

Status of the DEAP-3600 dark matter search

Marcin Kuźniak Carleton University, Ottawa

DEAP-3600 Collaboration

75 researchers in Canada, UK, Mexico and Germany

07-24-2018

Outline

- Physics reach
- Liquid argon as a target for WIMP detection
- DEAP-3600:
 - Detector design, background mitigation strategy and construction
 - First results
 - Overview of analysis improvements towards the 2nd analysis
 - Pulse shape discrimination
 - Energy calibration
 - Position reconstruction
- Future LAr program

Physics reach for 1-tonne WIMP detectors

- All available experimental data combined (LHC, LUX, Planck) are still consistent with even the simplest versions of SUSY (cMSSM, NUHM)
- Remaining parameter space is probed by direct WIMP searches with tonne scale detectors: DEAP-3600, XENON1T, LZ
- Complementarity with LHC (cMSSM/NUHM are mostly out of reach of the 14 TeV run!)

07-24-2018

Liquid noble gas detectors

Why noble elements?

- (At least) two available detection channels: scintillation and ionization
 - Avenue to reject electron recoil backgrounds (from γ / β activity)
- High light yield, transparent to their own scintillation
- Easy to purify and scalable to very high masses

Ar and Xe are used for WIMP detection

07-24-2018

Single vs. dual phase

Detect primary scintillation light (**S1**) from the original event.

Ionization charge then drifted to high field region and converted to secondary scintillation (**S2**) in gas phase

Time difference S2-S1 and top PMTs used to localize event (Time Projection Chamber)

- Electronic recoil discrimination:
 - S2/S1 in Xe
 - PSD with S1 (scintillation only) in Ar; S2 signal used for position reconstruction
- A single phase detector of several hundred tonnes could be realized
 - PSD with currently-demonstrated low-radioactivity underground Ar mitigates electron recoil backgrounds;
 - position reconstruction mitigates external-source events

- Single phase liquid argon approach: simple, scalable, inexpensive
- 3.3 tonne target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel
- Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

Single phase liquid argon approach: simple, scalable, inexpensive

- 3.3 tonne target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel
- Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction
- In-situ vacuum evaporated TPB wavelength shifter ($\sim 10 \text{ m}^2 \text{ surface}$)
- Bonded 50 cm long light guides + polyethylene shielding against neutrons
- 255 Hamamatsu R5912 HQE PMTs 8inch (32% QE, 75% coverage)

- Single phase liquid argon approach: simple, scalable, inexpensive
- 3.3 tonne target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel
- Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction
- In-situ vacuum evaporated TPB wavelength shifter ($\sim 10 \text{ m}^2 \text{ surface}$)
- Bonded 50 cm long light guides + polyethylene shielding against neutrons
- 255 Hamamatsu R5912 HQE PMTs 8inch (32% QE, 75% coverage)
- Detector immersed in 8 m water shield, instrumented with PMTs to veto muons
- Located 2 km underground at SNOLAB

SNOLAB

Situated 2 km below the surface (6000 m.w.e.) in the Vale Creighton Mine located near Sudbury, ON.

Muon flux: 0.027 muon/m2/day.

DEAP-3600

SNO

Background mitigation strategy

- β/γ events: dominated by ³⁹Ar beta decay rate, 1 Bq/kg
 - pulse shape discrimination is very powerful in liquid argon ~10⁻¹⁰
- **surface events:** Rn daughters and other surface contamination
 - procured ultrapure materials (screening, quality assurance, co-operation
 - surfaces sanded in-situ
 - limited exposure to radon
 - position reconstruction
 & fiducialization
 - other analysis techniques

- neutron recoils: (α ,n)+fission, cosmogenic μ -induced
 - SNOLAB depth + water Cerenkov muon veto
 - clean detector materials (material assay, quality assurance)
 - shielding

Acrylic vessel resurfacer

- · Mechanical sander to clean inner surface
- Components selected for low radon emanation
- Remove 0.5-mm surface in situ with N₂ purge
- Cleans surface to bulk-level impurities (order 100,000 cleaner than SNO vessel)

(Ultrapure acrylic coatings were considered in the past as an alternative and used in DEAP-1: MK, AIP Conf. Proc. 1338, 101 (2010).

DEAP-3600 wavelength shifter (TPB) evaporation system

Evaporator source installation in a Rn-free atmosphere, through a glovebox.

Evaporation source and deployment system

UV illuminated coating on a small test acrylic vessel (20" diameter).

B. Broerman, M. Kuzniak et al., *Application of the TPB Wavelength Shifter to the DEAP-3600 Spherical Acrylic Vessel Inner Surface*, JINST 12 P04017 (2017)

07-24-2018

Reflector & PMT installation

Inside of the detector after the reflector and PMT installation

Installation of the instrumented acrylic vessel in the steel shell

Completed detector and shield tank

Detailed instrumentation paper submitted to Astroparticle Physics:

https://arxiv.org/abs/1712.01982

Calibration sources

External tubes for calibration with radioactive sources:

- AmBe (neutrons)
- ²²Na (γ)
- ²³²U (γ)

Energy calibration, Position reconstruction

20 optical fibres attached to PMTs

- PMT gains
- Channel-to-channel relative efficiency variation
- Position reconstruction (optical model)

10 cm

One-time calibration with an internal diffuse "laserball" source before the LAr fill.

Channel-to-channel relative

- efficiency variation
- timing offsets
- Position reconstruction (optical model)

First results from the DEAP-3600 dark matter search with argon at SNOLAB

https://arxiv.org/abs/1707.08042 - Accepted for publication in Physical Review Létters 07-24-2018 Marcin Kuźniak – IDM 2018, Providence RI

- 4.44 live days
- Selected ROI for < 0.2 leakage from β 's
- Cuts for instrumental and external-source events
- 2,223 kg fiducial mass
- 9,870 kg-day exposure
- No events observed in ROI

- Light yield consistent with expectations:
- $LY=7.80\pm0.21$ (fit syst.) ±0.22 (SPE syst.) PE/keV_{ee}

07-24-2018

Analysis of 1 yr dataset

Detector stability

Pulse shape discrimination (PSD)

Ar singlet and triplet excited states have well separated lifetimes (6ns vs. ~1.5us)

Single phase LAr:

Xe

4.2

2 ns

Ar

4

6 ns

Parameter

Yield (x10⁴

photons/MeV)

Prompt time

DEAP-3600 PMT calibration

charge multiplication in PMT

LED driven light injection calibration system

- Provides:
 - mean single PE charge for simple charge division calibration
 - functional form of the SPE distribution used by more advanced SPE counting algorithms
 - input for DAQ simulation
 - <u>"PMT noise" contribution to PSD
 </u>

Submitted to NIM: https://arxiv.org/abs/1705.10183

DEAP-1 and the PSD model

- PSD of ~10⁻¹⁰ required in DEAP-3600 to beat down backgrounds from ³⁹Ar (beta emitter) present at 1 Bq/kg rate.
- Measured with a tagged Na-22 gamma source using DEAP-1 at SNOLAB.
- Collected 1.23e+8 events. Leakage <2.7e-8 (90% C.L.)
- Data well described with analytic model and toy simulation. Dependence of PSD on absolute LY, LY uniformity and noise.
- Projection for DEAP-3600 indicates PSD of 10⁻¹⁰

PSD in DEAP-3600

- Good PSD of β events down to 11 keVee!
- Best ever demonstrated at low energy, expect to meet design goal for the full sensitivity run
- Combined with low-radioactivity argon (depleted in ³⁹Ar by a factor of >1500):

Can use PSD for WIMP search with several hundred tonnes of argon

Relative to Xenon

- Current detectors routinely operate with LY = 7-8 PE/keVee, which alone brings >2 orders of magnitude improvement over the 2008 results at fixed energy
- (10 PE/keVee or better expected with SiPMs in the next generation detectors...)
- Additional improvements brought by using low-noise DAQ and much better detector response uniformity: 1 order of magnitude
- Window optimization, single photoelectron counting, afterpulsing removal: 1 order of magnitude

• Apples-to-apples comparison gives >10⁴ lower leakage in LAr

07-24-2018

Further improvements to PSD Optimized prompt window size

- - Astropart. Phys. 65, 40 (2015) Introducing Bayesian Single Photoelectron Counting technique
 - Suppresses the PMT charge resolution effect on PSD
 - Technique extended to correct for PMT afterpulsing

Will allow for low analysis threshold in **1-yr dataset** analysis!

P.M. Burghardt MSc thesis. TUM, 2018

Dedicated PSD paper in preparation.

Calibrated detector response

- 1st paper analysis:
 - ²²Na gammas and ³⁹Ar betas (for energy calibration)

 $LY=7.80\pm0.21$ (fit syst.) ±0.22 (SPE syst.) PE/keV_{ee}

- ³⁹Ar beta events are uniformly distributed in the detector powerful calibration!
- With the exception of F_{prompt} (pulse shape) ³⁹Ar events are a good proxy for WIMPs
- Signal efficiency of all cuts except F_{prompt} are evaluated on the ³⁹Ar population

Improved energy calibration

Development of a combined energy response function fit:

- taking into account available spectral features in calibration and physics datasets
- including the dominant backgrounds
- corrected for DAQ/PMT effects

07-24-2018

Marcin Kuźniak - IDM 2018, Providence RI

Calibrated detector response

• AmBe neutrons (for nuclear recoil response Monte-Carlo validation)

- For F_{prompt} cut efficiency: on top of the literature physics parameters, simulation of the PMT/detector response is added
- MC/data agree within systematic uncertainties
- 1 year dataset analysis: larger calibration dataset, further improvements to the Monte Carlo model

07-24-2018

Experimental signatures

Gamma backgrounds

- MC Simulations scaled by radioactivity screening results
- Dominant contributions to the spectrum from ³⁹Ar and ⁴²Ar

Dedicated paper in preparation.

Alpha backgrounds

counts per bir

07-24-2018

30 – 300 times lower Rn levels than in Xenonbased experiments (LUX, XENON, PandaX)!

Experiment	Activity/Rate	Target	Reference
DEAP-3600	0.2 µBq/kg	LAr	
DarkSide-50	1.74 µBq/kg	LAr	C. J. Stanford, Ph.D. thesis, Princeton University (2017)
PandaX-II	6.6 µBq/kg	LXe	Phys. Rev. D 93, 122009 (2016)
LUX	66 μHz/kg	LXe	Physics Procedia 61 (2015) 658 – 665
XENON-1T	10 µBq/kg	LXe	XeSat2017 talk [link]

"Geometric" backgrounds

Degraded light collection from high energy events shifts them to lower energies, where we look for WIMPs.

Position reconstruction

- Main measure against surface backgrounds
- Two independent maximum likelihood fitters based on charge tuned to Monte Carlo – need a reliable optical model
 - Surface event fiducial leakage probabilities of ~1.3e-3 into 1 tonne fiducial volume (specification target) or better are expected with current algorithms (on MC)
- Spherical fiducial cut with an additional Z cut
- · Optical model improved and fine tuned over the last months
- Additional handle
 - alpha scintillation in TPB added to the argon scintillation, which makes those events easier to tag/remove with PSD
- 1st paper: fitters used only as a cross-check...

07-24-2018

Fit with photon timing

- Fit with intensity and time of arrival for the first 40 ns of prompt light
- Group velocity of UV light = 110 mm/ns
- Group velocity of visible light = 241 mm/ns
- Construct PDFs for light emitted at vertex x0 and event time t₀ given PMT_i measures charge q_i
- Convolve singlet decay time (7 ns), TPB response time (3 ns), and PMT/LG, response time (1.4 ns)
- Consistency between Charge and Timing Fits
 - Both algorithms assume a single source of light.
 - For healthy, uniformly distributed events, such as ³⁹Ar or WIMPs, the positions reconstructed by charge and by timing should agree.
 - Not expect charge and timing fits to agree for
 - Events with substantial amount of afterpulsing
 - Light originates from multiple positions
 - Events in the neck

Consistency between charge and time fitters

Agreement between data driven Monte Carlo and data (Ar-39 used as a proxy for WIMPs)

Current landscape

DEAP-3600 status

- Detector filled and collecting DM search data since Nov 1, 2016
- Stable performance, good light yield, excellent PSD
- Record-low rates of Rn alphas
- World's best result in LAr
- Continued physics and calibration data taking
- Work on higher sensitivity 1 year dataset analysis in progress:
 - Improved PSD using optimized integration windows and extended single photoelectron counting technique
 - Constraining the systematic uncertainty of energy calibration
 - Realistic and detailed simulation essential for the background model.
 Particularly challenging for surface and neck backgrounds: non-trivial geometry, physics and optics!
 - Using position reconstruction fitters in the 1 year analysis
 - New powerful position reconstruction fitter using time
 - Finalizing the systematic uncertainty on background expectations
- Planning to collect 3 live-years of data to reach our full sensitivity

Bright future

07-24-2018

Global Argon Dark Matter Collaboration

Recent formal announcement of the Letter of Intent at the Canadian Embassy in Rome **350+** researchers from DarkSide, DEAP, ArDM and MiniCLEAN.

Supported by the Underground Labs: LNGS, LSC and SNOLAB.

Next steps:

- Completion of the DarkSide-50 and DEAP-3600 science programs
- Joint collaboration on DarkSide-20k at LNGS (2021)
- 300 tonnes fiducial mass detector (2026 , location TBD)

07-24-2018

DarkSide-20k

- To be located at LNGS (Gran Sasso, Italy)
- Officially supported by underground labs: LNGS, LSC, and SNOLAB
- Planned start in 2022
- Projected LY = 10 PE/keV (highly efficient SiPMs)
- Approved by INFN and LNGS in April 2017 and by NSF in Oct 2017

07-24-2018

Beyond DarkSide-20k

- In pre-conceptual phase currently, design (single vs dual phase) and name TBD
- 300 tonnes fiducial for ktonne-yr exposure: (10⁻⁴⁸ cm² sensitivity @ 1 TeV)
- Large detector will require low radioactivity Argon
- LAr capable of exploring parameter space down to the neutrino floor!

Very likely do adopt some of the (Proto)DUNE-like solutions following new ideas for DarkSide-20k

Summary

- Strong discovery potential for the upcoming generation of experiments
- DEAP-3600 analysis ongoing 1 year analysis results will come soon!
- Success of DEAP-3600 and DS-20k will motivate the ultimate detector
- A global LAr collaboration has formed, with a goal of reaching the neutrino floor within a decade
 - 350+ scientists
 - Strong physics case for using complementary targets (LAr in addition to LXe) and exploring the remaining parameter space
 - LAr appears to have the best potential at ~1 TeV WIMP masses, due to lack of neutrino induced electronic recoils

Backup

07-24-2018

Xe and Ar for direct WIMP scattering

- Potential for very large and very sensitive searches
- Complementarity:
 - For high WIMP masses Ar is very competitive with Xe
 - Due to superior PSD, Ar insensitive to pp neutrino backgrounds

ī

Strigari, New J. Phys. 11 (2009) 105011

August 17, 2016 Incident

Leak developed between Butyl o-rings and Steel Shell region

~100 ppb N_2 into LAr

Drained and refilled to slightly lower LAr level by October 2016

Continued collecting data at new level since Nov 1, 2016 – 3322 kg

Current plan to continue running in this configuration for full data collection

Rn-scrubbed N2 gas in Steel Shell

Alpha background topologies

Constraints on neutron backgrounds

Extensive neutron MC campaign using radio-purity assays and (α, n) yields from SOURCES-4C

- Dominant source is (α,n) in PMT glass (≈70%)
- Well constrained from γ-background and consistent with target values

Two data driven limits on neutrons:

- Idea: Eventually all neutrons capture and leave gamma signature
- (1) n enters LAr and captures in LAr or acrylic
 - 2.2 MeV y from ¹H or 6.1 MeV y-cascade from ⁴⁰Ar
 - Search for n γ coincidences
- (2) n captures in surrounding material
 - Variety of high energy γ's
 - γ 's > 5 MeV can be easily distinguished from BG

DEAP-3600 Optics

PMTs the only choice at the time the detector was designed.

PMT glass is the main neutron source in the detector => a lot of acrylic required for shielding.

- Factors affecting LY:
 - Acrylic attenuation (>10% loss)
 - LG reflectors (1 20% loss)
 - AV reflector (0 5% loss)
 - Magnetic fields (1 20% loss)
 - LG/PMT coupling (5 -- 10% loss)

 Prediction from Monte-Carlo tuned to DEAP-1 data: ~8 PE/keV

07-24-2018

Acrylic fabrication and assay

- Fabrication from pure MMA monomer at RPT Asia (Thailand), strict control of radon exposure for all steps, to < 1e-20 g/g Pb-210 (RPT was fabricator of the SNO Acrylic Vessel)
- Assay of production acrylic < 2.2e-19 g/g Pb-210 (Corina Nantais M.Sc. Thesis 2014, <0.2 bkg events/3 years)

Monomer cast at RPT Asia, 2010

Thermoformed Panel at RPT Colorado

²²Na calibration: low energy feature

Plot and data from NIST.gov X-ray mass attenuation coefficients

²²Na calibration: low energy feature

Plot and data from NIST.gov X-ray mass attenuation coefficients

²²Na calibration: low energy feature

Both the Rising and Falling Edge in Distribution Energy Deposit Arise from Electromagnetic Physics

1st paper cuts and efficiencies

