Detector Stability of COSINE-100

William Thompson

IDM 2018 July 26th, 2018 Providence, RI

Motivation for COSINE-100

- Goal: Test DAMA's claim of dark matter detection
- DAMA observes annual modulation at 9.3σ C.L.
 - Phase & period consistent with dark matter origin
 - Total exposure: 1.33 ton-yr over 14 annual cycles
- But, result in conflict with direct detection searches using different target material

Residuals (cpd/kg/keV)

The COSINE-100 Experiment

- Model-independent test of DAMA's result
- 106 kg of same target material (Nal(Tl))
- Located 700 m underground at Yangyang Underground Lab in Korea
- Physics run began Sept. 2016

The COSINE-100 Experiment

- Model-independent test of DAMA's result
- 106 kg of same target material (Nal(Tl))
- Located 700 m underground at Yangyang Underground Lab in Korea
- Physics run began Sept. 2016

Also see Jay Hyun Jo and Estella Barbosa de Souza's talks on Friday!

The COSINE-100 Detector

Preview COSINE-100 Analysis

Yale

Counts/keV/kg/day

Other Modulation Sources?

- Alternative sources of modulation have been proposed
 - DAMA has addressed some of these

Source	Main comment	Cautious upper limit (90%C.L.)	
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10⁻⁴ cpd/kg/keV	
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV	Slide taken from DAMA/LIBRA Further discussed in: EPJC 56:333 (2008), EPJC 72:2064 (2012), EPJC 74:3196 (2014)
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV	
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV	
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV	
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV	
SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV	

- Must also be studied by COSINE!
 - Need thorough understanding of environmental conditions and detector stability over time

Environmental Monitoring System

- System monitors temperature, humidity, radon level, electronics, etc.
- Allows identification of correlations between event rates and environmental conditions
- Also used for real-time monitoring

Tunnel

Real-Time Monitoring

 Monitoring stability of temperature, humidity, current, voltage, etc.

— Nall1 — Nall2 — Nall3 — Nall4 — Nall

Nal PMT Current Variation (B-side, micro Ampere)

— Nali 51 — Nali 52 — Nali 53 — Nali 54 — Nali 55

Current/Voltage

lal | 56 🗕 Nal | 57 🗕 Nal | 58

- < 0.5 °C temperature and < 2% humidity fluctuation inside the shielding structure
- Current and voltage of detectors very stable

Nal HV Variation (B-side, Volts

COSINE-100 Accumulated Data

Temperature and Event Rate

²²²Rn and Event Rate

- Radon levels modulate in underground labs with period and phase similar to dark matter prediction
- Nitrogen cover gas significantly reduces radon in detector

- Muon Veto System
- Muon veto provides 4π coverage
- Muons induce long-lived phosphorescence
- Phase and amplitude not consistent with **DAMA-observed modulation**

Photon Rate [Hz] ₀01 ₀10

 10^{-10}

DM-lce17

Phosphorescent Events:

PRD 93:042001 (2016)

80

12/02/16

100

Time from Muon Event [s]

140

60

- Single photoelectrons extracted from tail of event pulse. Position monitored over time
- Gives information on stability of each PMT

Yale

Correcting for Gain Shifts

- Position of internal ²¹⁰Pb decays also monitored over time
- Gain shift corrected for by dividing out linear behavior

Verifying Gain Correction

- Gain stability must be verified in 2-6 keV region of interest
 - Use 3 keV peak from ⁴⁰K contamination in crystal
- Gain steady over time within region of

Observed Light Yields

X

- Measurement of SPE and ²¹⁰Pb peaks allow determination of crystal light yields
 - Light yield: $\frac{E_{50 \ keV}}{E_{SPE} \times 50 \ keV}$
- Change of $\lesssim 1 \frac{p.e.}{keV}$ per year in modulation analysis crystals
- Verified by calibration with ²⁴¹Am

- COSINE-100 is conducting a model-independent test of DAMA by using the same target material, NaI(TI)
- COSINE-100's environmental conditions are well monitored
- Change in detector gain tracked over time and corrected for over time
 - Crystal light yields successfully tracked over time
- If COSINE-100 observes modulation, monitoring system will enable us to identify potential correlations with environmental and detector conditions

Thank You!

