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SuperCDMS DETECTOR
TECHNOLOGY
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SuperCDMS DETECTORS

Ge detectors, 1.4 kg each.
Si detectors, 0.6 kg each.
Total: Ge: ~ 25 kg.
Total: Si:  ~ 3.6 kg.

High-purity Ge and Si crystals.

Measurement of phonon signal via transition edge sensors.

Bias voltage:

iZIP: < 10 V
=> Phonon + ionization signal
=> Nuclear / Electron Recoil discrimination.

HV: ~ 100 V
=> Phonon amplification of ionization signal
=> Very low threshold.

iZIP detector HV detector

Talk by T. Aramaki:
“SuperCDMS Detector 
Performance and Early

Science from CUTE”
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NEGANOV-TROFIMOV-LUKE AMPLIFICATION

NTL Phonons

NTL Phonons

Observed Phonon Energy = E
Recoil

 + E
NTL

Vbias ~ 100 V

NTL: Neganov-Trofimov-Luke
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PROTOTYPE HVeV DETECTOR

Strong NTL amplification of e-h+ pairs.

Detector operated on surface at Stanford.

Si crystal (1cm2 x 4mm, 0.93 g),
Phonon sensors

Crystal holder

Dilution refrigerator
sample stage (30 mK)

Bias voltage line

Fiber opticV
bias

 = ~ 150 V

Talk by N. Kurinsky:
“Sub-GeV Dark Matter Search with a SuperCDMS HVeV Detector”

R.K. Romani et al.,
Appl.Phys.Lett. 112 (2018) 043501



7

PROTOTYPE HVeV DETECTOR
Si band gap: ~ 1.2 eV.

Calibration data with pulsed 650 nm laser => 1.91 eV photons.

Sensitivity to single e-h+ pairs in Si crystal with a phonon sensor!
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SuperCDMS DARK MATTER SEARCHES

Electron RecoilNuclear Recoil

Primary SuperCDMS DM search event 
class for default detectors.

Number of e-h+ pairs

Primary Phonons
 = small  = large

Elastic WIMP-nucleon scattering. 

Number of e-h+ pairs

Primary Phonons

Particularly interesting for
HVeV detector!

Absorption of relic dark photons
or relic ALPs.

Light DM-electron scattering.

…
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DARK PHOTON
SEARCH
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MINIMAL VECTOR PORTAL

U(1)
Y

U(1)
DM

The U(1) vector mediators kinetically mix with kinetic mixing parameter ε.

Standard Model Dark Sector

Dark Photon
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Absorption Rate:
R ~ ρ

DM
 ε

eff
2 m

A'
-1 σp.e.(E=mA')

DARK PHOTON ABSORPTION
Analogous to photoelectric absorption, but with a dark photon A'
of mass mA' being absorbed.
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Absorption Rate:
R ~ ρ

DM
 ε

eff
2 m
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DARK PHOTON ABSORPTION
Analogous to photoelectric absorption, but with a dark photon A'
of mass mA' being absorbed.

with:

≈1
for

m
A' 

> ~ 100 eV

≠1
for

m
A' 

< ~100 eV

:   In-medium polarization tensor. Depends on σp.e.as well.
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PHOTOELECTRIC ABSORPTION

Y. Hochberg, T. Lin, K.M.  Zurek, 
PRD 95 (2017) 023013

Silicon

σ1      σp.e. always needed.

σ2 needed for in-medium correction.

Dedicated study in 
Ancillary file to arXiv:1804.10697, 

SuperCDMS Collaboration

Depends on:

Temperature (SuperCDMS at ≤ 30 mK),

E-feld strength (detectors are biased),
Franz-Keldysh Effect [B.O. Seraphin, N. Bottka, PR 139 A 560],

Effects particularly prominent near band gap.
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DARK PHOTON ABSORPTION SIGNAL

Expected signal: Peak at electron recoil energy
corresponding to m

A' 

CDMSlite Run 2
(Soudan, Ge HV detector)

mA' = 15 keV
with arbitrary 

coupling strength

Ge activation 
peaks

Analogous to photoelectric absorption, but with a dark photon A'
being absorbed.
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DARK PHOTON ABSORPTION SIGNAL
IN QUANTIZATION LIMIT

x10-5  Dark Photon mass = 14.0 eV

Expected Dark Photon Signal

Ionization model:

Quantization of peak at electron recoil energy corresponding to m
A'
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DARK PHOTON SEARCH ON HVeV DATA

0.49 g-day exposure after data selection cuts.

Region of Interest: +/- 2 σ quantization peak regions.

SuperCDMS Collaboration, arXiv:1804.10697
accepted by PRL
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90% C.L. KINETIC MIXING LIMIT

SuperCDMS Collaboration, arXiv:1804.10697
accepted by PRL

Reaching existing limit despite order of magnitude smaller exposure.

P. Arias, D. Cadamuro, M. Goodsell,
J. Jaeckel, J. Redondo, A. Ringwald,
JCAP 1206 (2012) 013

A'

ε

A'
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90% C.L. KINETIC MIXING LIMIT
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P. Arias, D. Cadamuro, M. Goodsell,
J. Jaeckel, J. Redondo, A. Ringwald,
JCAP 1206 (2012) 013

A'

ε

A'

SuperCDMS Collaboration, arXiv:1804.10697
accepted by PRL
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OUTLOOK
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SuperCDMS SNOLAB PROJECTIONS

Commissioning of SuperCDMS SNOLAB in 2020.

Starting to take data end of 2020!

I. Bloch, R. Essig, K. Tobioka, T. Volansky, T. Yu
JHEP 1706 (2017) 087

SuperCDMS HV detectors with 20 kg-yrs (Ge) and 10 kg-yrs (Si) exposure.

Talk by R. Schnee:
“Status and Expected Sensitivity
of SuperCDMS SNOLAB”
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THE SuperCDMS COLLABORATION
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SUPPLEMENTARY 
MATERIAL
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DM DETECTION CHANNELS - Electron Recoil

US Cosmic Visions
arXiv:1707.04591 [hep-ph]

SuperCDMS WIMP Search
(Nuclear Recoil)

SuperCDMS DM Search
(Electron Recoil)
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THE SuperCDMS SNOLAB EXPERIMENT

Fridge to provide
<15 mK at the detectors

Gamma shield (Pb)
6 detectors
→ 1 tower

Space for up to 
31 towers

Inner neutron 
shield (PE)

Seismic 
platform

Outer neutron 
shield (water, PE)

Signal vacuum 
feedthroughs

15 mK

● Starting with 
4 towers.

● Space for 31 
towers.



28

0.49 GRAM-DAYS OF SCIENCE DATA
Calibration Laser Data DM Search Data

Live Time Cuts:

Low-frequency noise, surface leakage, system stability.

Reconstruction Quality Cuts:

Pre-trigger noise, reconstructed pulse start time, pulse shape.
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DARK PHOTONS: IN-MEDIUM EFFECTS

with:

In-medium polarization tensor:

Conductivity:

Absorption rate:
R ~ ρ

DM
 ε

eff
2  m

V
-1 σp.e.(E=mV)

V

V

V V
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PHOTOELECTRIC ABSORPTION
Y. Hochberg, T. Lin, K.M.  Zurek, 

PRD 95 (2017) 023013

Silicon

σ1      σp.e. always needed.

σ2 needed for in-medium correction.

Silicon
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WIMP-NUCLEON SCATTERING

Spin-independent (SI) elastic WIMP-nucleon scattering. 
Primary Dark Matter search.

Spin-dependent (SD) elastic WIMP-nucleon scattering.

Dominant backgrounds have Electron Recoil signature. 

Prediction in 
Ge HV detectors 
after fiducial cuts:

1 GeV  WIMP                   10 GeV WIMP      with σ = 10-42 cm2.

Total
3H and Comptons
Ge activation
Surface betas
Surface 206Pb
Coherent neutrinos
Neutrons
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DETECTION PRINCIPLE – iZIP MODE
Electron recoil Nuclear recoil

Ph
on
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Phonon signal
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ti

on
 s
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na

l

252Cf source data

Electron recoils
(WIMP backgrounds)

Nuclear recoils
(WIMP signal region)

Phonon signal: Heat / energy deposition.

Ionization signal: e-/h+ pair production.

Reduced for nuclear recoil.

Combination:      Efficient discrimination between
         nuclear and electron recoil events.

interleaved Z-Sensitive Ionization and Phonon detectors.

Appl. Phys. Lett. 103,
164105

/ Si
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SYSTEMATIC EFFECT OF FANO TERM
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