A category of extremely-fast events (EFEs) in pPCGe detectors used in CDEX

LiTao Yang

CDEX Collaboration

Tsinghua University

July. 26, 2018

Outline

- ❖ 1. pPCGe in CDEX
- 2. Extremely-fast events (EFEs) in pPCGe
- ❖ 3. What we learned from EFEs studies?
- ❖ 4. Summary

Direct detection of WIMP

Requirements for DM search:

- √ Low background
- √ Low threshold
- ✓ Particle discrimination
- ✓ Long-time stability

Point Contact Germanium (PCGe) detector

 $C_{PPC} = 2\pi\epsilon r$

~1 pF possible

- ✓ Low threshold: ~ 200 eV
- ✓ Excellent energy resolution: FWHM ~200 eV @ 10.37 keV, 4.3 keV @ 2039 keV (CDEX1A)
- ✓ Long-time stability

Challenges

- ✓ Control the material background near PCGe
- ✓ Decrease the cosmogenic background
- ✓ No particle discrimination
- ✓ Large mass

❖ Light WIMP searches with pPCGe

❖ CDEX-10 detectors:

- ✓ three triple-element pPCGe strings
- ✓ total mass of about 10kg
- ✓ immersed in liquid nitrogen

Based on the CDEX-1B prototype:

- ✓ 1kg-scale pPCGe
- ✓ Large-mass "prototype" (1008 g)
- ✓ Low energy threshold (< 160 eVee)

LN2 tank: 1.5 m(D)*1.9m(H)

Bulk and Surface events in pPCGe

Dead layer:

- Lithium diffusion technology of surface N+ electrode;
- the electric field is weak, and the electron-hole pair drifts slowly;
- Surface event: Amplitude (Energy) loss, long rise time;
- ✓ "Self-shielding effect": external low γ/X rays will be shielded by this layer;

- Active volume correction
- \rightarrow dead layer thickness measurement: 0.88 \pm 0.12 mm (CDEX-1B)--939g
- ❖ B/S identification efficiency correction use rise time difference

B/S discrimination

CDEX-10 background data:

- ❖Surface event: longer rise time, false energy value;
- ❖Bulk event: events happened in the active bulk volume;
- **❖Extremely-fast event:** faster rise time than Bulk events, happened at the strong electric field area near the point electrode; (has been confirmed by source experiments and the detector electric simulation)

B/S discrimination

Assumption: At low energies, different sources and background share the same rise-time PDFs $f_B(E,\tau)$ and $f_S(E,\tau)$ for bulk events and surface events.

Sources-independent bulk/surface rise-time distribution PDFs

$$N_i(E,\tau) = N_{Bi}(E,\tau) + N_{Si}(E,\tau) = \beta_i(E)f_B(E,\tau) + \xi_i(E)f_S(E,\tau).$$

Sources-independent bulk/surface rise-time distribution PDFs

$$N_i(E,\tau) = N_{Bi}(E,\tau) + N_{Si}(E,\tau) = \beta_i(E)f_B(E,\tau) + \xi_i(E)f_S(E,\tau).$$

τ-independent sources index

$$\beta_0(E) f_B(E,\tau) = \frac{N_1(E,\tau) - [\xi_1(E)/\xi_0(E)] N_0(E,\tau)}{[\beta_1(E)/\beta_0(E)] - [\xi_1(E)/\xi_0(E)]}.$$

$$\frac{\beta_i(\mathbf{E})}{\beta_j(\mathbf{E})} = \frac{\int_{b_0}^{b_1} \beta_i(\mathbf{E}) f_B(\mathbf{E}, \tau)}{\int_{b_0}^{b_1} \beta_j(\mathbf{E}) f_B(\mathbf{E}, \tau)} = \frac{\int_{b_0}^{b_1} N_i(E, \tau)}{\int_{b_0}^{b_1} N_j(E, \tau)} \qquad \frac{\xi_i(\mathbf{E})}{\xi_j(\mathbf{E})} = \frac{\int_{s_0}^{s_1} \xi_i(\mathbf{E}) f_s(\mathbf{E}, \tau)}{\int_{s_0}^{s_1} \xi_j(\mathbf{E}) f_s(\mathbf{E}, \tau)} = \frac{\int_{s_0}^{s_1} N_i(E, \tau)}{\int_{s_0}^{s_1} N_j(E, \tau)}$$

$$\frac{\xi_i(\mathbf{E})}{\xi_j(\mathbf{E})} = \frac{\int_{s_0}^{s_1} \xi_i(\mathbf{E}) f_s(\mathbf{E}, \tau)}{\int_{s_0}^{s_1} \xi_j(\mathbf{E}) f_s(\mathbf{E}, \tau)} = \frac{\int_{s_0}^{s_1} N_i(E, \tau)}{\int_{s_0}^{s_1} N_j(E, \tau)}$$

B/S disc. --Ratio Method

For a collection of different sources with differing Bulk to Surface event ratios can be used to find N_{Bi} and N_{Si} by χ^2 minimization:

$$\chi^{2}(E,\tau) = \sum_{i} \frac{[\beta_{i}(E)f_{B}(E,\tau) + \xi_{i}(E)f_{S}(E,\tau) - N_{i}(E,\tau)]^{2}}{\Delta N_{i}(E,\tau)^{2}}.$$

$$\beta_i^{(n)}(E) = \beta_i^0(E) - \int_{b_0}^{b_1} \xi_i^{(n-1)}(E) f_S^{(n-1)}(E,\tau) d\tau.$$

Final $B_{ri}(E)$ equals the integral of $\beta_i f_B(E, \tau)$:

$$B_{ri}(E) = \int_{all \ \tau} N_{Bi}(E,\tau) \ d\tau$$
$$= \int_{all \ \tau} \beta_i^{(n)}(E) \ f_B^{(n)}(E,\tau) \ d\tau.$$

Ratio Method in CDEX-1 and CDEX-10

- ✓ Analysis threshold: 160 eVee
- ✓ Count rate @160 eVee:
 - ✓ Before BS discrimination: >30 cpkkd
 - ✓ After: ~8 cpkkd (CDEX-1B) and ~2.5 cpkkd (CDEX-10)

- Raw
- Ped+PN Cut
- Corrected Bulk

15

10

57

Co Cu Zn

68

68

Ga

Energy (keVee)

CDEX-1B

CDEX-10

EFEs in CDEX-1B background data

EFEs origin -- qualitative simulation

P-type Point-Contact (PPC) detector:

- Small point-like central contact
- Especially low capacitance (~ 1pF) gives superb energy resolution and low energy threshold

EFEs origin -- qualitative simulation

300

400

Time (ns)

100

200

- The very-bulk events mainly arise from the bottom part of the PPC detector
- Very-bulk events discrimination can probably be used for background rejection

500

600

700

EFEs origin -- Experimental verification

¹⁰⁹Cd gamma source

Background spectrum

- ❖ 8 keV X-rays from Copper was observed in EFEs spectrum of the ¹⁰⁹Cd samples;
- In the background spectrum, there are some clear peaks (12-16keV), which are dominated as EFEs;
- Experimentally verified that the ultra-fast case comes from the end face of the point electrode where there is no dead layer.

Nuclide	Туре	Energy(keV)
Cu	Lα	8.04
Pb	Lβ	12.62
Bi	Lβ	13.01
Th	Lα	12.85
	Lβ	15.62
		16.20
Ra	Lα	12.34
		12.20
	Lβ	14.84
		15.24

What we learned from EFEs studies? (1)

(1) Suppress the background level

define the drift time: $t_1 = t_{10\%} - t_{0.1\%}$

Drift time is related to the energy deposition location;

Possibility of fiducial volume selection, remove as much bkgs as possible while retaining as much fiducial mass as possible.

What we learned from EFEs studies? (2)

(2) Improve energy resolution

$$Q_{trapping} = Q_0 \cdot \left[1 - \exp(-\frac{t_{drift}}{\tau}) \right]$$

- ▶ Distribution of $t_{drift} E$ provides information on τ of the carriers;
- Correct the energy to improve the energy resolution;

What we learned from EFEs studies? (3)

- ❖ n+ anode covers the front, lateral and most of the bottom part, which helps to shield the background events;
- ❖ Optimization of the ratio of diameter to height, short drift time length and uniform distribution results in better energy resolution.

BEGe detectors with thick window:

- ✓ a planar p-type detector with a relatively small cathode on the bottom side
- ✓ relatively small capacitance (a few pF)
- ✓ smaller EFEs region near the p+ contact

Summary

- ✓ pPCGe has many advantages and has been used in CDEX for DM direct detection;
- ✓ The B/S discrimination in pPCGe can significantly reduce the background level;
- ✓ The study of Extremely Fast Events (EFEs) can help to better understand the background origins;
- ✓ The analysis of the drift time helps to improve the energy resolution at high energy ranges;
- ✓ This provides ideas for the structural design of detectors in future.

> The validity of this analysis requires calibration source data with consistent rise-time distributions.

High energies:

Low Energies:

0.2-0.4 keV Nor(-1.0, -0.5)

Rise-time is related to the electric field distribution and the noise level:

- High energies: electric field dominated
- Low energies: noise smearing out effects dominated

Pulse shape response

$$Q_{trapping} = Q_0 \cdot \left[1 - \exp(-\frac{t_{drift}}{\tau}) \right]$$

Short drift time length and uniform distribution results in better energy resolution

