
Inhomogeneous initial conditions 
and the start of inflation

Patrick Fitzpatrick

with David Kaiser
Jolyon Bloomfield

Can a really lumpy spacetime with inhomogeneities on length 
scales around and well within the Hubble radius, when we 
include the effects of nonlinear back-reaction, nonetheless 

flow into inflation?
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Initial conditions problem
• Inflation explains high degree of flatness and homogeneity observed today 

in our universe at horizon scales

• criticism: in order to begin inflation may require homogeneity over many 
Hubble volumes

• if inflationary expansion fails to begin under sufficiently inhomogeneous 
initial conditions, such that inflation requires fine-tuning of its initial state 
to occur, then its naturalness is challenged.

• we study this problem using a well defined set of nonlinear 
interactions in the Hartree approximation

• our results are consistent with recent simulations in full (3+1) 
numerical relativity (e.g. East et al. 2016, Clough et al. 2017)…

• however, by using the Hartree approximation to study certain nonlinear 
interactions, our numerical approach can be applied more efficiently to a 
wide range of models tracking the evolution of perturbations across a wide 
range of scales.



Linearized perturbations around FRW spacetime
• single-field models with minimal couplings to gravity and canonical kinetic term

• expand both scalar field and spacetime metric to first order around their background values
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• to first order in metric perturbations we may form the gauge-invariant Bardeen potentials:

� ⌘ A� @t


a2

✓
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Linearized perturbations around FRW spacetime

• Longitudinal gauge: E = B = 0

� = A  =  

• single-field models with minimal couplings, to linear order in 
perturbations no anisotropic pressure in stress-energy tensor ! � =  

• we consider linearized perturbations to Einstein’s field equations
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• together with the Euler-Lagrange equation of motion for the field, obtain the 
linearized equations of motion to first order in  ��  

• expand spatially varying quantities in comoving Fourier modes       …k



Mode expansion
• typically we study behavior of field and metric perturbation modes after inflation has 

persisted for several e-folds so the universe has become spatially homogeneous 
and isotropic to a high degree of accuracy

Rk ! qk (t)Zk (x)

• We are interested in the behavior of perturbations before inflation has begun, 
we do not assume spatial homogeneity and isotropy to begin with

• we expand our perturbations in eigenfunctions of the comoving spatial Laplacian
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Linearized equations of motion
• Linearized equations of motion for � (t) a (t) ��ki  ki
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• along with the constraint (coming from 00 and 0i components of 
perturbed Einstein field equations
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• Does not capture nonlinear effects of back-reaction



Hartree corrections
• Hartree approximation incorporates certain nonlinear structure and 

gravitational back-reaction for the self-coupled system.

• nonperturbative approximation obtained by resumming an 
infinite set of Feynman diagrams of a particular class (“daisy” 
diagrams) to all orders (Dolan and Jackiw 1974)

• implemented by substitutions among nonlinear terms involving         in 
the equations of motion
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• operates like a mean-field approximation: spherically symmetric in k-space

• incorporate             corrections to EOM for       …  O (~) �

V,� (�) ! V,� (�) +
1

2
V (3) (�) (��)2 +O

⇣
~3/2

⌘

• …and for 
V,���� ! V,�� (�) ��+

1

6
V (4) (�) (��)3 +O �

~2
�

��



• incorporate              corrections to EOM for               and make Hartree approximation� ��O (~)

Equations of motion with Hartree corrections
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Numerical calculation for V (�) = ��4

• scenarios in which ⇢ (t0) + �⇢ (t0) ⇠ M4
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• significant inhomogeneities on length-scales around and within the (initial) 
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Hartree corrections: Nef=66 no Hartree corrections: Nef=63

Results
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• structure within the Hubble radius is 
rapidly being damped out, producing 
smooth patch on Hubble-radius scales



no Hartree correctionsHartree corrections

Results: phase space
• nontrivial adjustments to expected number of efolds at large positive 

and negative initial field velocity
• large-field inflation in a simple potential like lambda-phi-4 robust in the 

face of significant inhomogeneities
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Conclusions
• including Hartree corrections, metric perturbations that begin inside 

Hubble radius fall rapidly in amplitude (structure within the Hubble radius 
is rapidly being damped out, producing smooth patch on Hubble-radius 
scales)

• system still finds inflationary attractor, even in the face of 
significant initial lumpiness

• in phase space plots, there are nontrivial adjustments to expected 
number of efolds at large positive and negative initial field velocity,

• but in general, large-field inflation in a simple potential like lambda-
phi-4 appears robust in the face of significant inhomogeneities

• our computationally simpler and more efficient approach (compared 
to numerical relativity studies) allows us to explore the initial 
conditions problem for more models over a wide range of scales


