

Current Status of Direct Dark Matter Searches

- No sign of WIMPs down to >10⁻⁴⁶ cm² @ 30 GeV
- New experiments exploring low-mass dark matter
- DAMA's signal remains unresolved

DAMA's Annual Modulation

Bernabei et al., arXiv:1805.10486

5

- DAMA/LIBRA-phase2 result with 1 keV threshold
 - (2-6) keV: 12.9 σ from 2.46 ton-year
 - (1-6) keV: 9.5 σ from 1.13 ton-year
- Modulation amplitude: (0.0103±0.0008) cpd/kg/keV in (2-6) keV
- Phase: (145±5) days
- Period: (0.999±0.001) year
- Long-standing conflict with other experiments using different target material

Global Nal Efforts

DAMA SABRE

COSINUS

KIMS (+ DM-Ice)

Eur.Phys.J. C **78** 107 (2018) Eur.Phys.J. C **77** 437 (2017) JINST **13** T02007 (2018) Phys.Rev. D 90 052006 (2014) (CsI) **PICOLON**

Astropart. Phys. 35 (2012) 749 Phys. Rev. D 90 092005 (2014)

Phys. Rev. D **93** 042001 (2016)

Phys. Rev. D **95** 032006 (2017)

~Apr. 1

~Oct. 1

- A joint effort between DM-Ice and KIMS collaborations
- 8 Nal(TI) crystals with 106 kg in total
- Located at Yangyang underground laboratory (Y2L), South Korea, with ~700 m rock overburden
- Physics run started September 2016

COSINE-100 Detector Configuration

COSINE-100 Construction Timeline

Dec. 2015 Mar. 2016

Sep. 2016

COSINE-100 Operation

- · Data taking since Sep. 2016
 - Stable operation
 - ~95% live time
 - Near 100% uptime outside of calibration
- 21.6 months of data accumulation
 - SET1 data (59.5 days) Background modeling, detector understanding, and WIMP analysis
 - SET2+SET3 data (585 days) Annual modulation analysis

Environmental Control/Monitoring

Monitoring stability
 of temperature,
 humidity,
 current/voltage, etc.

- < 0.5 °C temperature and < 2% humidity fluctuation inside the shielding structure
- Current and voltage of detectors very stable

See William Thompson's Thursday talk

Humidity (Air conditioner)

COSINE-100 Nal(TI) Crystals

CO HIME

- 8 Crystals, total 106 kg
- Culmination of R&D program with Alpha Spectra
- U/Th/K below DAMA, ²¹⁰Po very close
- High light yield
 - Crystal-5 & 8 used primarily for veto due to low light yield

Crystal	Mass	Size (inches	Powder	α Rate	$^{40}\mathrm{K}$	$^{238}\mathrm{U}$	$^{232}\mathrm{Th}$	Light Yield
	(kg)	$diameter \times length)$		(mBq/kg)	(ppb)	(ppt)	(ppt)	(PEs/keV)
Crystal-1	8.3	5.0×7.0	AS-B	3.20 ± 0.08	43.4 ± 13.7	< 0.02	1.3 ± 0.4	14.9 ± 1.5
Crystal-2	9.2	4.2×11.0	AS-C	2.06 ± 0.06	82.7 ± 12.7	< 0.12	< 0.6	14.6 ± 1.5
Crystal-3	9.2	4.2×11.0	AS-WSII	0.76 ± 0.02	41.1 ± 6.8	< 0.04	0.4 ± 0.2	15.5 ± 1.6
Crystal-4	18.0	5.0×15.3	AS-WSII	0.74 ± 0.02	39.5 ± 8.3		< 0.3	14.9 ± 1.5
Crystal-5	18.3	5.0×15.5	AS-C	2.06 ± 0.05	86.8 ± 10.8		2.4 ± 0.3	7.3 ± 0.7
Crystal-6	12.5	4.8×11.8	AS-WSIII	1.52 ± 0.04	12.2 ± 4.5	< 0.02	0.6 ± 0.2	14.6 ± 1.5
Crystal-7	12.5	4.8×11.8	AS-WSIII	1.54 ± 0.04	18.8 ± 5.3		< 0.6	14.0 ± 1.4
Crystal-8	18.3	5.0×15.5	AS-C	2.05 ± 0.05	56.2 ± 8.1		< 1.4	3.5 ± 0.3
DAMA				< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7.5

PMT Noise Rejection

- Dominant source of noise events comes from PMT noise
- Boosted Decision Tree (BDT) was utilized to reject such noise events

Selection Efficiency/Low Energy Spectrum

- ~70% efficiency at 2 keV
- 2 4 counts/keV/kg/day in region of interest depending on the crystal

- Data reproduced well with GEANT4 simulation
- Background well understood from 2 keV 2000 keV
- Dominant background from ²¹⁰Pb and ⁴⁰K, followed by cosmogenic ³H

- Using 59.5 days of data: 6303.9 kg·day exposure
- Spectrum fit for 2-20 keV including WIMP model
 - Likelihood analysis to fit data using background model and WIMP signal model (SHM as described in Savage *et al.*, JCAP 0904:010 (2009))
 - Background understanding consideration from V. Kudryavtsev *et al.* (Astropart. Phys. **33** (2010) 91)

Physics Analysis: WIMP Analysis

- Spectrum with known sources of backgrounds
- Excludes DAMA/LIBRA-phase1 w/ Nal(TI) (as spin-independent WIMP with Standard Halo Model)
- Consistent with null results from other direct detect experiments with different target medium

Physics Analysis: Annual Modulation Analysis

Sideband sample: Multiple-hit 2-6 keV

Sideband sample: Single-hit 6-10 keV

- Crystal 1, 5, and 8 are excluded in this analysis due to low light yield and excessive PMT noise
- Sideband data fits well with exponential models built with the known cosmogenic components

Physics Analysis: Annual Modulation Analysis

- Currently data in 2-6 keV is blinded, only using 9 % of total data
- Full data analysis will be using 585+ days of data
- Data quality, cosmogenic component estimation, background trend understanding almost done: Stay tuned!
- 5 years of running can rule out DAMA
- Agreed to combine data with ANAIS

Summary and Outlook

- · COSINE-100: Goal is to test DAMA's claim for dark matter observation; running very smoothly since Sept. 2016
- COSINE-100 confirms that DAMA's modulation signal cannot be from standard WIMP & SHM with NaI(TI)
- Model independent annual modulation analysis is ongoing
- · Crystal growing R&D is being developed in IBS, and looks promising
- Stay tuned for more exciting results to come!

See William Thompson's talk (yesterday): Detector Stability of COSINE-100 See Estella Barbosa de Souza's talk (today): Background Assessment of the COSINE-100 Experiment

Backup

DAMA Experiment

CO MARIE

- Located at LNGS, Italy
- 25 x 9.70 kg NaI (TI) detectors
 - Grown by Saint-Gobain
 - 0.85 1.3 cpd/kg/keV total background rate
- 2 PMTs/crystal
 - ~38.5% QE
 - Light yield of 5.5 7.5 pe/keV
 - 10 cm quartz lightguides attached
- DAMA/Nal (100 kg, 1996 2003), DAMA/
 LIBRA phase 1 (250 kg, 2003 2010),
 DAMA/LIBRA phase 2 (250 kg, 2010 2018)

LNGS

Bernabei et al., NIM A (2008)

Interpretation of the DAMA Result

"What is causing DAMA's modulation? Could it be some backgrounds?"

Interpretation of the DAMA Result

...models...

- Which particle?
- Which interaction coupling?
- Which Form Factors for each target-material?
- Which Spin Factor?
- Which nuclear model framework?
- Which scaling law?
- Which halo model, profile and related parameters?
- Streams?

...

About interpretation
See e.g.: Riv.N.Cim.26 n.1 (2003) 1, JMPD13 (2004) 2127, EPJC47 (2006) 263,

See e.g.: Riv.N.Cim.26 n.1 (2003) 1, JMPD 13 (2004) 2127, EPJC47 (2006) 263, IJMPA21 (2006) 1445, EPJC56 (2008) 333, PRD84 (2011) 055014, IJMPA28 (2013) 1330022

...and experimental aspects...

- Exposures
- Energy threshold
- Detector response (phe/keV)
- Energy scale and energy resolution
- Calibrations
- Stability of all the operating conditions.
- Selections of detectors and of data.
- Subtraction/rejection procedures and stability in time of all the selected windows and related quantities
- Efficiencies
- Definition of fiducial volume and nonuniformity
- Quenching factors, channeling, ...
- ...

Uncertainty in experimental parameters, as well as necessary assumptions on various related astrophysical, nuclear and particle-physics aspects, affect all the results at various extent, both in terms of exclusion plots and in terms of allowed regions/volumes. Thus comparisons with a fixed set of assumptions and parameters' values are intrinsically strongly uncertain.

No experiment can be directly compared in model independent way with DAMA

P. Belli, IDM2016

COSINE-100 Liquid Scintillator Veto

- 40K emits 1460 keV gamma with 3 keV Auger electron energy deposition in Nal crystal
- Tagging 1460 keV events with LS enables vetoing of 3 keV background events
- · Liquid scintillator internal contamination well modeled with simulation

- Muon veto with 37 plastic scintillator panels
- Events correlated with muon tagged
- Muon-induced events in Nal(TI) under investigation

COSINE-100 Muon Background

- Muon flux at COSINE-100 is ~3.98 x 10⁻⁷/cm²/s (344.29 muons/m²/day)
- Rate has been consistent throughout the physics run
- Muon selection used to veto muon-induced crystal events

COSINE-100 Other physics analysis

- From the background understanding, other interesting searches are actively on-going
- PSD analysis: looking at differer decay time between electron/ nuclear recoil within Nal(TI) crystal
- Bosonic Super-WIMP, Solar axion, inelastic Boosted Dark Matter searches, ...

COSINE-100 Crystal growing R&D

COLUM

- Needs to grow our own crystal with low(er) background and better understanding of the crystal
- Powder purification system and crystal growers are available at Korean facility
- Went through many trials and errors, found ways to reduce background contamination in powder & improve growth condition of NaI(TI) crystals
- Current measurements show great improvements!

Piping & Instrument Diagram

