A combined energy scale for WIMP searches in LAr with the DarkSide-50 detector

Luca Pagani
UC Davis
on the behalf of the DarkSide collaboration

IDM 2018 - July, 24th 2018
DarkSide-50 detector overview

- **Water Cherenkov** detector (1,000 tons of ultra pure water): active veto for μ and passive shield for external radiation

- **Liquid scintillator** detector (30 tons of PC+PPO+TMB): active γs and neutron detector (10B loading)

- **LAr TPC** detector (current phase \sim50 kg of Ar fiducial): inner detector for WIMP searches
Scintillation in noble liquids

A particle interaction produces excited (excitons) and ionized (ions) and heat (soft elastic recoils which dominant for NRs - visible light quenched by factor ~3-5 in LAr - while negligible for ERs)

- Excitons produced either directly or through recombined electrons
 - Excitons → Excited dimer decay producing photons ($\lambda=128$nm for Ar)
 - If electric field $\neq 0$, electrons can avoid recombination and collected

Energy deposition - E_{dep}

Excitation - N_{ex}

Ionization - N_1

Scintillation

- Ar^*
- Ar^{*2}
- Ar^+
- Ar^{+2}
- Ar^{**}

Ionization
Two-phase Argon TPC

- S1 (primary scintillation) and S2 (ionization signal) give:
 - Energy estimation
 - 3D position of the event ($t_{\text{drift}} \rightarrow z$ and light pattern on PMTs $\rightarrow xy$)
 - Particle discrimination: PSD and S2/S1 can distinguish between electron (ERs - β/γ) and nuclear recoils (NRs - n/WIMPs)
A combined energy frame

- Why? WIMP’s interactions will deposit only small amounts of energy and dR/dE exp falling - **IMPORTANT:** understand energy scale since directly maps WIMP sensitivity

- How? Exploit anti-correlation between S1 and S2 signals → energy scale independent from recombination ([Doke et al. (2002)](https://doi.org/10.1086/340319))

 - \(E_{\text{dep}} = W (N_{\text{ex}}+N_i) = W (S_1/\varepsilon_1+S_2/\varepsilon_2) \)

- Being \(S_1 = \varepsilon_1 (N_{\text{ex}}+r N_i) \) \(S_2 = \varepsilon_2 (1-r) N_i \), \(N_{\text{ex}}/N_i=0.21 \) (ERs - [Doke et al. (2002)](https://doi.org/10.1086/340319)) and \(W=19.5\text{eV} \) ([Doke et al. (2002)](https://doi.org/10.1086/340319) and [Takahashi et al. (1975)](https://doi.org/10.1086/182830)) is average work function to create electron-ion pair and \(r \) is recombination prob.

- Unknowns: \(\varepsilon_1, \varepsilon_2 \) and \(r=r(E_{\text{dep}},E_d) \) being \(E_d \) the strength of the drift field

- Combined energy has access to micro-physics parameter to better understand detector response: light and charge yield (\(L_y, Q_y \)) and recombination (\(r \))
Calibration data

- Idea: since $r=r(E_{\text{dep}}, E_d)$, then ε_1 and ε_2 can be determined looking at S1 and S2 from different calibration sources with data taken at different drift fields

<table>
<thead>
<tr>
<th>E [keV]</th>
<th>type</th>
<th>Edrift [V/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{57}Co</td>
<td>122.1 (86%)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>136.5 (11%)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>$^{83\text{m}}\text{Kr}$</td>
<td>9.1+32.4</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>^{37}Ar</td>
<td>2.82</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
Data selection criteria and corrections

• Data quality cuts are applied (check sanity of the detector in terms of performances and completeness of information)

• Single scatter events (S1+S2) considered only

• **3D fiducial** (~0.5cm top and bottom and events radius <13.5cm)

• Corrections: 3D correction for both S1 and S2
S1 corrections

- $S1=S1(t_{drift})$ - bottom PMTs see more light than top (total internal reflection liquid-gas interface, grid not transparent) - effect up to ~14%

- $S1=S1(x,y)$ - parts have better light collection (cylindrical shape, different QE PMTs, non uniformity of TPB) - effect up to ~3% (less severe)
S2 corrections

- **S2=S2(x,y)** - central PMT sees x3 more light than corners (possible cause is anode sagging or grid deflection) - effect up to ~300%

- **S2=S2(t_{drift})** - impurities can “eat” electrons during drift: survival probability \(\sim \exp(-t_{drift}/T_e) \) where \(T_e \approx 5\text{ms} \) is electron lifetime - effect up to \(\sim 7\% \)
Data analysis

- Each mono-energetic source generates a fixed mean amount of light and charge: signals appear as elliptical overdensities in (S1,S2)-space.

- Measurements of the light and charge yields follow directly from Gaussian fits (1D and 2D) for the mean S1 and S2.
Results

Total error: $\sigma_{\text{stat}} + \sigma_{\text{sys}}$ where σ_{sys} is obtained propagating uncertainties of the various corrections on S1 and S2
Combined energy spectra

- Spectra taken at different E_d overlap \rightarrow energy scale is independent from recombination probability

- Improvement in the peak resolution (σ/μ): e.g. for 37Ar from 24% for S1 to 17% for E

- New energy scale is in good agreement with reference γ-lines at low energy. At high energy (>40keV) discrepancy of ~5%
PARIS model (I)

• Several models developed to describe recombination probability as function of energy and drift field

 • NEST approach combines Thomas-Imel and Doke-Birks models by constraining associated parameters using exp. data. Data set abundant for Xe but for Ar limited at some energies

• Other approach: Precision Argon Response Ionization (and) Scintillation

• Simplify embedding an effective model to parametric effects inducing S1 and S2 signals:

 • Empirical parametrization:
 \[r(E) = \text{erf}(E/p_0) \left(p_1 \exp(-E/p_2) + p_3 \right) \]

 • \(p_i \) i=0,...3 tuned on DarkSide-50 data @ \(E_d=200\) V/cm

See reference JINST 12 P10015
Energy [keV]
0 50 100 150 200 250

Recombination Probability
0.5 0.6 0.7 0.8 0.9 1

- Extraction of the recombination probability from comparing DS50 data vs. G4DS and considering only single scatter events

- Determine \(r(E) \) by simultaneous fit of S1 spectra of:
 - endpoint of \(^{39}\text{Ar}\) spectrum (565 keV)
 - \(^{37}\text{Ar}\) peak (2.82 keV) peak
 - \(^{83m}\text{Kr}\) (9.4+32.1 keV) peak
PARIS model (III)

- Recombination probability from PARIS - cross check with external calibration γ sources (57Co and 133Ba)

- Very good agreement between data and Monte Carlo G4DS, both for single-scatter and multiple-scatters events
Combined Energy Scale vs. PARIS model

- Light yield (L_y) for electron increases at low energy where there is more recombination (due to higher stopping power). Complementary behavior for charge yield (Q_y).

- Good agreement between L_y derived with combined energy scale and PARIS.

- ~5-10% discrepancy at high energy (>40keV) for recombination probability: expected since PARIS is 1) tuned only on S1 signal and not on both S1 and S2 and 2) full recombination is assumed at zero field.
Conclusions and future development

• Conclusions:

 • New energy framework allows better energy resolution at low energy and agrees with PARIS model

 • Combined energy frame used to achieve recent results in arXiv 1802.07198: useful for detailed studies of ER backgrounds (See G. Giovanetti’s talk)

• Future:

 • Investigate NR

 • Compare results with NEST

 • Study fluctuation in the recombination