First Evidence for Radon Daughter Solubility in Liquid Xenon Mobility Katayun Kamdin

With Peter Sorensen @ LBL

Radon daughters can fake WIMP signal

LZ projected sensitivity backgrounds dominated by counts from 222Rn — we really need to know where all the radon is!

Uniform ER Internal Backgrounds

Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

Background Source	Mass 238	\mathbf{U}_{e}	238 U _l	$^{232}{ m Th}_{e}^{232}{ m Th}_{i}$	e^{60} Co	40 K	n/yr	ER
	(kg)			m mBq/kg				(cts)
Surface Contamination								
Dust (intrinsic activity, 500 ng/cm^2)								0.2
Plate-out (PTFE panels, 50 nBq/cm^2)								-
210 Bi mobility (0.1 μ Bq/k	zg LXe)							40.0
Ion misreconstruction (50	$\mathrm{nBq/cm}^2)$							-
210 Pb (in bulk PTFE, 10	mBq/kg PT	'FE)						-
			(Befo	ore S2/S1 disc	riminatio	on) sı	ıbtotal	40
Xenon contaminants								
222 Rn (1.81 µBq/kg)								681
220 Rn (0.09 μ Bq/kg)								111
$ ^{nat}$ Kr (0.015 ppt g/g)							24.5	
$ ^{nat}$ Ar (0.45 ppb g/g)								2.5
			(Befo	ore S2/S1 disc	riminatio	on) ຣາ	ıbtotal	819

From M. E. Monzani's LZ Sensitivity Talk

Possible backgrounds from late-chain 222Radon

- "Naked" betas are of particular concern
- Typically, "plate out" is assumed after bottleneck
- Evidence of ²¹⁰Bi mobility has observed in KamLAND [1],[2] and Borexino [3]
- If radon daughters are mobile in LXe, late chain naked betas are new WIMP background in fiducial volume

[1] Y. Takemoto et al. Nucl. Part. Phys. Proc. 265-266 (2015), pp. 139-142
[2] A. Gando et al. Phys. Rev. C 92:5 (2015) 055808
[3] G. Bellini et al. Phys. Rev. D. 89:11 (2014) 112007

K. Kamdin

220Rn as proxy for 222Rn

- ²²⁰Rn chain bottleneck (²¹²Pb) has 10 hour half-life; well suited to laboratory study.
- Mimic conditions present in detector construction by introducing radon & pumping to vacuum.
 - Search for ²¹²Bi alpha decay in bulk

IDM, Providence RI, July 26 2018

TPC inner vessel

K. Kamdin

IDM, Providence RI, July 26 2018

Data Collection

- Direct, independent read-out of charge and light signals.
- Voltage records of PMT & charge amplifiers taken with 14 bit 125 MHz digitizer
- Triggered on coincidence between PMT and central anode segment

Procedure & data sets

Plate Out Procedure:

- 1. Circulate xenon gas + 220Rn
- 2. Pump out TPC & lines (1E-4 Torr)
- 3. Fill liquid Xe
- 4. Search for 212Bi alpha decay in bulk

Dataset ID	Plate Out #1	Plate Out #2	Background	Calibration of Sigr Region
Description	Plate out w/cathode at -1 kV	Plate out w/ cathode at 0 kV	No plate out	Introduce 220Rn, 21 into bulk LXe
Livetime (h)	12.02 ± 0.5	23.93 ± 0.5	25.02 ± 0.2	4.15 ± 0.2

Procedure & data sets

Plate Out Procedure:

- 1. Circulate xenon gas + 220Rn
- 2. Pump out TPC & lines (1E-4 Torr)
- 3. Fill liquid Xe
- 4. Search for 212Bi alpha decay in bulk

Dataset ID	Plate Out #1	Plate Out #2	Background	Calibration of Sigr Region
Description	Plate out w/cathode at -1 kV	Plate out w/ cathode at 0 kV	No plate out	Introduce 220Rn, 21 into buik LXe
Livetime (h)	12.02 ± 0.5	23.93 ± 0.5	25.02 ± 0.2	4.15 ± 0.2

↓alphas of ~6MeV

Data selection for 212Bi alpha in bulk

1. Alpha decays robustly selected by electrons/photons (S2/S1)

KEEP

4. Is it in bulk?

5. Is it in expected S1-S2 signal region? Signal region is defined by bulk 220Rn, 216Po alpha decay (next slide)

IDM, Providence RI, July 26 2018

Calibration of bulk signal region - 4 hours livetime

Plate Out #1 - 12 hours livetime

IDM, Providence RI, July 26 2018

Plate Out #2 - 24 hours livetime

IDM, Providence RI, July 26 2018

Background - 24 hours livetime

Clear evidence for radon daughters leaving walls

Number of events consistent with 212Bi alpha decay to 208TI

Dataset ID	Plate Out #1	Plate Out #2	Background
Bulk events	11	20	1
Cathode events	300	183	4
Livetime	12.02 ± 0.5	23.93 ± 0.5	25.02 ± 0.2

the LXe bulk at counts above background.

In both plate out data sets, events consistent with 212Bi alpha decay were observed in

Very preliminary Rn-daughter mobility ESTIMATE

To put these counts into context of LXe dark matter experiments, define mobility:

mobility = Bq 212Bi dissolved / kg LXe

Bq 212Pb plated out / cm² detector surface

Mobility Estimate of 212Bi alpha in LXe atoms/kg/cm²

Dataset ID	Plate Out #1	Plate Out #2
Mobility Range Estimate	0.1–84	0.1—58

atoms/kg/cm²

Significant uncertainties in test bed volume & plate-out area

Very preliminary Rn-daughter mobility ESTIMATE

To put these counts into context of LXe dark matter experiments, define mobility:

Bq 212Bi dissolved / kg LXe mobility =

Bq 212Pb plated out / cm² detector surface

Mobility Estimate of 212Bi alpha in LXe atoms/kg/cm²

Dataset ID	Plate Out #1
Mobility Range Estimate	0.1–84
JX Preliminary (K. Oliver-Mallory's	Talk):

210Pb in bulk < 0.099 uBq / kg LXe

210Pb on PTFE > 9.8 mBq / cm^2

K. Kamdin

Ll

IDM, Providence RI, July 26 2018

Why are there events in the bulk?

Some % of plated-out daughters = Physisorption binding energy ~1 eV or less (e.g Van der Waals)

Hypothesis 1: Early in detector lifetime, may expect physisorbed species to easily 'wash off' in LXe

Hypothesis 2: Beta ejection of Bi daughter nucleus → gives rise to innate difference between 212Bi (laboratory) and 210Bi (late 222Rn-chain) mobility

210Pb 212Pb (222Rn chain - reality) (220Rn chain - laboratory) 63.5 keV 569.9 keV Decay Q Max. Bi daughter nucleus 0.006 eV 0.6 eV recoil

IDM, Providence RI, July 26 2018

Conclusions

Clear evidence for 212Bi mobility was observed.

Our calculated 212Bi mobility in lab is much greater than LUX preliminary 210Bi measurement

 \rightarrow Two hypothesis why:

unlikely to dissolve into bulk)

Further study desired! We can start to answer: hypothesis 1 or 2?

1. Chemistry: Increased mobility/solubility in early times due to physisorbed species 2. Particle Physics: Natural difference between 220Rn and 222Rn chains • Would be a boon for LZ and company (Late-chain naked betas of 222Rn chain very

Extra Slides

IDM, Providence RI, July 26 2018

Data sets & conditions

	Dataset ID	Α	В	С	D
Plate-out conditions	description	plate out	plate out	background	calibration
	220Rn rate	4.5 ± 0.5 Hz	4.5 ± 0.5 Hz	0 Hz (source bypassed)	-
	Circulation Time (h)	24	48	24	_
	Cathode Voltage (kV)	-1	0	0	_
Data-taking conditions	Getter purification	yes	yes	yes	yes
	220Rn introduced	no	no	no	yes
	Cathode Voltage (kV)	-6	-6	-6	-6
	Grid Voltage (kV)	-4	-4	-4	-4
	Livetime (h)	12.02 ± 0.5	23.93 ± 0.5	25.02 ± 0.2	4.15 ± 0.2

K. Kamdin

IDM, Providence RI, July 26 2018

Example radon circulation path for plate out

K. Kamdin

Defining cathode region

Bi-Po topology \rightarrow 212 Bi alpha topology

If it's consistent with cathode position, if β penetrates into bulk region could mimic signal.

How far can (2.2MeV) β penetrate into bulk region?

CDSA to projected range conversion from Tabata, T., et al. NIM Phys Research B 108 (1996) 11–17

K. Kamdin

IDM, Providence RI, July 26 2018

Monte Carlo Study to find maximum distance 212Bi β on cathode could penetrate into drift region

Cathode alpha decay populations

IDM, Providence RI, July 26 2018

