Astrophysical vs. dark matter interpretations of gamma-ray observations in dwarf galaxies

Alex Geringer-Sameth

Imperial College London

Based on: arXiv:1807.08740, 1503.02320 (PRL), 1410.2242 (PRD)

In collaboration with
Savvas Koushiappas (Brown)
Matt Walker, Sergey Koposov (CMU)
Vasily Belokurov, Gabriel Torrealba, Wyn Evans (Cambridge)
Vincent Bonnivard, Celine Combet, David Maurin (LPSC Grenoble)

Milky Way dwarf galaxies

Nearby, lots of dark matter $(\log_{10} J \sim 18 - 20)$

Not much else: no astrophysical background* compare to Galactic center

Dwarf searches reach the relic cross section

 10^{-24} l

0.55

 10^{1}

Cross section limits

Discovery sensitivity

Mass [GeV]

90%

 10^{3}

AGS+ 1410.2242 (PRD)

 $\tau^{+}\tau^{-}$, 10 yr, "Pass 8"

1. Gamma-ray data is inconsistent with background

2. Inconsistent with any other possible source (e.g. non-DM astrophysics, incorrect diffuse bg models)

1. Gamma-ray data is inconsistent with background

2. Inconsistent with any other possible source (e.g. non-DM astrophysics, incorrect diffuse bg models)

Case study: Reticulum II

Li+ 1805.06612 (PRD)

Time(year)

Albert+ 1611.03184 (ApJ)

DM Mass (GeV)

1. Gamma-ray data is inconsistent with background

2. Inconsistent with any other possible source (e.g. non-DM astrophysics, incorrect diffuse bg models)

Two ways to model background give two different significances

Diffuse background model

- Poisson with given spectrum:
 - "physical" model cosmic ray interactions in Milky Way, extragalactic integrated isotropic emission, charged particle misidentification
 - No additional non-DM sources along line of sight towards dwarf

Empirical background from sampling

$$p = 0.0001$$

$$p = 0.01$$

Two ways to model background give two different significances

Diffuse background model

Empirical background from sampling

$$p = 0.0001$$

$$p = 0.01$$

H₀: No additional source

H₀: No dark matter annihilation

Can combine *p's* to estimate that at least 99% of such "hot spots" contain point sources above diffuse level

1. Gamma-ray data is inconsistent with background

2. Inconsistent with any other possible source (e.g. non-DM astrophysics, incorrect diffuse bg models)

Assume a new source in direction of dwarf and characterize it

Test designed to distinguish dark matter annihilation from astrophysical sources

$$\frac{dF(E \mid \theta)}{dE} = F_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \log(E/E_0)}$$

			2*loglike							
	α		β		F_0 [10^{-11} cm $^{-2}$ s $^{-1}$ GeV $^{-1}$]		$\mathbf{X}_{\gamma})$	p value		
Pass 7	Pass 8	Pass 7	Pass 8	Pass 7	Pass 8	Pass 7	Pass 8	Pass 7	Pass 8	
-0.70	-1.00^{*a}	1.00*	0.95	3.0	0.80	2.5	1.3	0.73	0.90	
2.09	1.99			10.6	2.8	9.9	4.9	0.025	0.16	
Background-only model					19.9	7.0	8.8×10^{-5}	0.027		

Spectrum curved at p = 0.025 level

Compare with known classes of gamma-ray sources

$$\frac{dF(E \mid \theta)}{dE} = F_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \log(E/E_0)}$$

 $E_{\rm peak}$ = energy at peak of SED $E^2 dF/dE$

AGS+ 1807.08740

see also Winter+ 1607.06390 (ApJL)

Dwarfs are at the forefront of dark matter detection but advances in analysis are necessary

- Ruling out diffuse bg model is not enough
- Need to distinguish DM annihilation from non-DM source populations without sacrificing sensitivity
- Method applies to any dwarf which is a promising DM target and shows evidence for gamma-ray emission along line of sight
- Applies equally well to any dark matter target where you expect localized emission (e.g. galaxy clusters, groups, dark subhalos)