The Stochastic Axion Scenario

Adam Scherlis with Peter Graham [1805.07362] to appear in PRD

July 26, 2018

See talk by Takahashi

Adam Scherlis (Stanford)

Stochastic Axion [1805.07362]

July 26, 2018 1 / 15

Two scenarios for the axion:

- Post-Inflationary: PQ breaks after inflation Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass

 Or new cosmology/axion models [Agrawal, Marques-Tavares, Xue; Nomura, Rajendran, Sanches; Dine, Fischler; Steinhardt, Turner; Lazarides, Schaefer, Seckel, Shafi; Kawasaki, Moroi, Yanagida; Dvali; Choi, Kim, Kim; Banks, Dine; Banks, Dine, Graesser]

Usual picture:

All masses are natural w/o new physics

Two scenarios for the axion:

- Post-Inflationary: PQ breaks after inflation Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation Range of compatible masses
- Usual lore: overclosure bound (or tuning/anthropics) at low mass
 - Or new cosmology/axion models [Agrawal,Marques-Tavares,Xue; Nomura,Rajendran,Sanches; Dine,Fischler; Steinhardt,Turner; Lazarides,Schaefer,Seckel,Shafi; Kawasaki,Moroi,Yanagida; Dvali; Choi,Kim,Kim; Banks,Dine; Banks,Dine,Graesser]

Usual picture:

All masses are natural w/o new physics

Two scenarios for the axion:

- Post-Inflationary: PQ breaks after inflation Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass

 Or new cosmology/axion models [Agrawal,Marques-Tavares,Xue; Nomura,Rajendran,Sanches; Dine, Fischler: Steinhardt, Turner: Lazarides, Schaefer, Seckel, Shafi: Kawasaki, Moroi, Yanagida: Dvali: Choi, Kim, Kim: Banks, Dine; Banks, Dine, Graesser]

Usual picture:

2 / 15

Two scenarios for the axion:

- Post-Inflationary: PQ breaks after inflation Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass

 Or new cosmology/axion models [Agrawal,Marques-Tavares,Xue; Nomura,Rajendran,Sanches; Dine,Fischler; Steinhardt,Turner; Lazarides,Schaefer,Seckel,Shafi; Kawasaki,Moroi,Yanagida; Dvali; Choi,Kim,Kim; Banks,Dine; Banks,Dine,Graesser]

Introduction: Misalignment Mechanism

٢

After PQ breaking: axion "frozen" at $f_a \theta_0$

- Final abundance: depends on f_a , θ_0
- Fix DM abundance: relation $f_a \leftrightarrow \theta_0$

- Post-inflation PQ breaking: Temperature reaches f_a
 - Averaged θ_0 , string decay $\implies \theta_C$
 - Single *f_a* for axion DM ("Classical Window")
- Pre-inflation PQ breaking: Temperature stays below f_a
 - $\theta_0 = \mathcal{O}(1)$ implies $f_a = \mathcal{O}(10^{12} \text{ GeV})$ ("Natural")
 - Higher f_a requires smaller θ_0

Introduction: Misalignment Mechanism

After PQ breaking: axion "frozen" at $f_a \theta_0$

- Final abundance: depends on f_a , θ_0
- Fix DM abundance: relation $f_a \leftrightarrow \theta_0$

Where does θ_0 come from?

- Post-inflation PQ breaking: Temperature reaches fa
 - Averaged θ_0 , string decay $\implies \theta_C$
 - Single f_a for axion DM ("Classical Window")
- Pre-inflation PQ breaking: Temperature stays below fa
 - $\theta_0 = \mathcal{O}(1)$ implies $f_a = \mathcal{O}(10^{12} \text{ GeV})$ ("Natural")
 - Higher f_a requires smaller θ_0

Introduction: Misalignment Mechanism

٢

After PQ breaking: axion "frozen" at $f_a \theta_0$

- Final abundance: depends on f_a , θ_0
- Fix DM abundance: relation $f_a \leftrightarrow \theta_0$

Where does θ_0 come from?

- Post-inflation PQ breaking: Temperature reaches fa
 - Averaged θ_0 , string decay $\implies \theta_C$
 - Single f_a for axion DM ("Classical Window")
- Pre-inflation PQ breaking: Temperature stays below fa
 - $\theta_0 = \mathcal{O}(1)$ implies $f_a = \mathcal{O}(10^{12} \text{ GeV})$ ("Natural")
 - Higher f_a requires smaller θ_0

Where does θ_0 *really* come from? Scalar field dynamics during inflation: Every e-fold, two things happen:

• Sliding: classical slow-roll towards minimum

$$\phi \mapsto \phi - \frac{m^2}{3H^2}\phi$$

• Hopping: quantum fluctuations ("random walk")

$$\phi \mapsto \phi \pm \frac{H}{2\pi}$$

Eventually reaches equilibrium (independent of initial conditions and N)

$$m^2\left<\phi^2\right>\sim H^4$$

Where does θ_0 *really* come from? Scalar field dynamics during inflation: Every e-fold, two things happen:

• Sliding: classical slow-roll towards minimum

$$\phi \mapsto \phi - \frac{m^2}{3H^2}\phi$$

• Hopping: quantum fluctuations ("random walk")

$$\phi \mapsto \phi \pm \frac{H}{2\pi}$$

Eventually reaches equilibrium (independent of initial conditions and *N*)

$$m^2\left<\phi^2\right>\sim H^4$$

Where does θ_0 *really* come from? Scalar field dynamics during inflation: Every e-fold, two things happen:

• Sliding: classical slow-roll towards minimum

$$\phi \mapsto \phi - \frac{m^2}{3H^2}\phi$$

• Hopping: quantum fluctuations ("random walk")

$$\phi \mapsto \phi \pm \frac{H}{2\pi}$$

Eventually reaches equilibrium (independent of initial conditions and N)

$$m^2\left<\phi^2\right>\sim H^4$$

Where does θ_0 *really* come from? Scalar field dynamics during inflation: Every e-fold, two things happen:

• Sliding: classical slow-roll towards minimum

$$\phi \mapsto \phi - \frac{m^2}{3H^2}\phi$$

• Hopping: quantum fluctuations ("random walk")

$$\phi \mapsto \phi \pm \frac{H}{2\pi}$$

Eventually reaches equilibrium (independent of initial conditions and N)

$$m^2\left<\phi^2\right>\sim H^4$$

Mechanics: Example Animation

See PPT version for animation!

Mechanics: Example Animation

See PPT version for animation!

Mechanics: Equilibrium Distribution

Fokker-Planck equation:
$$\dot{\rho}(\phi, t) = \frac{1}{3H_l}\partial_{\phi}(V'(\phi)\rho(\phi, t)) + \frac{H_l^3}{8\pi^2}\partial_{\phi\phi}^2\rho(\phi, t)$$

Distribution of θ over many patches:

- $m^2 \left< \phi^2 \right> \approx H_I^4$
- Naturally small but nonzero
- θ very uniform for individual patch
- $H_I < 800$ MeV: axion has a mass
 - $H_I < 200$ MeV: distribution is Gaussian
 - $H_I > 200$ MeV: distribution is flat

Mechanics: Equilibrium Distribution

Fokker-Planck equation: $\dot{\rho}(\phi, t) = \frac{1}{3H_l}\partial_{\phi}(V'(\phi)\rho(\phi, t)) + \frac{H_l^3}{8\pi^2}\partial_{\phi\phi}^2\rho(\phi, t)$

Distribution of θ over many patches:

- $m^2 \left< \phi^2 \right> \approx H_I^4$
- Naturally small but nonzero
- θ very uniform for individual patch
- $H_I < 800$ MeV: axion has a mass
 - $H_I < 200$ MeV: distribution is Gaussian
 - $H_I > 200$ MeV: distribution is flat

Mechanics: Equilibrium Distribution

Fokker-Planck equation: $\dot{\rho}(\phi, t) = \frac{1}{3H_l}\partial_{\phi}(V'(\phi)\rho(\phi, t)) + \frac{H_l^3}{8\pi^2}\partial_{\phi\phi}^2\rho(\phi, t)$

Distribution of θ over many patches:

- $m^2 \left< \phi^2 \right> \approx H_I^4$
- Naturally small but nonzero
- θ very uniform for individual patch
- $H_I < 800$ MeV: axion has a mass
 - $H_I < 200$ MeV: distribution is Gaussian
 - $H_I > 200$ MeV: distribution is flat

Isocurvature

- Random $\mathcal{O}(H_l)$ hops build up over $> 10^{20}$ e-folds
- Inhomogeneities stretch and leave horizon
- $\bullet\,$ Hops from last \sim 60 efolds remain inhomogeneous
- Significant isocurvature if $H_l > 10^6$ GeV or $\theta \approx \pi \leftrightarrow f_a < 10^{10}$ GeV

Isocurvature

Adam Scherlis (Stanford)

Results: Summary

For N large enough to reach equilibrium:

Results: Reheating

All of this is irrelevant if temperature hits f_a during

- **1**. Inflation: $T_{dS} \sim H_I$
- 2. Reheating: $T_{rh} \sim \epsilon_{eff} \sqrt{m_P H_I}$

Inefficient reheating: $T_{dS} > T_{rh}$ at high H_I

Note: $T_{rh} \gg$ TeV unless extremely inefficient.

Adam Scherlis (Stanford)

Results: Inflation

Main caveat: need LOTS of inflation

- Low mass: $H_I \lesssim \Lambda_{QCD} \longleftrightarrow E_I \lesssim 10^9 \text{ GeV}$
- Value of H_I determines width of θ_0 distribution
- Relaxation time: $t_{rel} = 3 \frac{H_l}{m_a^2}$ or $N_{rel} = 3 \frac{H_l^2}{m_a^2}$

Some points that naturally have the right abundance:

m _a	f _a	H	t _{rel}	N_{rel}
14 kHz	10 ¹⁷ GeV	10 MeV	200,000 yr	10 ³⁵
14 MHz	$10^{14} { m GeV}$	100 MeV	2 years	10^{31}
14 GHz	$10^{11}~{ m GeV}$	1000 MeV	0.5 seconds	10^{24}

• See also: Guth-Takahashi-Yin [1805.08763] (includes low-*H*₁ hilltop potential)

Results: Inflation

Main caveat: need LOTS of inflation

- Low mass: $H_I \lesssim \Lambda_{QCD} \longleftrightarrow E_I \lesssim 10^9 \text{ GeV}$
- Value of H_I determines width of θ_0 distribution
- Relaxation time: $t_{rel} = 3 \frac{H_l}{m_a^2}$ or $N_{rel} = 3 \frac{H_l^2}{m_a^2}$

Some points that naturally have the right abundance:

m _a	f _a	H_{I}	t _{rel}	N _{rel}
14 kHz	10 ¹⁷ GeV	10 MeV	200,000 yr	10 ³⁵
14 MHz	$10^{14}~{ m GeV}$	100 MeV	2 years	10 ³¹
14 GHz	$10^{11}~{ m GeV}$	1000 MeV	0.5 seconds	10 ²⁴

• See also: Guth-Takahashi-Yin [1805.08763] (includes low-*H*₁ hilltop potential)

Conclusion

Conventional claim:

But actually, unless we make assumptions about inflation:

So it's important to search the entire mass range experimentally.

Adam Scherlis (Stanford)

Backup: Fokker-Planck Formalism

Fokker-Planck equation: $\dot{\rho}(\phi, t) = \frac{1}{3H_l}\partial_{\phi}(V'(\phi)\rho(\phi, t)) + \frac{H_l^3}{8\pi^2}\partial_{\phi\phi}^2\rho(\phi, t)$ Change variables,

$$egin{aligned} &
ho(\phi,t)=\psi_0(\phi)\psi(\phi,t)\ &\psi_0(\phi):=\exp(-
u(\phi))=\exp\left(-rac{4\pi^2}{3H_l^4}V(\phi)
ight) \end{aligned}$$

to get Schroedinger-like equation:

$$-\frac{4\pi^2}{H_I^3}\dot{\psi}(\phi,t) = -\frac{1}{2}\psi''(\phi,t) + \frac{1}{2}\left[-\nu''(\phi) + \nu'(\phi)^2 - \frac{3}{M_P^2}\nu(\phi)\right]\psi(\phi,t)$$

Eigenfunctions $\rho_i = \psi_0 \psi_i$ are quasinormal modes $\rho_0 = \psi_0^2$ is equilibrium distribution Smallest positive eigenvalue is relaxation rate

• Expansion rate is related to energy,

$$3H^2m_P^2=V$$

• Axion contributes a small amount,

$$V = V_I + V_a$$

$$V_I \gg V_a$$

• Regions with large θ expand (slightly) faster

This effect suddenly becomes dominant for $f_a \gtrsim m_P$ at $H_I \lesssim \Lambda_{QCD}$ Nearly all patches overproduce with $\theta \to \pi$ (for some choice of measure)

- Inflaton also has sliding and hopping
- If potential is too flat, hopping dominates
 ⇒ inflation becomes chaotic (eternal)
- Equivalent to minimum "speed" of inflaton, or maximum length of inflation

$$N \lesssim rac{m_P^2}{H_I^2}$$

Relaxation time violates this bound for $f_a \gtrsim m_P$ at $H_I \gtrsim \Lambda_{QCD}$ Our analysis still works but eternal inflation introduces measure issues