Latest Analyses and Results from the LUX Collaboration

Kelsey C Oliver-Mallory UC Berkeley & Lawrence Berkeley National Laboratory July 25, 2018 Identification of Dark Matter 2018

On behalf of the LUX Collaboration

Large Underground Xenon (LUX)

4850 ft below the surface

LUX Timeline

The LUX Detector

- Xenon liquid/gas time projection chamber (TPC)
- 250 kg active mass
- Particles deposit energy:
 - S1: excitation signal, prompt scintillation immediately detected by PMTs
 - S2: ionization signal, electrons drifted upward and extracted into the gas phase region to create secondary scintillation
- 3D position reconstruction
 - \circ **Z**: Δ t between S1 and S2
 - X, Y: reconstructed from S2 light pattern
- Multiple scatters rejected with Δt

Electron/Nuclear Recoil Discrimination

LUX Calibrations

6

Spin Independent Limit

LUX 2017 : 427 live-days: lowest 90% CL exclusion = 0.11 zb at 40 GeV/c (PRL, 118, 021303, 2017)

Summer 2016 result was announced at IDM!

Spin-dependent Elastic Cross-section

Phys Rev Lett 118, 251302, 2017

LUX Analyses Published (2017-2018)

- A search for annual and diurnal electron recoil rate modulations (arXiv:1807.07113)
- LUX Trigger Efficiency (arXiv:1802.07784)
- Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector (Phys Rev, D 97, 112002, 2018)
- Position Reconstruction in LUX (J Instrum, Volume 13, Feb 2018, P02001)
- Ultra-Low Energy Calibration of LUX Detector using 127Xe Electron Capture (Phys Rev, D 96, 112011, 2017)
- Kr-83m calibration of the 2013 LUX dark matter search (Phys Rev, D 96, 112009, 2017)

- 3D Modeling of Electric Fields in the LUX Detector (JINST 12, no 11, P11022, 2017)
- First Searches for Axions and Axionlike Particles with the LUX Experiment (Phys Rev Lett 118, 261301, 2017)
- Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure (Phys Rev Lett 118, 251302, 2017)
- Signal yields, energy resolution, and recombination fluctuations in liquid xenon (Phys Rev, D 95, 012008,2017)
- Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure (Phys Rev Lett 118, 251302 2017)

LUX Ongoing or Near Finished Analyses

- Effective Field Theory
- Sub-GeV dark matter detection using Junsong Lin, Tues 15:20 Bremsstrahlung and Migdal-effect
- Lightly ionizing particles
- ¹²⁴Xe 2v Double Electron Capture
- 134 Xe & 136 Xe 0 $\nu\beta\beta$ decay
- Electric field dependence of light · · · · · Vetri Velan, Mon 15:20 yield, charge yield, and recombination fraction and ER/NR discrimination power
- Calibration with ¹⁴C
- Radiogenic backgrounds
- Muon veto performance

This talk will focus on the topics highlighted in blue

And More!

Axions & Axion-like Particles

Axions & Axion-like Particles

12

S1 Pulse Shape Discrimination

S1 Pulse Shape Discrimination

0.5

Leakage Fraction

0.1

0.0

25

50

• Prompt fraction discriminator:

$$PF = \frac{\int_{t_0}^{t_1} \mathrm{S1}(t)dt}{\int_{t_2}^{t_3} \mathrm{S1}(t)dt} = \frac{\sum \mathrm{Prompt Photons}}{\sum \mathrm{Total Photons}}$$

• Parameters trained to minimize the leakage of ER events into 50% NR acceptance region

Constant Model

Phys Rev, D 97, 112002, 2018

75

100

125

150

175

200

Power Law Model

S1 Pulse Shape Discrimination

- The pulse shape discriminator can be used in conjunction with the charge-to-light ratio (log₁₀(S2/S1)) to develop a 2-D discrimination parameter
- ER leakage over full WS range (0 50 phd):
 - log₁₀(S2/S1): 0.4 ± 0.1 %
 - log₁₀(S2/S1) + PS: 0.3 ± 0.1 %
- ER leakage over range 40 50 phd:
 - $\log_{10}(S2/S1)$: 0.3 ± 0.2 %
 - $\log_{10}(S2/S1) + PS:$ 0.1 ± 0.1 %

Phys Rev, D 97, 112002, 2018

Example: 40 - 50 phd	
_	NR
_	ER
	90% NR Region
-	log ₁₀ (S2/S1) + PS
	Discriminator
	Axis Perpendicular
	to NR Median

Annual Modulation

- In many models, dark matter event rate modulates because of Earth's motion about the Sun
- DAMA/LIBRA
 - Modulating w/ highest rate in June
 - For events < 6 keV
- LUX
 - 25 months of WS-2013 + WS-2014/16 data
 - Remove calibration data sets & data from periods of time with unstable slow control parameters (271 remaining live-days)
 - Select small low background fiducial mass of 51.4 kg
 - Select conservative 2 keV_{ee} threshold
 - 2.3 ± 0.21 cpd/keV_{ee}/tonne below 10 keV_{ee}

Annual Modulation

Modulation Phase (days since Jan 1st)

17

Sub-GeV Dark Matter

- Typical DM-nucleus elastic scattering analysis has m_{DM} > 5 GeV, because energy transfer to the xenon nucleus is very low for less massive dark matter particles
- Migdal & Bremsstrahlung are irreducible ER signals from DM-nucleus interactions
- Good detection efficiency for low energy ER events allows LUX to extend sensitivity down to masses of 0.4 GeV

End of LUX ¹⁴C Calibration

- Tritiated methane injections: Tritium beta decay Q = 18.6 keV
- 14 C labelled methane: 14 C beta decay Q = 156.5 keV
- Below QY results for 100 V/cm and 180 V/cm are shown consistent with previous measurements

Electric Field Dependent Discrimination

- In WS-2014/16, throughout the volume of the TPC, E-fields between 50 and 500 V/cm
- This wide range of E-fields can be used to probe ER/NR, charge-to-light discrimination
- Vetri Velan, Mon 15:20

²¹⁰Pb Backgrounds on Detector

- During construction ²²²Rn progeny plate out on the inner PTFE walls of the detector
- All short lived isotopes decay away leaving ²¹⁰Pb, ²¹⁰Bi, and ²¹⁰Po
- These isotopes can be absorbed off of the walls into the xenon
- This has previously been observed by Kamland^{1,2} and Borexino³, and is of great interest to LUX-ZEPLIN
- Kate Kamdin Thurs 18:10, "First Evidence for Radon Daughter Solubility in Liquid Xenon"

¹Nuc Part Phys Proc, 265-266, 2015, pp 139-142 ²Phys Rev, C 92, 055808, 2015 ³Phys. Rev. D 89,112007, 2014

Surfaces ²¹⁰Pb Surfaces

²¹⁰Pb in Liquid Xenon

Leaching of ²¹⁰Pb off Surfaces

- Activity of ²¹⁰Pb was measured at four times during WS-2014/16
- If there is no leaching, ²¹⁰Pb activity will decay by 4% over length of WS-2014/16
- Limit on decay constant for leaching of ²¹⁰Pb from detector walls is given as the fit value less 1-*o*, correcting for 4% ²¹⁰Pb decay

t_{1/2} of ²¹⁰Pb leaching off wall > 1.6 x 10³ days

LUX

Preliminary

Conclusion

- LUX published a limit on the spin independent WIMP-nucleon cross section for the complete exposure in Jan 2017
- Following the SI WIMP limit, LUX has worked on new dark matter analyses, such as:
 - Limits on spin dependent WIMP-nucleon elastic cross section
 - Limits on QCD solar axions and galactic axion-like particles
 - A search for an annual modulation in electron recoil data
 - Preliminary limits on sub-GeV dark matter-nucleus scattering using the Migdal effect and Bremsstrahlung
- LUX is continuing to explore the scope of dark matter models for which xenon time projection chamber detectors are competitive
- LUX is continuing to perform new calibration and analyses of radiogenic backgrounds to best inform future experiments such as LUX-ZEPLIN