Dark Matter and the primordial ⁷Li anomaly

Glennys R. Farrar New York University

Hadronically Interacting DM may explain primordial ⁷Li

Is there a 7Li problem?

CDM prediction is secure (nuclear physics checked)

CDM prediction for 7Li is 10 above observation

Cyburt, Field, Olive 2008; PDG updates, ... Coc&Vangioni, 2017

Spite Plateau (1982; plot from Spordone+10)

Fig. 15. A unified view of A(Li) vs. [Fe/H] from some studies for which a common temperature scale can be assumed. Blue circles, Asplund et al. (2006) data, red triangles, Aoki et al. (2009) data, magenta

> 90% of 7Li comes from 7Be at recombination, 7Be + $e^- \rightarrow 7Li + \nu$

Breakup Rate from DM = $< n_{DM} \sigma_{bu} v > (T)$

- Sexaquark DM potentially works well
 - natural parameters
 - impending tension from direct detect?
- lighter DM ⇔ larger n_{DM}
 - same distribution of KE, higher v
 - easier to evade direct detection

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu_{ab}}} T^{-3/2} \int_0^\infty dE \, E \, \sigma(E) \, e^{-E/T}$$

for details on BBN, see Serpico+04

KE threshold for breakup = ⁷Be 1.58 MeV ⁷Li 2.46 MeV ³He 4.47 MeV ³He 4.47 MeV ³H 5.75 MeV ⁴He 19.3 MeV Id 2.2 MeV replepished]

G. Farrar. IDM2018. Brown Univ. July 23. 2018

HIDM break up of 7Li & 7Be

(GRF + R. Galvez, in preparation)

Not so trivial to calculate σ_{bu}

- 3-body final state
- 4-parameter phase space integration
- poles near physical region
- first results encouraging

KE threshold for breakup = ⁷Be 1.58 MeV ⁷Li 2.46 MeV ³He 4.47 MeV ³He 4.47 MeV ³H 5.75 MeV ⁴He 19.3 MeV [d, 2.2 MeV, replenished]

Direct Detection Limits on Hadronically Interacting Dark Matter

Shielded detectors are not sensitive for large σ_{DM-N} and $m_{DM} \preceq$ GeV (energy loss)

Familiar WIMP limits DO NOT APPLY

MeV-GeV: cosmology

direct detection limits for HIDM Mahdawi-GRF 2018

Hadronically interacting Dark Matter can form atmosphere around Earth → *new constraints for 0.5-5 GeV*

D. Neufeld, GRF, C. McKee 2018

Fig. 9.— Upper limits on σ_{π}^{μ} , implied by 0.8 km yr⁻¹ orbital decay rate for a satellite at an altitude of 000 km. Results are shown for three values of σ_{Π}^{μ} for which the LSS lies in the crust $(10^{-264}, 10^{-26}, and 10^{-27} \text{ cm}^2)$, and two values for which the LSS lies in the atmosphere $(10^{-27} \text{ and } 10^{-26} \text{ cm}^2)$. The crures are labeled with $\log_{10}/\sigma_{\Pi}^{\mu}$.

Fig. 10.— Upper limits on $\sigma^{\rm Ho}_{30K}$ implied by a LHe vaporization rate of $\leq 0.5\%$ per day, for LHe exposed to 300 K thermal HIDM. Results are shown for several values of $\sigma^{\rm exp}_{11}$. The curves are labeled with $\log_{10}(\sigma^{\rm exp}_{11})$.

Fig. 12.— Lower limits on $\sigma_{350,\mathrm{K}}^{s}$, obtained from the requirement k_{DM} 4.3 × 10⁵ erg s⁻¹ cm⁻¹ K⁻¹. Results are shown for several values of σ_{11}^{st} . The curves labeled with $\log_{10}(\sigma_{11}^{st}/\mathrm{cm}^2)$. The allowed region is *above* the curves.

- Fig. 6.— Number density of HIDM at the Earth's surface, $n_{\rm DM}(R_{\oplus})$, in the $m_{\rm DM} \sigma_{11}^{\rm es}$ plane. Contours are labeled by $\log_{10}(n_{\rm DM}/{\rm cm}^{-3})$.
 - Limits strongest for DM masses 1-3 GeV cross sections > 10⁻²⁹ cm²
 - Using them to constrain models is underway (GRF+Xingchen Xu)

Interpreting limits on dark Matter with **Hadronic Interactions**

$$V(r) = \frac{\alpha}{r} e^{-r m_{\phi}}$$

 $m\phi = 1$ GeV (flavor-singlet ω - ϕ combo), sourced by p or A

b=1.00

b=1.55

b=1.68 b=4.00

- b=4.52

10³

• V/C (DM) ~ 10-3

 10^3 km/s (galaxy clusters) down to 1 km/s (atm & z = 17)

- must solve Schroedinger Eqn. Born approximation generically fails badly
- cross section depends only on combos

FIG. 3: Ratio of Born Approximation and Schroedinger Equation

Plenty of Room for HIDM, for now...

(GRF + Xingchen Xu, to appear shortly)

Allowed regions of coupling from XQC (best Direct Detection) Caution: A-depedence very sensitive to nuclear form factor. Born approximation often misleading, by orders of magnitude. point $\alpha = 1$ extend 10⁸ 10 point $\alpha = 0.1$ ---- exter Born 10⁶ 10⁴ U A/U 1 100 0.10 0.01 0.01 m_{ϕ} =1GeV m_{χ} =2GeV v=30km/s 0.5 10 0.1 50 1 5 100 20 40 60 80 0 ms A

G. Farrar, IDM2018, Brown Univ, July 23, 2018

10

FIG. 7: Allowed regions (blue) in the coupling-DM mass plane α (vertical axis) and m_{DM} in GeV (horizontal axis) from XQC using

Alternatives to 7Be breakup by HIDM

New Physics

- η (baryon-photon ratio) was larger at BBN than at recombination* due to late entropy injection; must happen before z = 10⁷ to avoid constraints from spectral distortion.
 *(when measured by CMB)
- Time-varying α to decrease binding energy of D during BBN
 - Dmitriev, Flambaum, Webb 2004
 - Coc, Nunes, K. Olive, Uzan, Vangione 2007
 but doesn't actually work => too-big D/H
- Supra-thermal hadrons from DM decay (but ruins D&4He)
- Systematic problem with 7Li abundance measurements?

Summary

 ⁷Li and BBN may become a smoking gun for HIDM in the MeV-few GeV mass range.

- Factor-4 reduction relative to CDM prediction may be due to DM breakup (need mass ~ MeV-few GeV)
- In-principle testable by looking for (reduced) ν_e line from ⁷Be + e⁻ -> ⁷Li + ν_e (Khatri-Sunyaev 2010)
- Requirements on Dark Matter to fix 7Li:
 - mDM >~ MeV, from BBN limit on relativistic species
 - $\sigma_{bu} / m_{DM} \sim hadronic$
 - Not too heavy (<~10 GeV)
 - heavy -> need higher cross section $\sigma \sim 1/DM$ density
 - heavy -> <v> smaller (<v> ~ $1/\sqrt{m}$)

Backup Slides

Sexaquark Dark Matter

Glennys Farrar, NYU

Uniquely among hadrons, Fermi statistics is compatible with being symmetric in space and totally antisymmetric (singlet) in:

color flavor

(Most-Attractive Channel)³

spin

Hypothesis: S is stable and spatially compact $M_S \ll 2 m_p$

This is compatible with all experiments and theory. *GRF 1708.08951* Eludes detection in accelerators because:

- neutrons are similar and 10⁶ x more abundant
- small wfn overlap => hard to produce or destroy.
 OK with direct detection expts Mahdawi+GF1804.03073

Same quark content as H-dibaryon^{*} (Jaffe 1977), but different physics: not a loosely bound di- Λ ! *mass ~ 2150 MeV in bag model — decays in 10⁻¹⁰ s

DM to baryon ratio

using <u>stat mech, quark masses &</u> <u>temperature</u> of QCD transition

Prediction is correct AND accurate to ~20%, for entire range of M_S and T_{QCD}

