#### A combined energy scale for WIMP searches in LAr with the DarkSide-50 detector

UC Davis on the behalf of the DarkSide collaboration

IDM 2018 - July, 24<sup>th</sup> 2018

#### DarkSide-50 detector overview

- Water Cherenkov detector (1,000 tons of ultra pure water): active veto for µ and passive shield for external radiation
- Liquid scintillator detector (30 tons of PC+PPO+TMB): active \gs and neutron detector (10B loading)
- LAr TPC detector (current phase ~50 kg of Ar fiducial): inner detector for WIMP searches



#### Scintillation in noble liquids



Scintillation

- A particle interaction produces excited (excitons) and ionized (ions) and heat (soft elastic recoils which dominant for NRs - visible light quenched by factor ~3-5 in LAr - while negligible for ERs)
- Excitons produced either directly or through recombined electrons
  - Excitons → Excited dimer decay producing photons (λ=128nm for Ar)
- If electric field ≠0, electrons can avoid recombination and collected

# **Two-phase Argon TPC**



- S1 (primary scintillation) and S2 (ionization signal) give:
  - **Energy estimation**
  - 3D position of the event  $(t_{drift} \rightarrow z \text{ and light})$ pattern on PMTs $\rightarrow$ xy)
  - Particle discrimination: • PSD and S2/S1 can distinguish between electron (ERs -  $\beta/\chi$ ) and nuclear recoils (NRs n/WIMPs)

200

#### A combined energy frame

- Why? WIMP's interactions will deposit only small amounts of energy and dR/dE exp falling - IMPORTANT: understand energy scale since directly maps WIMP sensitivity
- How? Exploit anti-correlation between S1 and S2 signals → energy scale independent from recombination (<u>Doke et al. (2002</u>))
  - $E_{dep} = W (N_{ex}+N_i) = W (S1/\epsilon_1+S2/\epsilon_2)$
  - Being S1=  $\epsilon_1$  (N<sub>ex</sub>+r N<sub>i</sub>) S2 =  $\epsilon_2$  (1-r) N<sub>i</sub>, N<sub>ex</sub>/N<sub>i</sub>=0.21 (ERs <u>Doke et al. (2002</u>)) and W=19.5eV (<u>Doke et al. (2002</u>) and <u>Takahashi et al. (1975</u>)) is average work function to create electron-ion pair and r is recombination prob.
  - Unknowns:  $\varepsilon_1$ ,  $\varepsilon_2$  and r=r(E<sub>dep</sub>,E<sub>d</sub>) being E<sub>d</sub> the strength of the drift field
- Combined energy has access to micro-physics parameter to better understand detector response: light and charge yield (Ly, Qy) and recombination (r)

### Calibration data

 Idea: since r=r(E<sub>dep</sub>,E<sub>d</sub>), then ε<sub>1</sub> and ε<sub>2</sub> can be determined looking at S1 and S2 from different calibration sources with data taken at different drift fields

|                   | E [keV]                    | type                        | Edrift [V/cm]           |
|-------------------|----------------------------|-----------------------------|-------------------------|
| <sup>57</sup> Co  | 122.1 (86%)<br>136.5 (11%) | External<br>AAr             | 200<br>150<br>100       |
| <sup>83m</sup> Kr | 9.1+32.4                   | Internal<br>Periodic calib. | 200<br>150<br>100<br>50 |
| <sup>37</sup> Ar  | 2.82                       | Internal<br>Inherent UAr    | 200<br>150<br>100<br>50 |

# Data selection criteria and corrections

- Data quality cuts are applied (check sanity of the detector in terms of performances and completeness of information)
  - Single scatter events (S1+S2) considered only
  - **3D fiducial** (~0.5cm top and bottom and events radius <13.5cm)</li>
- Corrections: 3D correction for both S1 and S2

## S1 corrections

- S1=S1(t<sub>drift</sub>) bottom PMTs see more light than top (total internal reflection liquid-gas interface, grid not transparent) - effect up to ~14%
- **S1=S1(x,y)** parts have better light collection (cylindrical shape, different QE PMTs, non uniformity of TPB) effect up to ~3% (less severe)



#### S2 corrections

• S2=S2(x,y) - central PMT sees x3 more light than corners (possible cause is anode sagging or grid deflection) - effect up to ~300%



S2=S2(t<sub>drift</sub>) - impurities can "eat" electrons during drift: survival probability ~exp(-t<sub>drift</sub>/T<sub>e</sub>) where T<sub>e</sub>~5ms is electron lifetime - effect up to ~7%

#### Data analysis

- Each mono-energetic source generates a fixed mean amount of light and charge: signals appear as elliptical overdensities in (S1,S2)-space
- Measurements of the light and charge yields follow directly from Gaussian fits (1D and 2D) for the mean S1 and S2



 $^{83m}$ Kr at  $E_d = 200V/cm$ 





#### Results



uncertainties of the various corrections on S1 and S2

#### Combined energy spectra





- Spectra taken at different  $E_d$  overlap  $\rightarrow$ energy scale is independent from recombination probability
- Improvement in the peak resolution ( $\sigma/\mu$ ): e.g. for <sup>37</sup>Ar from 24% for S1 to 17% for E
- New energy scale is in good agreement with reference  $\gamma$ -lines at low energy. At high energy (>40keV) discrepancy of ~5%

## PARIS model (I)

- Several models developed to describe recombination probability as function of energy and drift field
  - NEST approach combines Thomas-Imel and Doke-Birks models by constraining associated parameters using exp. data. Data set abundant for Xe but for Ar limited at some energies
- Other approach: Precision Argon Response Ionization (and) Scintillation
- Simplify embedding an **effective model** to parametric effects inducing S1 and S2 signals:
  - Empirical parametrization:
    r(E) = erf(E/p<sub>0</sub>) (p<sub>1</sub> exp(-E/p<sub>2</sub>) + p<sub>3</sub>)
  - p<sub>i</sub> i=0,..3 tuned on DarkSide-50 data @ E<sub>d</sub>=200V/cm



See reference JINST 12 P10015

# PARIS model (II)

**Note:** <sup>39</sup>*Ar* beta decay is forbidden (uncertainty at low energy)



- Extraction of the recombination probability from comparing DS50 data vs. G4DS and considering only single scatter events
- Determine **r(E)** by simultaneous fit of S1 spectra of:
  - endpoint of <sup>39</sup>Ar spectrum (565 keV)
  - <sup>37</sup>Ar peak (2.82 keV) peak
  - <sup>83m</sup>Kr (9.4+32.1 keV) peak





- Very good agreement between data and Monte Carlo G4DS, both for single-scatter and multiple-scatters events

#### Combined Energy Scale vs. PARIS model





 Light yield (L<sub>y</sub>) for electron increases at low energy where there is more recombination (due to higher stopping power). Complementary behavior for charge yield (Q<sub>y</sub>)

#### Good agreement between Ly derived with combined energy scale and PARIS

 ~5-10% discrepancy at high energy (>40keV) for recombination probability: expected since PARIS is 1) tuned only on S1 signal and not on both S1 and S2 and 2) full recombination is assumed at zero field

# Conclusions and future development

- Conclusions:
  - New energy framework allows better energy resolution at low energy and agrees with PARIS model
  - Combined energy frame used to achieve recent results in arXiv 1802.07198: useful for detailed studies of ER backgrounds (See G. Giovanetti's talk)
- Future:
  - Investigate NR
  - Compare results with NEST
  - Study fluctuation in the recombination