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Introduction: Axion Dark Matter

Two scenarios for the axion:

Post-Inflationary: PQ breaks after inflation
Precise mass needed to get axion DM

Pre-Inflationary: PQ breaks before/during inflation
Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass
Or new cosmology/axion models [Agrawal,Marques-Tavares,Xue; Nomura,Rajendran,Sanches;
Dine,Fischler; Steinhardt,Turner; Lazarides,Schaefer,Seckel,Shafi; Kawasaki,Moroi,Yanagida; Dvali; Choi,Kim,Kim;
Banks,Dine; Banks,Dine,Graesser]

Usual picture:

All masses are natural w/o new physics
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Introduction: Misalignment Mechanism

After PQ breaking: axion “frozen” at faθ0

Final abundance: depends on fa, θ0

Fix DM abundance: relation fa ↔ θ0

V (φ)

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

θ = φ/fa
Where does θ0 come from?

Post-inflation PQ breaking: Temperature reaches fa
Averaged θ0, string decay =⇒ θC

Single fa for axion DM (“Classical Window”)

Pre-inflation PQ breaking: Temperature stays below fa
θ0 = O(1) implies fa = O(1012 GeV) (“Natural”)
Higher fa requires smaller θ0
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Mechanics: Hopping and Sliding

Where does θ0 really come from?
Scalar field dynamics during inflation:
Every e-fold, two things happen:

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

Sliding: classical slow-roll towards minimum

φ 7→ φ− m2

3H2
φ

Hopping: quantum fluctuations (“random walk”)

φ 7→ φ± H

2π

Eventually reaches equilibrium (independent of initial conditions and N)

m2
〈
φ2

〉
∼ H4
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Mechanics: Example Animation

See PPT version for animation!

Adam Scherlis (Stanford) Stochastic Axion [1805.07362] July 26, 2018 5 / 15



Mechanics: Example Animation

See PPT version for animation!

Adam Scherlis (Stanford) Stochastic Axion [1805.07362] July 26, 2018 6 / 15



Mechanics: Equilibrium Distribution

Fokker-Planck equation: ρ̇(φ, t) = 1
3HI
∂φ(V ′(φ)ρ(φ, t)) +

H3
I

8π2 ∂
2
φφρ(φ, t)

m2
〈
φ2

〉
≈ H4

I

Naturally small but nonzero

θ very uniform for individual patch

HI < 800 MeV: axion has a mass

HI < 200 MeV: distribution is Gaussian
HI > 200 MeV: distribution is flat

Distribution of θ over many patches:

HI  100MeV

HI  135MeV

HI  170MeV

HI  205MeV

HI  240MeV
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ρ (θ,HI)

ρ(φ) ∝ exp

(
−

8π2

3H4
I

V (φ)

)
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Isocurvature

Random O(HI ) hops build up over > 1020 e-folds

Inhomogeneities stretch and leave horizon

Hops from last ∼ 60 efolds remain inhomogeneous

All Patches

One Patch
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0.4
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0.8

ρ (θ,HI)

Significant isocurvature if HI > 106 GeV or θ ≈ π ←→ fa < 1010 GeV
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Results: Summary

For N large enough to reach equilibrium:
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Results: Reheating

All of this is irrelevant if temperature hits fa during

1. Inflation: TdS ∼ HI

2. Reheating: Trh ∼ εeff

√
mPHI

Inefficient reheating: TdS > Trh at high HI
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Very Efficient Reheating

Note: Trh � TeV unless extremely inefficient.
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Results: Inflation

Main caveat: need LOTS of inflation

Low mass: HI . ΛQCD ←→ EI . 109 GeV

Value of HI determines width of θ0 distribution

Relaxation time: trel = 3 HI
m2

a
or Nrel = 3

H2
I

m2
a

Some points that naturally have the right abundance:
ma fa HI trel Nrel

14 kHz 1017 GeV 10 MeV 200,000 yr 1035

14 MHz 1014 GeV 100 MeV 2 years 1031

14 GHz 1011 GeV 1000 MeV 0.5 seconds 1024

See also: Guth-Takahashi-Yin [1805.08763]
(includes low-HI hilltop potential)
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Conclusion

Conventional claim:

Natural DM :)
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But actually, unless we make assumptions about inflation:
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So it’s important to search the entire mass range experimentally.
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Backup: Fokker-Planck Formalism

Fokker-Planck equation: ρ̇(φ, t) = 1
3HI

∂φ(V ′(φ)ρ(φ, t)) +
H3

I
8π2∂

2
φφρ(φ, t)

Change variables,
ρ(φ, t) = ψ0(φ)ψ(φ, t)

ψ0(φ) := exp(−ν(φ)) = exp
(
− 4π2

3H4
I
V (φ)

)
to get Schroedinger-like equation:

−4π2

H3
I

ψ̇(φ, t) = −1

2
ψ′′(φ, t) +

1

2

[
−ν ′′(φ) + ν ′(φ)2 − 3

M2
P

ν(φ)

]
ψ(φ, t)

Eigenfunctions ρi = ψ0ψi are quasinormal modes
ρ0 = ψ2

0 is equilibrium distribution
Smallest positive eigenvalue is relaxation rate
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Backup: Backreaction

Expansion rate is related to energy,

3H2m2
P = V

Axion contributes a small amount,

V = VI + Va

VI � Va

Regions with large θ expand (slightly) faster

This effect suddenly becomes dominant for fa & mP at HI . ΛQCD

Nearly all patches overproduce with θ → π (for some choice of measure)
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Backup: Eternal Inflation

Inflaton also has sliding and hopping

If potential is too flat, hopping dominates
=⇒ inflation becomes chaotic (eternal)

Equivalent to minimum “speed” of inflaton,
or maximum length of inflation

N .
m2

P

H2
I

Relaxation time violates this bound for fa & mP at HI & ΛQCD

Our analysis still works but eternal inflation introduces measure issues
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