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The Reign of WIMPs

Dark matter landscape has long been dominated by WIMPs.

® Abundance is determined by its
weak-scale annihilation rate
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So, is WIMP Dark Matter dead yet?
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Annihilation scale as decisive test
© Scattering (direct detection) and production (colliders):

there is not a well-defined scale because only some of the branching
ratios or aspects of the interaction are being considered.
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Annihilation scale as decisive test

© Scattering (direct detection) and production (colliders):
there is not a well-defined scale because only some of the branching
ratios or aspects of the interaction are being considered.

® The most decisive way to test thermal WIMPs is through their
annihilation products, as this exactly goes to their most fundamental
feature: being annihilation relics, which sets a well-defined scale for
the total cross section.
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MODEL INDEPENDENT EXCLUSION

Is there a largely model-independent lower limit on the mass of thermal
relic dark matter?

Branching fractions of DM must add to 100 percent.
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MODEL INDEPENDENT EXCLUSION

Is there a largely model-independent lower limit on the mass of thermal
relic dark matter?

Branching fractions of DM must add to 100 percent.
If no composite spectrum provides a limit above the thermal relic
line, that mass must be excluded.

We perform the first calculation of the model-independent upper limit on
the thermal WIMP cross section from data.

If energy disappears in one channel, it must reappear in another.
Combining limits from these experiments exploits complementary
strengths.
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METHOD

© Consider most generic and accessible cases: 2—2 s-wave annihilation
to visible products

© Increase DM mass in increments through the thermal window
@ Scan over all branching fractions to kinematically allowed final states

® Check all composite energy spectra against all limits, if no
composition satisfies all limits, increase mass again

® Note this is not linear scaling of individual limits
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THRESHOLD EXCLUSION BRANCHING FRACTIONS
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IMPLICATIONS FOR DM MODELS

© Any DM below ~20 GeV must be non-generic

> Muons least constrained
Possible in leptophilic DM models

» Covers models with suppressed collider or DD signals, i.e. velocity or
momentum suppression, or cancellation between diagrams

© Strength of the limit below the relic line can also be used to set a
bound on sub-dominant WIMP content

Cross section is no longer restricted to be thermal.
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TowARDS CLOSING THE WIMP WINDOW

FERMI:
© Relies on finding new dwarfs, closer to Earth
pre-DES: optimistic, order of magnitude improvement
» Otherwise, sensitivity ~ \/t, existing constraints use ~6 years of data
AMS:
© Constraints based on shorter exposure time, ~2.5 years of data

© Understanding CR background/propagation uncertainties better could
make constraints much stronger

PLANCK:
® Future CMB experiment could do factor ~few better
© Fundamental bound of cosmic variance
CTA4+TACT:
® H.E.S.S., VERITAS, MAGIC, HAWC aid eventually closing up to
unitarity limit
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CONCLUSION AND OUTLOOK

® Annihilation products most decisive way to test thermal WIMPs, sets
well-defined scale for total cross section.

® Considered most generic, most accessible cases

® Generic GeV WIMP not even slightly dead

Conservative limit: the model-independent lower limit on the
mass is ~ 20 GeV
At lower masses, can constrain subdominant fraction

© CTA, which is claimed decisive for masses over ~100 GeV, simply
won't be able to address the lower mass range

Before saying WIMPs are dead, we need to probe this mass
range!

® Improvements promising in near future
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Cosmic-Ray Propagation

The evolution of the number density N; of injected electrons and positrons
is given by the diffusion equation,

ON; - - o .
- =V (Dv) N+ 5o (B) Ni + Qilp: . 2)
+ Zﬁ”gas(r; Z)UjiNj - ﬁ”gasU;:n(Ek)Nf )

J>i
where D is the spatial diffusion coefficient, parametrized as

1)
D(p, r,7) = Dyell/ <P>
P

where p = p/(Ze) is the rigidity of the charged particle with Z =1 for
electrons and positrons. The diffusion is normalized by Dy at the rigidity

po = 4 GV. We assume the diffusion zone is axisymmetric with thickness
2Zt.

2 f
R0V, dN
Qx(p, r,Z) = W ; Brfﬁ
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Cosmic-Ray Propagation

© Model parameters: z; = 4 kpc, Dy = 2.7 x 10?8 cm?/s, § = 0.6

© Take the local DM density to be the maximally conservative p = 0.25
GeV/cm3, with an NFW profile.

o Set the magnetic field at the Sun to be B; = 8.9 uG, which means
that the local radiation field and magnetic field energy density is 3.1
eV/cm3. Higher than the common conservative value of 2.6 eV/cm3

© As such, different choices of the other propagation parameters do not
appreciably change the results.

© The most substantial energy-loss for charged cosmic rays below about
10 GeV is due to solar modulation. The largest measured value of 0.6
GV is taken, we and employ the force-field approximation, which is
valid for positron fluxes.
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Statistics
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Energy Injection Fractions: Below 5 GeV

There is no reason to expect this argument to break down for DM
masses below 5 GeV, but need to be careful close to a hadronic
resonance.

For hadronic final states, we furthermore expect that the energy of
the produced photons/electrons will peak no lower than a O(1)
fraction of the pion mass

o Likewise, muon decays will typically produce electrons with

Ic)
@

O(10 — 100) MeV energies.

Robustly expect that for DM masses between ~ 100 MeV and 5 GeV,
at least 25% of the DM rest energy should go into producing
photons, electrons and positrons with energies above 5 MeV.

Even though PYTHIA has additional uncertainty in this regime, we
can use this estimate to set a strong constraint on light DM
annihilation.
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Energy Injection Fractions: Below 5 GeV

o For e* /7 energies above 5 MeV, the minimum value of f is 0.32.
Thus we expect fo for any 2-body SM final state other than
neutrinos to exceed fpin = 0.25 x 0.32 =~ 0.08 for DM masses in the
100 MeV - 5 GeV window

® Min fys value for DM masses above 5 GeV is 0.12 for the same set of
channels; realistically all the e* /v will not be concentrated at the
energies that minimize f.

o Conservative fm, implies
(ov) < 2.6 x 107%cm? /s

for DM below 5 GeV. Excludes s-wave thermal relic cross section in
this mass range.
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Escape Models

© Coannihilations

© Annihilations to W,Z,H: scattering through suppressed loops
© Suppressed scattering by powers of velocity or momentum

© Early matter domination, late-time reheating, extra particles

®» Hidden sectors

Any extra caveat required tells us something about the WIMP

© Can point us in direction of prefered types of models, or which
aspects of annihilation are priority to improve
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Below 5 GeV
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Energy Injection from Annihilating DM

© Anisotropies of the CMB provide powerful insight to physical
processes present during the cosmic dark ages

® Any injection of ionizing particles modifies the ionization history of
hydrogen and helium gas, perturbing CMB anisotropies

© Measurements provide robust constraints on production of ionizing
particles

Most sensitive measurements to date are by Planck, superseding
earlier measurements by WMAP.
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Sub-dominant WIMP content

Ann cross section and the density are often considered as independent,
and are related to the astrophysical flux F as

(ov) p)
F= gt /pxde, (1)

where p, is the DM density, and ¢ is the line of sight. The upper limit is
obtained from upper limits on F, i.e.,

B 87Tm)2<
<O'V> < <UVlimit> = F fpidg (2)
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Sub-dominant WIMP content

For sub-dominant WIMP DM, if the WIMP density is completely
determined by the annihilation cross section, they are no longer
independent, as

PWIMP (TVWIMP) = Py (T Vy), (©))
where (ovy) ~ 3 x 10726 cm3/s is the thermal relic cross section. The
annihilation flux from the sub-dominant WIMP is then

(ovwiMPp)
dr
8 m2 / PWIMP

2
— <UVWUV21P> /( O Vy Px ) de (4)
87rmX <UVWIMP>
_ <UVX>2 1 / 2
~ (ovwivp) 877’”3( Pt

Therefore, an upper limit on the flux implies

SN )
<0'VWIMP> imit/»
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Limits on lonizing Particles

The annihilation power p,n, of DM to electromagnetic (EM) products,

agv
Pann = feff< >7
my

determines the strength of the CMB limit.

Calculate the weighted efficiency factor f.¢ by integrating energy spectra
from PYTHIA over the fz(E) curves calculated in Slatyer (2015),

1 ™/ _ dN dN
f, . e 2+ .90 ) EE.
wlmd) =50 ), <eff dE, et dE)

From Planck data, the 95% C.L. limit on pan, is
(ov)

my

fore < 4.1x107%8cm?/s/GeV.
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Fermi-LAT Dwarf Spheroidal Limits

® Dwarf spheroidal Galaxies of the Milky Way are one of the best DM
signal targets, as according to kinematic data they are DM dense with
low background

© Fermi has searched for excess gamma-rays. Strongest limits on DM to
any photon rich final states, such as gamma-ray lines or hadronic final
states.

® To set limits on photons from mixed final states, we consider nominal
set of 45 dwarf galaxies.

® For each of these dwarf galaxies, Fermi provides the likelihood curves
as a function of the integrated energy flux,

(ov) /E dN
dp = E-—dE| J;,
£ gem? | o, "dET]?

min
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Fermi-LAT Dwarf Spheroidal Limits

© Obtain the full likelihood £; (1|D;) by multiplying the likelihoods for
each for the 45 dwarfs together. The uncertainty in the J-factor is

included as a nuisance parameter on the global likelihood, modifying
the likelihood,

L (u, Ji|D;) = Li (u|Di)

x ;e*(logm(ﬁ)*m)z/zg?

|n(10)J,~\/ﬂo,-

as per the profile likelihood method. Use J-factors provided by Fermi
for a NFW profile.

© Likelihood is maximized, upper limit placed on the annihilation cross
section at 95% C.L.
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AMS-02 Limits

© We employ high energy losses, conservative choice for magnetic fields,
of B;, = 8.9 uG at the Sun

® Take largest value of the solar modulation potential, ® = 0.6 GV,
measured for AMS during its data-taking period

© The local DM density is in range p = [0.25,0.7] GeV/cm3. Take
lowest density of p = 0.25 GeV/cm3. Most dramatic impact on the
limit — other choices such as propagation model, or choice of DM
halo profile, have subdominant effect on our result

©® AMS reports limits on b-quarks from their antiproton dataset,
stronger stronger than Fermi at low masses (< 50 GeV).

not one of the key threshold channels; the weakest channels from
each experiment are what set the combined limit
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Fit to Data

© To set the limit we perform a likelihood ratio test, where the
likelihood function is

L(0) = exp(—x*(0)/2),

where 0 = {#',62,...,0"} are parameters in the best fit polynomial
function, and the x2(f) is given by

(Fi*(6) — feta)?

(0= g :

o Allow the parameters of the function to float within 30% of their best
fit values without DM, and increase the DM signal normalization until
the functional fit of the background plus signal to the data produces

X2DM = X2 + 2.71.
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AMS-02 Limits: Conservative!

REBECcA LEANE (MIT)

> Orders of magnitude more

conservative in our limit
compared to the literature

» Max solar modulation

® Large magnetic fields, large

energy losses

> Minimum local DM density
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