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N
Introduction: Axion Dark Matter

Two scenarios for the axion:
@ Post-Inflationary: PQ breaks after inflation
Precise mass needed to get axion DM
@ Pre-Inflationary: PQ breaks before/during inflation
Range of compatible masses
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We show that there is no bound:
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All masses are natural w/o new physics
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Introduction: Misalignment Mechanism

After PQ breaking: axion “frozen” at f,6,

@ Final abundance: depends on f;, 6

@ Fix DM abundance: relation f; <+ 6y

0=o/fs

Where does 8y come from?
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@ Final abundance: depends on f;, 6

@ Fix DM abundance: relation f; <+ 6y
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0=o/fs

Where does 8y come from?

@ Post-inflation PQ breaking: Temperature reaches f,

o Averaged 0y, string decay —> 0¢
e Single f, for axion DM (“Classical Window")
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Introduction: Misalignment Mechanism

After PQ breaking: axion “frozen” at f,6,

@ Final abundance: depends on f;, 6

@ Fix DM abundance: relation f; <+ 6y

-2

0=o/fs

Where does 8y come from?

@ Post-inflation PQ breaking: Temperature reaches f,

o Averaged 0y, string decay —> 0¢
e Single f, for axion DM (“Classical Window")

@ Pre-inflation PQ breaking: Temperature stays below f,
o 0o = O(1) implies f, = O(10'? GeV) (“Natural”)
o Higher f; requires smaller 6
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-
Mechanics: Hopping and Sliding

Where does 6y really come from? 15
Scalar field dynamics during inflation: 10
Every e-fold, two things happen: 05
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-
Mechanics: Hopping and Sliding

Where does 6y really come from?
Scalar field dynamics during inflation:
Every e-fold, two things happen:

@ Sliding: classical slow-roll towards minimum

¢

m2

RGNS

@ Hopping: quantum fluctuations (“random walk”)

H
¢'—>¢i§
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-
Mechanics: Hopping and Sliding

Where does 6y really come from? H4 e oA
Scalar field dynamics during inflation: ™ Y
Every e-fold, two things happen: 05

@ Sliding: classical slow-roll towards minimum
m2

RGNS

¢

@ Hopping: quantum fluctuations (“random walk”)

H
brr bt
27
Eventually reaches equilibrium (independent of initial conditions and N)

m2 <¢2> ~ H4
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Mechanics: Example Animation

See PPT version for animation!
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Mechanics: Equilibrium Distribution

Fokker-Planck equation: (¢, t) = 53-95(V'(#)p(, t)) + é%’ia@p(qb, t)

Distribution of 6 over many patches:

p(6,H)
o m’ <¢2> ~ Hf — H,;=100MeV 2
— H;=135MevV 1P
— H, =170 MeV
@ 6 very uniform for individual patch — Hj=205MeV
H, =240 MeV

@ Naturally small but nonzero
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Fokker-Planck equation: (¢, t) = 53-95(V'(#)p(, t)) + g*7'235¢p(¢, t)

Distribution of 6 over many patches:

P (6, Hy)
2/ 2\ o g4 .
o m*($*) ~ H; — H=100Mev
o Naturally small but nonzero — H=135Mev  10¢
_ o — H;=170MeV (gl
@ 6 very uniform for individual patch — H,=205MeV
H, =240 MeV
@ H; < 800 MeV: axion has a mass
e H; < 200 MeV: distribution is Gaussian

e H, > 200 MeV: distribution is flat -3 -2 -1 1 2 3
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Isocurvature

p(6.H)

081
— All Patches |
— One Patch (4.

@ Random O(H,) hops build up over > 10% e-folds
@ Inhomogeneities stretch and leave horizon

@ Hops from last ~ 60 efolds remain inhomogeneous
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Isocurvature

p(6.H)

081
— All Patches |
— One Patch (4.

@ Random O(H,) hops build up over > 10% e-folds
@ Inhomogeneities stretch and leave horizon

@ Hops from last ~ 60 efolds remain inhomogeneous

@ Significant isocurvature if H; > 10% GeV or § ~ 7 +— f, < 10*° GeV
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Results: Summary

For N large enough to reach equilibrium:

Inflationary Axion Parameter Space
E; (GeV)
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-
Results: Reheating

All of this is irrelevant if temperature hits f, during
1. Inflation: Tys ~ H,
2. Reheating: T,, ~ €erv/mpH;

Inefficient reheating: Tys > T,4 at high H,

Very Inefficient Reheating Very Efficient Reheating
E/(GeV) E;(GeV)
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101B
o7 NN T
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Overproduction
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8 1o <
e g
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Post-Inflationary Window
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H (GeV) Hj(GeV)
Note: T,, > TeV unless extremely inefficient.
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Results: Inflation

Main caveat: need LOTS of inflation
e Low mass: H; < Agep +— E < 10° GeV
@ Value of H, determines width of 6 distribution

. . H?
@ Relaxation time: t,o = 3% or N,y =35
ma ma
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Results: Inflation

Main caveat: need LOTS of inflation
e Low mass: H; < Agep +— E < 10° GeV
@ Value of H, determines width of 6 distribution

. . H?
@ Relaxation time: t,o = 3% or N,y =35
ma ma

Some points that naturally have the right abundance:

my ‘ fa ‘ ‘ H, ‘ ‘ trel Nyes
14 kHz | 1017 GeV || 10 MeV 200,000 yr | 10%
14 MHz | 10'* GeV || 100 MeV || 2 years 103!

14 GHz | 10! GeV || 1000 MeV || 0.5 seconds | 10%*

e See also: Guth-Takahashi-Yin [1805.08763]
(includes low-H; hilltop potential)

Adam Scherlis (Stanford) Stochastic Axion [1805.07362] July 26, 2018 11 /15



N
Conclusion

Conventional claim:
m, (eV)
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But actually, unless we make assumptions about inflation:
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So it's important to search the entire mass range experimentally.
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Backup: Fokker-Planck Formalism

Fokker-Planck equation: p(¢,t) = 3H18¢(V’(¢)p(¢, t)) +

871'12 a2¢p(¢a t)
Change variables,

p(¢7 t) = ¢0(¢)¢(¢a t)
Yo(6) = exp(—1(9)) = exp (47 V()

to get Schroedinger-like equation:

472 Lo 1 1 / 3
(0.0 = 30,0+ 3 |(69) + V(6 — rte)]| (o,

Eigenfunctions p; = ¥ov; are quasinormal modes
po = 12 is equilibrium distribution
Smallest positive eigenvalue is relaxation rate
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Backup: Backreaction

@ Expansion rate is related to energy,
2,2 _
3H*mp =V
@ Axion contributes a small amount,
V=V +V,

Vi>V,
@ Regions with large 6 expand (slightly) faster

This effect suddenly becomes dominant for £, 2 mp at H; < Agcp
Nearly all patches overproduce with § — 7 (for some choice of measure)
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|
Backup: Eternal Inflation

@ Inflaton also has sliding and hopping
o If potential is too flat, hopping dominates
— inflation becomes chaotic (eternal)

@ Equivalent to minimum “speed” of inflaton,
or maximum length of inflation
2

NP
HI

Relaxation time violates this bound for f; 2 mp at H; 2 Agcp

~

Our analysis still works but eternal inflation introduces measure issues
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