

Dark Matter Modulation with SABRE

Lindsey Bignell for the SABRE Collaboration

Identification of Dark Matter 2018, Brown University

Annual Modulation

WIMP dark matter detection: elastic scattering.

Flux of dark matter modulates through the year.

DAMA: reports a highly significant (11.9 σ) modulation signal consistent with dark matter in their NaI:Tl detector.

No-one else has seen DAMA's signal

Latest results →~5 orders of magnitude better sensitivity than DAMA.

Model-dependent

Do WIMPs like Na?

Does DAMA have a seasonal systematic?

SABRE is a model-independent test of DAMA.

Ultrapure Nal:TI Target Detector

Intrinsic radioactivity limits WIMP sensitivity.

SABRE has made the most radiopure Nal:Tl to date.

- 'Astrograde' powder (Sigma Aldrich).
- Carefully-developed powder preparation and growth protocols (Princeton + RMD).

Lower radioimpurity than DAMA.

Production growth underway.

High QE + low background PMTs: 1 keV threshold design.

Element	DAMA powder	DAMA crystals	Astro-Grade	SABRE crystal
	[ppb]	[ppb]	[ppb]	[ppb]
K	100	~13	9	9
Rb	n.a.	< 0.35	< 0.2	< 0.1
U	~0.02	$0.5 - 7.5 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Th	~0.02	$0.7 - 10 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$

Liquid Scintillator Veto

External background tagging

Muons, spallation neutrons, etc.

Intrinsic background tagging

- Correlated gammas from decays
- ⁴⁰K is especially important

Radiopure Shielding

- SABRE North: Borexino's pseudocumene-based liquid scintillator
- SABRE South: Linear alkylbenzene-based LS, ex-CTF purification

Proof-of-Principle veto 84% of ⁴⁰K in signal range.

Two Hemisphere Experiment

SABRE will be at two underground sites in the Northern/Southern Hemisphere. Seasonal background modulations are out of phase Dark matter modulations are in phase (and strong evidence for DM).

Stawell (SABRE South)

Gran Sasso (SABRE North)

The Stawell Underground Physics Laboratory

The first underground laboratory in the Southern Hemisphere.

SABRE Proof of Principle at LNGS

Work underway to commission PoP (5.2 kg NaI:TI).

Test veto and background performance, validate simulation model.

Characterisation Measurements

- Quenching factor:
 - Important to interpretation of signal.
 - Poorly understood/conflicting measurements.
- Accelerator Mass Spectrometry and ICP-MS:
 - Radioimpurity quantification especially ²¹⁰Pb (major background for other experiments)
- Liquid scintillator testing
 - Purification, compatibility testing, etc.

Proof-of-Principle Simulations

Crystal-veto coincidences tag ⁴⁰K Auger electron + gamma events.

Backgrounds assume 2 months of cosmogenic decay.

10 ppb ⁴⁰K in crystal (red trace) is detectable above background; 10% precision after 2 months of measurement.

Proof-of-Principle Simulations

Isotope	Rate, veto OFF	Rate, veto ON		
	$[\mathrm{cpd/kg/keV}]$	$[\mathrm{cpd/kg/keV}]$		
Intrinsic				
$^{87}\mathrm{Rb}$	$6.1 \cdot 10^{-2}$	$6.1 \cdot 10^{-2}$		
$^{40}{ m K}$	$2.5 \cdot 10^{-1}$	$4.0 \cdot 10^{-2}$		
$^{238}\mathrm{U}$	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$		
$^{210}{ m Pb}$	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$		
$^{85}{ m Kr}$	$1.9 \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$		
$^{232}\mathrm{Th}$	$1.9 \cdot 10^{-3}$	$1.7\cdot 10^{-3}$		
Tot Intrinsic	$3.5 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$		
Cosmogenic				
$^{121}\mathrm{Te}$	$2.6 \cdot 10^{-1}$	$3.3 \cdot 10^{-2}$		
$^{22}\mathrm{Na}$	$3.6 \cdot 10^{-2}$	$2.7 \cdot 10^{-3}$		
$^{125}\mathrm{I}$	$1.8 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$		
$^{129}\mathrm{I}$	$3.4 \cdot 10^{-4}$	$3.4 \cdot 10^{-4}$		
$^{126}\mathrm{I}$	$2.0 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$		
$^{121m}\mathrm{Te}$	$1.3 \cdot 10^{-4}$	$7.0 \cdot 10^{-5}$		
$^{123m}\mathrm{Te}$	$7.6 \cdot 10^{-5}$	$5.1 \cdot 10^{-5}$		
$^{127m}\mathrm{Te}$	$5.0 \cdot 10^{-5}$	$4.9 \cdot 10^{-5}$		
$^{125m}\mathrm{Te}$	$5.3 \cdot 10^{-6}$	$5.1 \cdot 10^{-6}$		
$^{24}\mathrm{Na}$	_	-		
Tot Cosmogenic	$3.0 \cdot 10^{-1}$	$3.9 \cdot 10^{-2}$		
(180 days)				

Veto threshold: 100 keV.

Total background rejection efficiency = 70%.

Signal region: 0.22 counts day⁻¹ kg⁻¹ keV⁻¹.

50% from ⁸⁷Rb (a measurement limit!)

More details: https://arxiv.org/abs/1806.09344

Full-Scale Sensitivity

- Can rule DAMA in/out in 3 years, using modulation signal alone.
 - Confirm at 6 σ, reject at 5 σ. Model independent.

Conclusion

SABRE will confirm or refute the DAMA signal.

South detector will be housed in the first deep underground laboratory in the Southern Hemisphere.

Proof-of-Principle to start collecting data in Autumn 2018.

Bonus Slides

DAMA Details

250 kg of ultrapure Nal:Tl

Passive shielding

Temperature control

16

Sensitivity Calculation

Two independent analyses, both predict similar sensitivities.

Effect of varying the quenching factor:

