

Exposing Dark Sector with Z Factory

Xiao-Ping Wang July, 23 @ IDM 2018

Collaborated with Jia Liu, Lian-Tao Wang and Wei Xue Published in Phys.Rev. D97 (2018) no.9, 095044

Dark matter search @ collider

Dark Portal:

★ Vector Portal: $B_{\mu\nu}Z'^{\mu\nu}$

★ Higgs Portal: $S^2 H^{\dagger} H$

★ Axion portal: $\frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$

\star Neutrino Portal: *LHN*

Dark matter search @ collider

Dark Portal:

★ Neutrino Portal: LHN

Why Z Factory?

	Hadron Collider	Lepton Collider			
Signal	MET+X	MET+(X)			
Control C.M. Energy	No	Yes			
MET reconstruction	No	Yes			
Background	Huge	Small			
EWPT	Reasonable	Extreme			

EWPT @ LEP

EWPT @ LEP

0 1 2 3

EWPT @ LEP

Outline

* Dark Sector Models

- ★ Higgs portal + DM
- ★ Vector portal + DM
- ★ Axion-like particle
- ★ Magnetic inelastic DM, Rayleigh DM

*Exotic Z decay topologies

★Classifying by final states and resonance

Higgs Portal DM

* Higgs Portal Lagrangian:

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \lambda_1 \left(H^{\dagger} H \right) S - \lambda_2 \left(H^{\dagger} H \right) S^2 + \bar{\chi} \left(i \partial^{\mu} \gamma_{\mu} - m_{\chi}^0 \right) \chi - y_{\chi} S \bar{\chi} \chi + \dots$

* Scalar Mixing

$$\begin{pmatrix} \tilde{h} \\ \tilde{s} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

Relic abundance and Direct detection

Higgs Portal DM

* Z factory Search

Vector Portal DM

* Vector Portal Lagrangian

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + \frac{\epsilon}{2c_W} B_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu} A'_{\mu\nu} A'_{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu} A'_{\mu\nu} A'_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'_{\mu\nu} A'_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'^{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'^{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'^{$$

* Vector Mixing

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \\ A'_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \frac{m_{A'}^2 t_W}{-m_{A'}^2 + m_Z^2} \epsilon \\ 0 & 1 & \epsilon \\ \frac{m_Z^2 t_W}{m_{A'}^2 - m_Z^2} \epsilon & 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{Z}_{\mu} \\ \tilde{A}'_{\mu} \\ \tilde{A}'_{\mu} \end{pmatrix}$$

Interaction

$$\mathcal{L}_{\rm int} = \tilde{Z}_{\mu} \left(g J_Z^{\mu} - g_D \frac{m_Z^2 t_W}{m_Z^2 - m_{A'}^2} \epsilon J_D^{\mu} \right) + \tilde{A'}_{\mu} \left(g_D J_D^{\mu} + g \frac{m_{A'}^2 t_W}{m_Z^2 - m_{A'}^2} \epsilon J_Z^{\mu} + e \epsilon J_{\rm em}^{\mu} \right)$$

Vector Portal DM

* Complex scalar DM Lagrangian:

 $\mathcal{L}_S = (\partial_\mu S + ig_D A'_\mu S)^* (\partial^\mu S + ig_D A'^\mu S) - m_S^2 S^* S$

* Dark Sector Search @ Z factory

* Constraint results

Axion-like Particle

* Axion-like particle Lagrangian:

$$\mathcal{L}_{\rm ALP} = \frac{1}{4\Lambda_{aBB}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$$

* Interactions and decays

$$\Gamma \left(a \to \gamma \gamma \right) = \frac{1}{64\pi} \frac{1}{\Lambda_{aBB}^2} \cos^4 \theta_w m_a^3$$

$$\Gamma \left(Z \to \gamma a \right) = \frac{1}{64\pi} \frac{1}{\Lambda_{aBB}^2} \cos^2 \theta_w \sin^2 \theta_w m_Z^3$$

* Search @ Z factory

* Constraints

Magnetic inelastic DM, Rayleigh DM

* UV complete Lagrangian:

wa his

: =

+

$$\mathcal{L} = \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi + \bar{\psi}(iD_{\mu}\gamma^{\mu} - M_{\psi})\psi + (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - M_{\phi}^{2}\phi^{\dagger}^{16} \stackrel{16}{\phi} \stackrel{16}{=} \frac{1}{2}\delta m \bar{\chi}^{c}\chi + (\lambda \bar{\psi}\chi\phi + h.c.) \qquad \text{If } III.3.1. Model III.3.1.$$

Exotic Z decay Topology

exotic decay	topologies	n _{res}	models	exotic decay	topologies	n_{res}	models
$Z \to E + \gamma$	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	$\left 2\mathbf{A} : \frac{1}{\Lambda} \bar{\chi_2} d \right $	$\frac{\overline{\zeta_2}\sigma}{\overline{\beta_3}\overline{\chi_1}}Z \to (JJ)(JJ)$	$Z \to \phi_d A', \phi_d \to jj, A' \to jj$	2	6A: Vec
	$Z \to \chi \bar{\chi} \gamma$	0	2B: $\frac{1}{\Lambda^3}\bar{\chi}$		$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to jj$	2	6B: vect
	$Z \to a\gamma \to (\not\!\!\!E)\gamma$	1	2C: $\frac{1}{\Lambda_{2C}}$		$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to b\bar{b}$	2	6C: vect
	$Z \to A'\gamma \to (\bar{\chi}\chi)\gamma$	1	2D: $\epsilon^{\mu\nu\rho}$	$Z \to \gamma \gamma \gamma \gamma$	$Z \to \phi \gamma \to (\gamma \gamma) \gamma$	1	7A: AL]
$Z \to \not\!$	$Z \to \phi_d A', \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	3A: Vect				
	$\begin{bmatrix} Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to (\bar{\chi} \chi) \end{bmatrix}$	2	3B: 2HD				
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	3C: Inela				
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	3D: MIE)			
$Z \to \not\!\!\!E + \ell^+ \ell^-$	$\begin{vmatrix} Z \to \phi_d A', \ A' \to (\ell^+ \ell^-), \ \phi_d \to (\bar{\chi}\chi) \end{vmatrix}$	2	4A: Vect				
	$Z \to A'SS \to (\ell\ell)SS$	1	4B: Vect				
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	4C: Long				
	$Z \to \chi_2 \chi_1 \to \chi_1 \overline{A' \chi_1 \to (\ell^+ \ell^-) \not\!\!\!E}$	1	4D: Vect				
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^-$	0	4E: MID)			
	$Z \to \bar{\chi} \chi \ell^+ \ell^-$	0	4F: Ray	[

Z Factory Set Up

Detector Performance

$$\begin{split} & \text{Photoneous} \text{Rescalation} \stackrel{\delta E_{\gamma}}{=} \underbrace{\frac{\delta E_{\gamma}}{E_{\gamma}\sqrt{E_{\gamma}\sqrt{GEV_{\gamma}/GeV}}} \oplus 0.01} \oplus 0.01 , \\ & \text{Lepton momentum resolution} \stackrel{\delta E_{\gamma}}{=} \underbrace{\frac{GeV_{\gamma}}{E_{\gamma}\sqrt{E_{\gamma}\sqrt{GEV_{\gamma}/GeV}}}}_{p_{T}^{\ell}} \oplus \underbrace{\frac{10^{-3}\text{GeV}_{0}^{-3}\text{GeV}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}^{-3}\text{GeV}_{0}^{-3}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}^{-3}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}^{-3}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}^{-3}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}^{-3}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}{p_{T}^{\ell}}}_{j \neq 1} \underbrace{\frac{10^{-3}\text{GeV}_{0}}}_{j \neq 1} \underbrace{\frac{10^{$$

Preliminary Cut

$$|\eta| < 2.3, E_{\gamma} > 10 \text{GeV}, E_{\ell} > 5 \text{GeV}, E_{j} > 10 \text{GeV}, E_{(\text{MET})} > 10 \text{GeV},$$
$$y_{ij} \equiv \frac{2 \text{Min}(E_{i}^{2}, E_{j}^{2}) \left(1 - \cos \theta_{ij}\right)}{E_{vis}^{2}} \ge 0.001$$

SM Background include one photon from ISR

Results on Different Topologies

Summary

Dark Sector models:

★ Can provide leading and complementary constraints comparing to current collider limits and DM limits

* Exotic Z decay topologies:

- \bigstar Giga Z limit on BR $10^{-6} \sim 10^{-8.5}$
- \bigstar Tera Z limit on BR $10^{-7.5} \sim 10^{-11}$
- ★ Sensitivities on BR

 $2\gamma + MET \sim l^+l^- + MET > 2j + MET > \gamma + MET$

Any Questions?