SIDM?

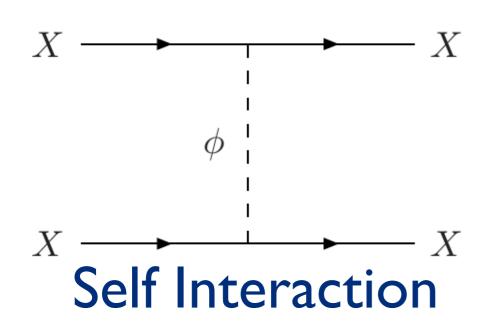
- ullet Clusters: v ~1000 Km/s; $rac{\sigma_{\chi\chi}}{m_\chi} < 0.47~
 m cm^2/g$
- Dwarfs: v ~10 Km/s; $0.1-0.5 \le \frac{\sigma_{\chi\chi}}{m_{\chi}} \le 10-50 \ \mathrm{cm^2/g}$

$$\dot{\mathbf{N}} = \mathbf{\Gamma}_{\mathbf{C}} + \mathbf{\Gamma}_{\chi\chi} - \mathbf{\Gamma}_{\mathbf{A}}$$

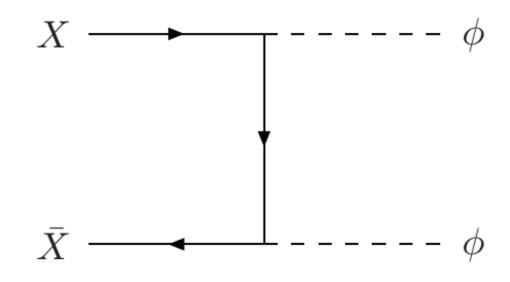
$$oldsymbol{\Gamma}_{\chi\chi} \, \propto \, \sigma_{\chi\chi}({f v}_{
m rel})$$

 $\sigma(\mathbf{v}_{\mathrm{rel}}) \to \mathrm{Sommerfeld}$ enhanced

$${f \Gamma}_{
m A} \quad
ightarrow \,$$


vdSIDM Model

Tulin, Yu & Zurek PRD 87 (2013)

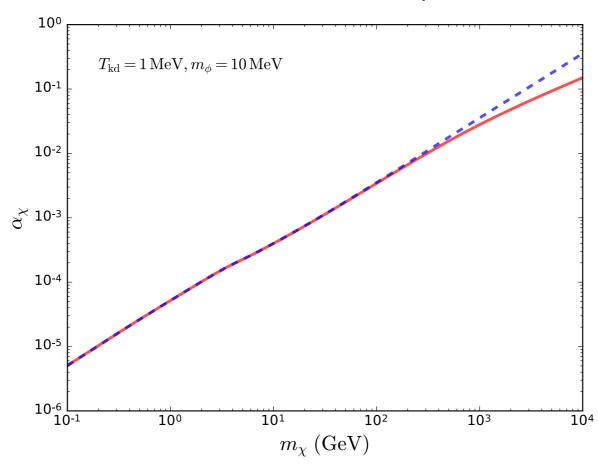

DM Elastic Scattering

$$\mathcal{L}_{int} = \mathbf{g}_{\chi} \, \overline{\chi} \, \gamma^{\mu} \, \chi \, \phi_{\mu}$$

$$\chi \equiv DM$$
 Fermion

$$\phi \equiv \text{vector mediator}$$

DM Annihilation


vdSIDM Model

Parameters:
$$\alpha_{\chi} = \frac{\mathbf{g}_{\chi}}{4\pi}$$
, \mathbf{m}_{χ} , \mathbf{m}_{ϕ}

$$\mathrm{m}_{\phi} \sim 1-100\,\mathrm{MeV}$$

to solve small scale problems

(Tulin, Yu, Zurek - PRD 87 (2013))

Assuming Ω_{DM} is set by thermal freeze-out

Coupling to SM

Kaplinghat, Tulin & Yu PRD 89 (2014)

ϕ mediator couples to SM through γ or Z mixing

$$\mathcal{L}_{\mathbf{mix}} = \frac{\epsilon_{\gamma}}{2} \phi_{\nu\mu} \mathbf{F}^{\mu\nu} + \mathbf{m}_{\mathbf{Z}}^{2} \epsilon_{\mathbf{Z}} \phi_{\mu} \mathbf{Z}^{\mu}$$

$$\mathcal{L}_{\mathbf{int}} = \mathbf{e}\phi_{\mu} \left(\epsilon_{\mathbf{p}} \overline{\mathbf{p}} \gamma^{\mu} \mathbf{p} + \epsilon_{\mathbf{n}} \overline{\mathbf{n}} \gamma^{\mu} \mathbf{n} \right)$$

$$\epsilon_{\mathbf{p}} = \epsilon_{\gamma} + \mathbf{0.05} \epsilon_{\mathbf{Z}}$$

$$\epsilon_{\mathbf{n}} = -\mathbf{0.6} \epsilon_{\mathbf{Z}}$$

$$\epsilon_{\gamma} \text{ and } \epsilon_{\mathbf{Z}} << \mathbf{1}$$

$$η = εn / εp ≠ 1 => isospin violation$$

$$\begin{array}{c|c}
X & \longrightarrow & X \\
\hline
\phi & \vdots \\
f & \longrightarrow & f
\end{array}$$

DM - nucleon scattering

Capture in the Sun

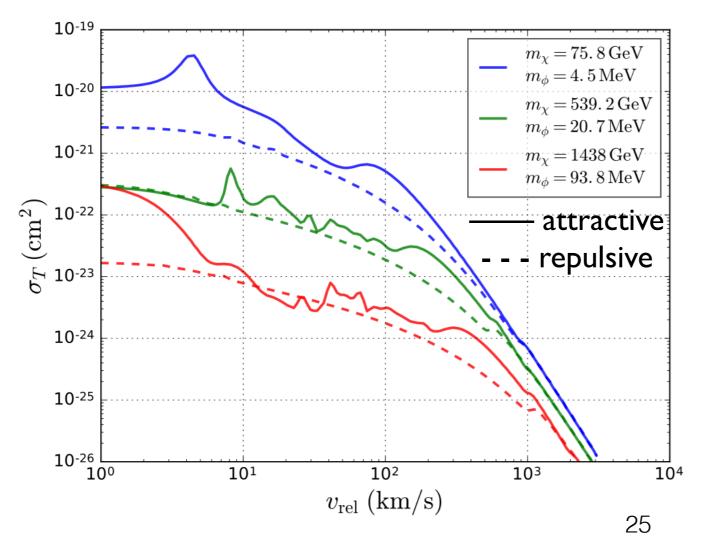
Scattering with Sun's Nuclei

$$\mathbf{\Gamma_C} \propto \mathbf{n_\chi} \, \mathbf{n_N} \, \sigma_{\chi \mathbf{N}}$$

$$\sigma_{\chi \mathbf{N}}(\mathbf{q^2} = \mathbf{0}) = \mathbf{16}\pi \alpha_{\mathbf{em}} \alpha_{\chi} \frac{\mu_{\chi \mathbf{N}}^2}{\mathbf{m}_{\phi}^2} \left[\epsilon_{\mathbf{p}} \mathbf{Z} + \epsilon_{\mathbf{n}} \left(\mathbf{A} - \mathbf{Z} \right)^2 \right]$$

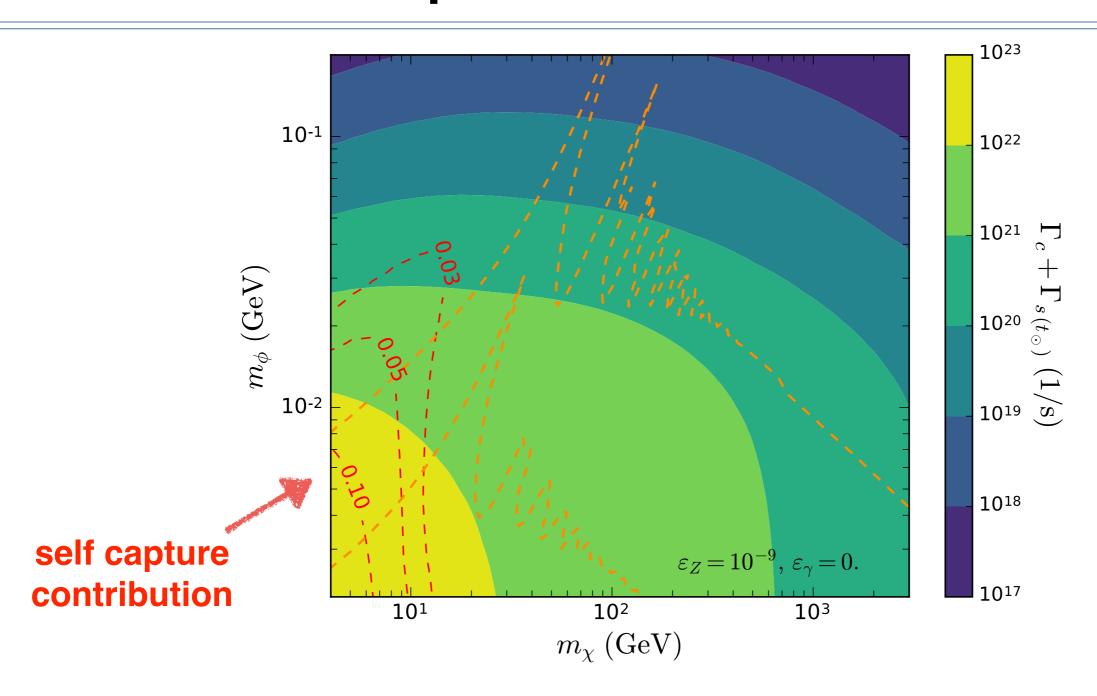
 $\mathrm{m}_{\phi} \sim 1-100\,\mathrm{MeV}$ is about same order as momentum transfer

suppression factor:


$$\sigma_{\chi \mathbf{N}} = \sigma_{\chi N}(q^2 = 0) \times \frac{m_{\phi}^4}{\left(m_{\phi}^2 + q^2\right)^2}$$

Capture in the Sun

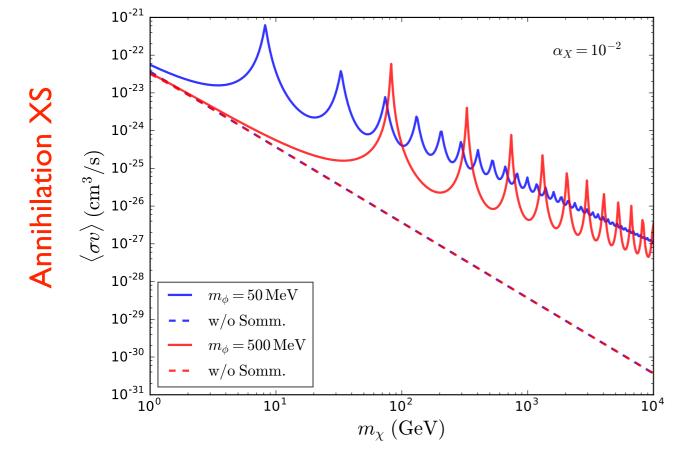
DM Self Scattering


non relativistic limit => Yukawa potential

$$\mathbf{V}(\mathbf{r}) = \pm \frac{\alpha_{\chi}}{\mathbf{r}} \exp(-\mathbf{m}_{\phi}\mathbf{r}) - \rightarrow \mathbf{attractive} \ (\chi \overline{\chi}) + \rightarrow \mathbf{repulsive} \ (\chi \chi \ \mathbf{or} \ \overline{\chi} \overline{\chi})$$

Tulin, Yu & Zurek PRD **87** (2013)

Capture with vdSIDM


Sommerfeld effect does not play a crucial role => v ~ 1400 km/s

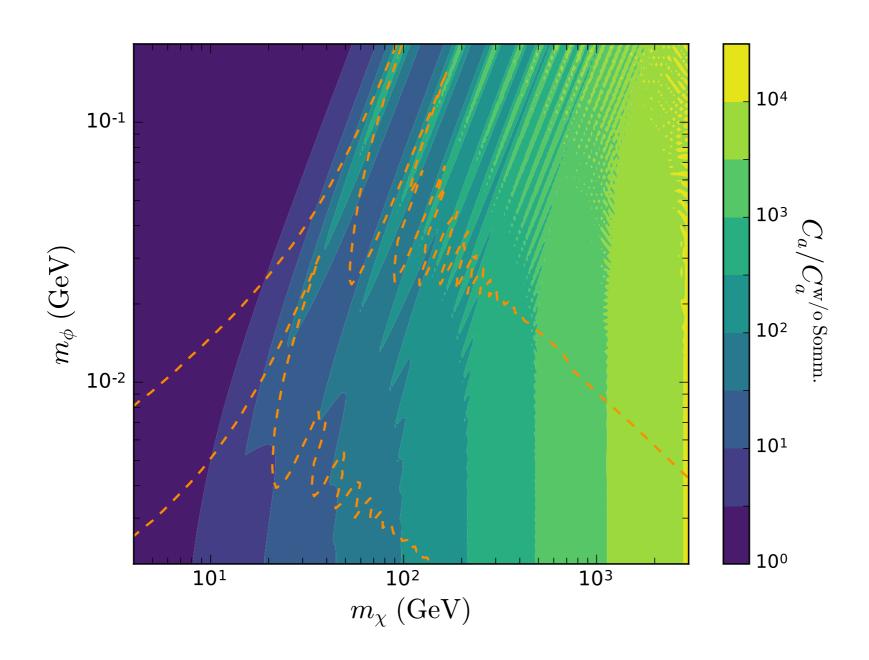
Annihilation in the Sun

$$\Gamma_{
m A} = rac{1}{2} < \sigma_{
m A} {
m v} > {
m V}_{
m eff}$$

$$<\sigma_{\mathbf{A}}\mathbf{v}> = rac{1}{2}\left(rac{\mathbf{m}_{\chi}}{\pi\mathbf{T}_{\chi}}
ight)^{\mathbf{3}/\mathbf{2}}\int\mathbf{S}(\sigma_{\mathbf{a}}\mathbf{v})^{\mathbf{tree}}\mathbf{v}^{\mathbf{2}}\mathbf{e}^{-rac{\mathbf{m}\chi\mathbf{v}^{\mathbf{2}}}{4\mathbf{T}\chi}}\mathbf{d}\mathbf{v}$$

S = Sommerfeld enhancement

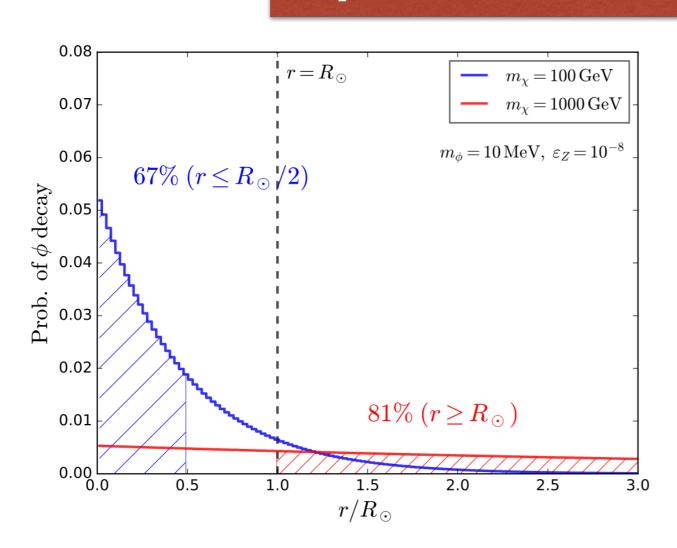
Annihilation Channel:


$$\chi \overline{\chi} \rightarrow \phi \phi \rightarrow 2\nu_{l} 2\overline{\nu_{l}}$$

Branching Ratio:

$$\mathbf{BR}(\epsilon_{\gamma} = \epsilon_{\mathbf{Z}}) = \frac{\mathbf{6}}{\mathbf{7}}$$

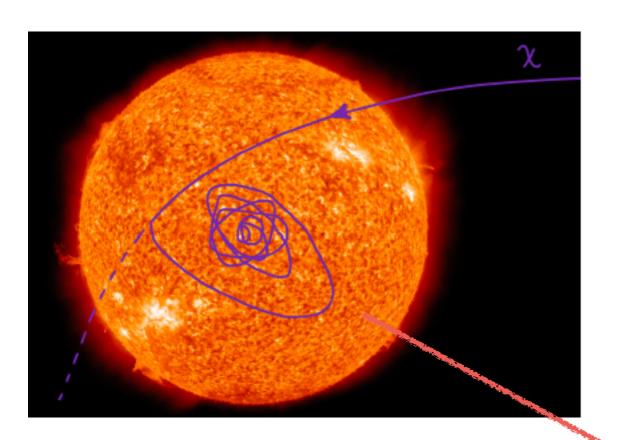
$$\mathbf{BR}(\epsilon_{\gamma} = \mathbf{0}, \epsilon_{\mathbf{Z}}) = \mathbf{1}$$


Annihilation with vdSIDM

Sommerfeld effect plays a significant role

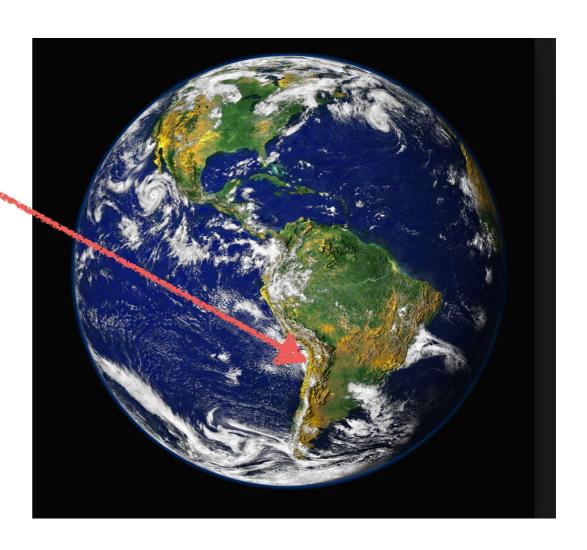
v Production and Propagation

ϕ lifetime is important


$$\lambda_\phi/R_\odot pprox 0.04(rac{10^{-8}}{arepsilon_Z})^2(rac{10\,\mathrm{MeV}}{m_\phi})(rac{m_\chi/m_\phi}{1000})$$

Standard Wimp: V production in Sun's core

vdSIDMS: V production not necessarily in the core


$$au_\phi \, = \, \mathbf{1}\,\mathbf{s}\, \left(rac{\mathbf{10^{-10}}}{\epsilon_{\mathbf{Z}}}
ight)^{\mathbf{2}} \left(rac{\mathbf{m}_\phi}{\mathbf{10\,MeV}}
ight)$$

Further enhances expected neutrino signal for some values of parameter space

v Production point is determined based on ϕ decay probability

From there on: V are propagated to detector

vdSIDM Probes at V Telescopes

From IceCube via DeepCore to PINGU

IceCube

Instrumented volume: 1 Gt

Average DOM density: 5×10⁻⁶ m⁻³

Target energy: ≥ 100 GeV

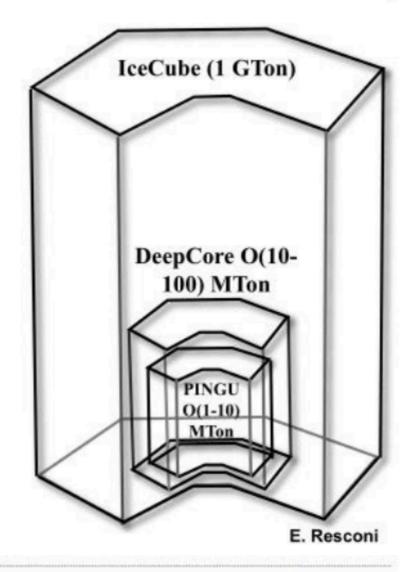
DeepCore

Instrumented volume: 10-100 Mt Average DOM density: 20×10⁻⁶ m⁻³ Target energy: 10 GeV - 100 GeV

PINGU

Instrumented volume: 1-10 Mt

Average DOM density: > 200×10⁻⁶ m⁻³


Target energy: 1 GeV - 20 GeV

PINGU talks at DPG:

Mo T109.7 OM development

Mi T89.8,T89.9 Oscillations / matter effects

Do T104.5 Reconstruction

V_μ at IceCube / DeepCore and Pingu

Sensitivity to VdSIDM

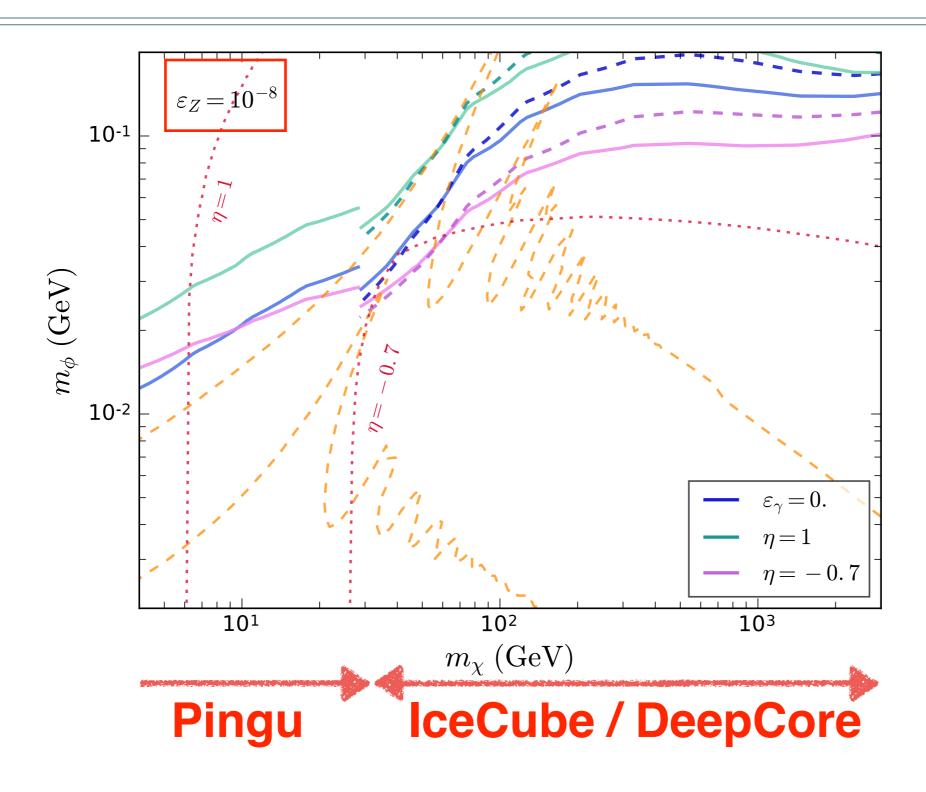
```
IceCube-DeepCore DM data collection: t_{exp} = 532 days (3 austral years) IceCube Coll. - Astropart. Phys. 35 (2012) (Same t_{exp} for Pingu)
```

Number of signal events:
$$N_{
u}^{
m s} = \Gamma_a t_{
m exp} imes \int_{\Delta\Omega} \int_{E_{
m th}}^{m_\chi} rac{d^2 \phi_{
u}}{dE_{
u} d\Omega} A_{
m eff}(E_{
u}) dE_{
u} d\Omega$$

3 samples:
$$m_X < 50 \text{ GeV} => \text{ only DeepCore}$$
 $m_X > 500 \text{ GeV} => \text{ full IceCube}$ $500 < m_X < 50 \text{ GeV} => \text{ combined analysis}$ $+ \text{ Pingu}$

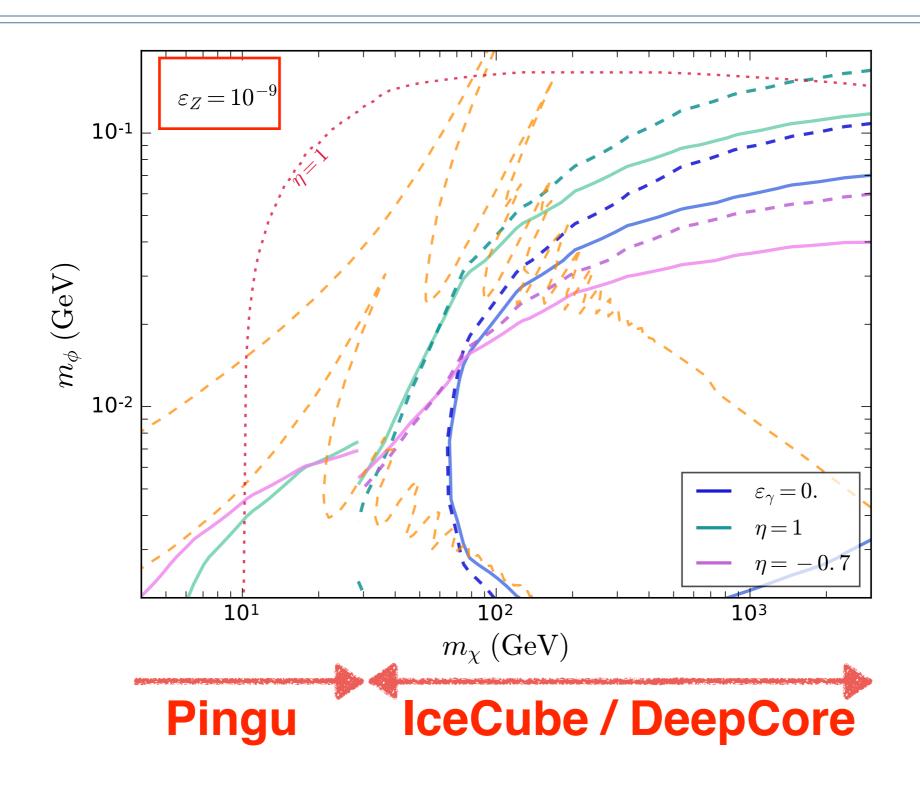
v at IceCube / DeepCore and Pingu

• Number of background events: $N_{
u}^{
m b} = t_{
m exp} imes \int_{E_{
m th}}^{E_{
m max}} rac{d\phi_{
u_{
m atm}}}{dE_{
u}} A_{
u}(E_{
u}) dE_{
u} imes \Delta\Omega$


Honda et al., PRD 92 (2015)

Detector's effective areas and acceptance angles

$$\Delta\Omega = 2\pi(1-\cos\Psi)$$


Ψ depends on energy 10 and 2.8° as reference

Results

Denis Robertson, IA JCAP 1802 (2018)

Results

Denis Robertson, IA JCAP 1802 (2018)

Conclusions

- SIDM is severely constrained if annihilates into WW
- SIDM annihilation into bb confirms bullet cluster results
 I.A, C. P. de Los Heros & Denis S. Robertson JCAP 02, 2014
- IceCube / DeepCore can probe vdSIDM with data already collected
 - \bigstar for $\varepsilon_z = 10^{-9}$ sensitivity covers almost all interesting region PINGU will cover remaining parameter space
 - \bigstar for $\varepsilon_z = 10^{-8}$ sensitivity decreases, but $m_x > 70$ GeV can be probed
 - IceCube / DeepCore are competitive with possible
 DD results and drastically better in the case of isospin violation

Denis Robertson, IA, JCAP 1802, 2018