A Particle Physicist's
Perspective on EDGES
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Outline

1. Astrophysical & Cosmological Implications
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Annihilation: ov = ma2e2/myx?
Thermalized: nxov(T=mx) ~ H(T=mx) = €>10-7(mx/GeV)1/2

Relic abundance: Opmh2 = 0.1 (mx/GeV)2/ (e/10-3)2
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CMB

ce

Baryons should not scatter etficiently with
dark matter at the time of CMB: ['xp < Hrec
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CMB Bound

Millicharged Dark Matter Fraction fpy =1




Cyburt et al, 1505.01076 Boehm et al, 1303.6270

— - — Dirac
Complex

— — — Majorana
Real

— BBN+YP+U
- - CMB—only

Number of Neutrinos, N,

Nv>Ny sy at time of SM nucleosynthesis injects entropy,
SCrews up agreement w/ observation



Cyburt et al, 1505.01076 Boehm et al, 1303.6270

— = — Dirac
Complex
— — — Majorana

- BBN+Y_+D

- - CMB—only R

Number of Neutrinos, N,

Nv>Ny sy at time of SM nucleosynthesis injects entropy,
SCrews up agreement w/ observation



Cyburt et al, 1505.01076 Boehm et al, 1303.6270

— - — Dirac
Complex
. — — — Majorana
\‘ Real

\\
\, Equil. with v

S— BBN+YP+U
- - CMB—only

.,

Number of Neutrinos, N,

Nv>Ny sy at time of SM nucleosynthesis injects entropy,
SCrews up agreement w/ observation

Generically rules out mx = 10 MeV






Crash Course: SN1987A

Core collapse supernova in the LMC
detected simultaneously in Jan 1987
with three instruments (Baksan, IMB,
and Kamiokande II)

ninaing energy radiated away In the

Torm ot neutrinos over ~ 10 seconas

Credit: Colin Legg
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FDGES Constraints

Millicharged Dark Matter Fraction fpy =1




Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

Perhaps only a subdominant
component of dark matter
has a millicharge (the rest is
cold, collisionless, etc)

e e g

‘ Cold
22% Dark
Matter

\

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

Perhaps only a subdominant
component of dark matter
has a millicharge (the rest is
cold, collisionless, etc)

Cold
22% Dark

Matter

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

Perhaps on
componer
has a millic

Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

y a subdominant
t of dark matter
narge (the rest is

cold, col

isionless, etc)

Cold
22% Dark

Matter

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

Perhaps on
componer
has a millic

Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

y a subdominant
t of dark matter
narge (the rest is

cold, col

isionless, etc)

Cold
22% Dark

Matter

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

Perhaps on
componer
has a millic

Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

y a subdominant
t of dark matter
narge (the rest is

cold, col

isionless, etc)

Cold
22% Dark

Matter

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

Perhaps on
componer
has a millic

Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

y a subdominant
t of dark matter
narge (the rest is

cold, col

isionless, etc)

Cold
22% Dark

Matter

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

Perhaps on
componer
has a millic

Caveats”

http://www.solstation.com/x-objects/darkhalo.htm

y a subdominant
t of dark matter
narge (the rest is

cold, col

isionless, etc)

Cold
22% Dark

Matter

4% Atoms


http://www.solstation.com/x-objects/darkhalo.htm

FDGES Constraints

Millicharged Dark Matter Fraction fpy = 0.1




FDGES Constraints

Millicharged Dark Matter Fraction f pm = 0. 1

N
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(Qp: BBN vs. CMB
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(Qb: BBN vs. CMB
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FDGES Constraints

Millicharged Dark Matter Fraction fpy = 0.001




Outline

1. Astrophysical & Cosmological Signatures
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EDGES, fom=1%

Millicharged Dark Matter Fraction fpy = 0.01

What do we need
to do to make this
region work"



Implications of fom=1%

1. Relic density via QED alone is problematic —
how else to deplete thermal abundance?
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Couple to Ly-Lx

Scalar Millicharge x with L, — L. , g, = 1,my = 3m,
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Implications of fom=1%

1. Relic density via QED alone is problematic —
how else to deplete thermal abundance?

2. Thermal population introduced to SN1987A —
how does this affect the egn of state”?
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Muon creation in supernova matter facilitates neutrino-driven explosions

R. Bollig,*? H.-T. Janka,! A. Lohs,> G. Martinez-Pinedo,** C.J. Horowitz,” and T. Melson'

Bollig et al 1706.04630
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Implications of fom=1%

1. Relic density via QED alone is problematic —
how else to deplete thermal abundance?

2. Thermal population introduced to SN1987A —
how does this affect the egn of state?




Direct Detection

Reopening the window on charged dark matter

0809.0436

Leonid Chuzhoy

Departiment of Astronomy and Astrophysics, The University of Chicego, 5640 5. Ellis,
Chicaqgo, IL 60637, USA; chuzhoy@oddjob.uchicago.edu

Edward W. Kolb
Departirent of Astronory and Astrophysics, Envico Fermi Institete, and Kaoli Tnstilute
for Closmological Physics, The University of Chicago, 5640 5. Ellis, Chicago. IL 60637
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ABSTRACT: We rcexamine the limits on charged dark matter particles. We show that
if their mass and charge fall in the range 100(qy /'(—:)2 < mx = 10%(gx/e) TeV, then
magnetic fields prevent particles in the halo from entering the palactic disk, while those
initially trapped inside are accelerated through the Fermi mechanism and ejected within
about 0.1 — 1 Gyrs. Consequently, previous constraints on charged dark matter based on

terrestrinl non-obscrvation arc invalid within that range. ...
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DD for 1%

of Qpwm

e Such particles are evacuated from the disk...

...but supernovae are hot!

Do more appear? What is t

neir phase space”?

- What do they look like at DD

oeriments?




Implications of fom=1%

1. Relic density via QED alone is problematic —
how else to deplete thermal abundance?

2. Thermal population introduced to SN1987A —
how does this affect the egn of state?




Conclusions

DGES has pOSSIb|y detected evidence of dark

matter scattering off baryons during the epoch of
structure formation




Conclusions

DGES has pOSSIb|y detected evidence of dark
matter scattering off baryons during the epoch of
structure formation

lid, it’s not “minimal” — a rich stru

What we find could surprise us!



Conclusions

matter scattering of
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Further 21cm-related
talks at IDM

Monday:
Creque-Sarbinowski,
Ridgway, Liu

Thursday:
Burns, Rogers, Fialkov,
Ewall-Wice, Wu
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