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Outline

• Moving dark matter on large scales

• Dark matter distribution on halo scales: 
the shapes of halos

• Moving dark matter in halo interiors: 
the evolution of halo profiles

• Dark matter associated with dark 
matter subhalos



∼ 102 Mpc



Diemand+2008

≲
 10

3  k
pc



Diemand+2008

≲
 10

3  k
pc

• Halos are the building blocks of 
nonlinear structure.

•  Halos separate linear inflow from 
nonlinear “viralized” regions.

•  Halos are regions that are 
overdense by a factor of ~200 or 
so relative to the mean density of 
the Universe.
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• Subhalos are self-
bound substructures 
within halos

• Subhalos host satellite 
galaxies
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• Why do we care?
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FIG. 5: Fractional difference of auto convergence lensing
power spectrum between standard ΛCDM model and decay-
ing dark matter model from first tomographic redshift bin
(lensing source galaxies between 0 < zp < 0.6, where zp is
photometric, and not necessarily true redshift). Solid lines
are calculated using halo model with NFW profiles. These
lines include the alteration of the linear power spectrum on
large-scales and the reduction in the abundance of dark mat-
ter halos due to free-streaming. However, halos are assumed
to have the same profiles as they would in standard ΛCDM.
The Dash-dotted lines include the nonlinear corrections to
halo density profiles.

evident that the DDM power spectra evolve significantly
more than the spectra in massive neutrino models. The
reason is that the decay process continuously deposits ki-
netic energy into the daughter dark matter distribution,
in contrast to the neutrinos which have purely redshifting
kinetic energy distributions.

C. Forecast Constraints on DDM Model
Parameters

To estimate of the power of weak lensing to constrain
DDM, we adopt a variety of possible strategies. First,
we consider constraints from data on scales where linear
evolution of density fluctuations should be valid. The
value of this approach is that exploiting linear scales to
constrain DDM does not require a simulation program
to confirm or refine nonlinear models of structure for-
mation in these models. This can be done with con-
temporary theoretical knowledge of the phenomenology
of these models. Moreover, relatively large-scale con-
straints are less observationally challenging because they
exploit data on scales where cosmic variance, rather than
galaxy shape measurements, are the dominant error [26].
In both cases, these constraints are conservative so we
should expect that forthcoming lensing surveys designed

FIG. 6: Comparison of the redshift evolution of decaying
dark matter and massive neutrino lensing power spectra. We
plot fractional difference of auto convergence lensing power
spectra between standard ΛCDM model and decaying dark
matter (or massive neutrino) models in three tomographic
redshift bins (labeled at the top). For simplicity, we show only
the linear power spectra in this plot, though spectra computed
with our nonlinear model lead to a similar conclusion.

to address dark energy should do at least as well as our
linear forecasts. To limit ourselves to linear scales, we
take data on multipoles ℓ < 300. All of the constraints
that we show in this section have been marginalized over
the remaining cosmological parameters, including neu-
trino mass.
To show the maximum potential of lensing surveys,

we consider measurements that extend into the mildly
nonlinear regime, as is commonly done for dark energy
forecasts. The primary value of this extension is not that
particular features in the power spectra induced by DDM
are added to the data set. Rather the primary improve-
ment in constraints comes from an increase in the signal-
to-noise with which the power suppression can be de-
tected [26]. In this case, we include information on multi-
poles up to our quoted maximum multipole ℓmax = 3000
(see § V). Constraints on these scales will rely on reli-
able modeling of clustering on mildly nonlinear scales,
so a comprehensive simulation program will be necessary
to ensure the robustness of such constraints. A com-
prehensive program is computationally-intensive and be-
yond the scope of our present paper, as part of our goal is
to emphasize that such a large-scale numerical program
may be interesting and useful.
In Figure 7 we display our forecast 1σ exclusion con-

tours alongside a variety of other contemporary con-
straints. The most relevant contemporary constraints
come from modifications to the structures of dark matter
halos with virial velocities similar to the SDM kick veloc-
ities [15] (orange region). Additional constraints may be
placed on unstable dark matter by examining the proper-
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FIG. 2: Left: The weak lensing power spectrum for source redshifts z = 0.2, 1.0, and 3.0, assuming m⌫ = 0.3 eV. Only the
auto-power spectra are shown. The black curves assume feedback model #1, the red curves are plotted for feedback model #2,
and the blue curves for feedback model #3. Also shown are expected error bars for an LSST-like or Euclid-like instrument (for
feedback model #1), with bin size �` = 50 for ` < 1000, and �` = 100 otherwise. The error bars are large for small z because
of low volume, and for large z because of low flux. Right: Fractional change in the shear auto-power spectrum for z = 1.0:
�C` = [C` �C`(ref)]/C`(ref), where the reference model has no feedback and assumes a neutrino mass of 0.3 eV. The magenta
curve considers a smaller neutrino mass m⌫ = 0.2 eV. The black (solid), red (dashed), and blue (dotted) curves are plotted for
feedback models #1, #2, and #3. The shaded area represent the error for z = 1.0.

where � = 0.55 [47], and the matter density at redshift
z is

⌦m(z) =
⌦m(1 + z)3

⌦m(1 + z)3 + ⌦⇤
. (9)

b(z, k) is the baryon bias as defined in Eq. [15]. The
function Wi(z) is given by:

Wi(z) =

Z 1

z
dz0 ngal(z

0)⇠(z0, zi)


1 � �(z)

�(z0)

�
. (10)

ngal(z) describes the redshift distribution of the source
galaxies normalized so that

R
dz ngal(z) = 1. We choose

the form [48]:

ngal(z) =
4p
⇡

z2

z3
0

exp
h
� (z/z0)

2
i
. (11)

The function ngal(z) tells us that most galaxies are ob-
served around z ⇠ z0, i.e. far enough to cover a sig-
nificant volume, yet close enough to be visible with the
telescope. ⇠(zs, z) is a suitably chosen window function
for the source redshift bin zs. We pick a top hat window
function which is 1.0 within the bin and zero outside.

The observed power spectra Pij(`) contain both signal
and shot noise components:

Pij(`) = Cij(`) + �ij
�2

✏

ni
, (12)

where �✏ is the intrinsic ellipticity of galaxies, and ni is
the number of galaxies present in the redshift bin i.

We compute the shear power spectrum, assuming the
following cosmology: {⌦bh2 = 0.0222, ⌦ch

2 = 0.118, h =

0.674, 109As = 2.21, ns = 0.962}, where ⌦b and ⌦c

are the present day baryon and cold dark matter den-
sity fractions, h is the hubble parameter in units of 100
km/s/Mpc, As is the amplitude of the primordial scalar
curvature power spectrum, and ns is the scalar spectral
index. Fig. 2 shows the auto power spectra for redshifts
z = 0.2, 1.0, and 3.0, for the 3 feedback models consid-
ered in Fig. 1. Also shown are the error bars expected
for LSST, plotted for feedback model #1. For the cos-
mic variance component, we choose fsky = 0.5, approx-
imately equal to 20,000 square degrees of sky coverage.
For the shot noise term, we choose n = 50 galaxies per
square arcminute, with �✏ = 0.22 [17, 49]. We assume
the median redshift of the survey = 1.0, which sets z0 =
0.92 [48]. It is clear that the observations can easily dis-
tinguish between feedback models for z = 1. Conversely,
if the true model is unknown, there will substantial er-
rors in the inferred cosmological parameters. For z <⇠ 0.2,
the error bars are large since the volume covered is very
small. Similarly, for z >⇠ 3.0, the error bars are similarly
large since the sample of galaxies is flux limited.

IV. RESULTS

Let us now estimate the errors in the neutrino mass
measurement using the Fisher matrix formalism. Let ~✓ =
{⌦bh2, ⌦ch

2, h, 109As, ns, m⌫} be the set of cosmological
parameters to be constrained. The Fisher matrix is then

F = C

�1
prior +

X

`

@P

@~✓
Cov

�1 @P

T

@~✓
. (13)

FIG. 2: Left: The weak lensing power spectrum for source redshifts z = 0.2, 1.0, and 3.0, assuming m⌫ = 0.3 eV. Only the
auto-power spectra are shown. The black curves assume feedback model #1, the blue curves are plotted for feedback model
#2, and the red curves for feedback model #3. Also shown are expected error bars for an LSST-like or Euclid-like instrument
(for feedback model #1), with bin size �` = 50 for ` < 1000, and �` = 100 otherwise. The error bars are large for small z

because of low volume, and for large z because of low flux. Right: Fractional change in the shear auto-power spectrum for
z = 1.0: �C` = [C` � C`(ref)]/C`(ref), where the reference model has no feedback and assumes a neutrino mass of 0.3 eV. The
magenta curve considers a smaller neutrino mass m⌫ = 0.2 eV. The shaded area represent the error for z = 1.0.

where � = 0.55 [47], and the matter density at redshift
z is

⌦m(z) =
⌦m(1 + z)3

⌦m(1 + z)3 + ⌦⇤
. (9)

b(z, k) is the baryon bias as defined in Eq. [15]. The
function Wi(z) is given by:

Wi(z) =

Z 1

z
dz0 ngal(z
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ngal(z) describes the redshift distribution of the source
galaxies normalized so that

R
dz ngal(z) = 1. We choose

the form [48]:

ngal(z) =
4p
⇡

z2

z3
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exp
h
� (z/z0)

2
i
. (11)

The function ngal(z) tells us that most galaxies are ob-
served around z ⇠ z0, i.e. far enough to cover a sig-
nificant volume, yet close enough to be visible with the
telescope. ⇠(zs, z) is a suitably chosen window function
for the source redshift bin zs. We pick a top hat window
function which is 1.0 within the bin and zero outside.

The observed power spectra Pij(`) contain both signal
and shot noise components:

Pij(`) = Cij(`) + �ij
�2

✏

ni
, (12)

where �✏ is the intrinsic ellipticity of galaxies, and ni is
the number of galaxies present in the redshift bin i.

We compute the shear power spectrum, assuming the
following cosmology: {⌦bh2 = 0.0222, ⌦ch

2 = 0.118, h =

0.674, 109As = 2.21, ns = 0.962}, where ⌦b and ⌦c

are the present day baryon and cold dark matter den-
sity fractions, h is the hubble parameter in units of 100
km/s/Mpc, As is the amplitude of the primordial scalar
curvature power spectrum, and ns is the scalar spectral
index.

We use the bias rather than the power spectrum, so
it is less sensitive to cosmology. �8 does not change the
overall amplitude of the bias, but just the small-scale
shape, which depends on the nonlinear collapsed fraction.
Our cosmology accounts for the most recent estimate of
�8 based on Planck + ACT + SPT + BAO, i.e. �8 =
0.826±0.012, and is over 5� larger than the value used in
the OWLS simulations. The smaller value of �8 used by
OWLS results in a smaller number of halos being present
at a given redshift, and hence smaller baryonic feedback.
We therefore consider the OWLS simulation results to be
a conservative estimate for baryonic feedback. We believe
that using simulations with a more realistic value of �8

would make our results even more relevant. Also, the
signal-to-noise ratio increases with �8 so that increasing
�8 leads to slightly stronger constraints.

Fig. 2 shows the auto power spectra for redshifts z =
0.2, 1.0, and 3.0, for the 3 feedback models considered in
Fig. 1. Also shown are the error bars expected for LSST,
plotted for feedback model #1. For the cosmic variance
component, we choose fsky = 0.5, approximately equal to
20,000 square degrees of sky coverage. For the shot noise
term, we choose n = 50 galaxies per square arcminute,
with �✏ = 0.22 [17, 49]. We assume the median redshift
of the survey = 1.0, which sets z0 = 0.92 [48]. It is
clear that the observations can easily distinguish between
feedback models for z = 1. Conversely, if the true model

Natarajan+15
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Takeaway

• Baryonic processes can modify the 
clustering of dark matter in a 
complicated manner.

• This represents a challenge to 
cosmological (particularly lensing) 
probes of dark matter, dark energy, and 
neutrino mass.
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• Halos become more spherical when baryons 
are included

No Baryon cooling With Baryon cooling

Kazantzidis+05

With Baryons



SHAPES OF DARK MATTER HALOS 3

FIG. 2.— Top and middle panels: Minor-to-major axis ratio, c a, as a func-
tion of radius for a cluster-size (top panel) and the galaxy-size (middle panel)
halo. The thick solid lines correspond to the DM, while the thin solid lines
show the combined c a of DM and stars in simulations with cooling. The
dashed lines show the profile of the DM in the adiabatic simulations. Bottom
panel: c a profiles of merger remnants. We show remnants from four merg-
ers: inclined halo+disk (solid), coplanar halo+disk (short-dashed), NFW halo
(dotted), and contracted halo (long-dashed). Thick lines show c a for DM only
and thin lines show c a for stars in the cases with initial stellar disks in the in-
clined (solid) and coplanar (short-dashed) mergers. We show the profiles at a
time 8 crossing times of the remnant.

& Merrifield 2000) may be somewhat different from results at
larger distances. Note that despite the significant flattening of
the baryons in the central 0 1rvir of the galaxy simulation, the
DM distribution around the disk is almost spherical.
It is interesting to ask if the ellipsoid of the DM halo is

aligned with that of the baryons. For clusters, in which most of
the baryons in the center are in stars, the major axes of the stel-
lar and DM distribution are approximately aligned at all radii.
For example, the major axis of the central cluster galaxy is well
aligned with the inner DM halo. However, we find that in clus-
ters that contain massive substructures in their outer regions,
the direction of the major axis often changes dramatically at
r 0 5rvir. In the galaxy simulation, the minor axis of the DM
distribution in the vicinity of the disk is aligned with the minor
axis of the disk; however, the flattening of the DM distribution
is small (Figure 2). Interestingly, at r 0 2rvir, the direction of
the major axis of the DM halo changes and is nearly perpendic-
ular to the disk.
We examined the evolution of themerger remnants and found

that their shapes evolve in their outer regions for 8 cross-
ing times or 14! 18 Gyr. This indicates that the shapes of
the outer regions of the cosmological halos are evolving at all
epochs. The bottom panel of Figure 2 shows the axis ratios of
the remnants in controlled merger experiments after 8 crossing
times, when the evolution has ceased. The shapes of the DM
halo merger remnants vary, depending strongly upon the pres-
ence of a disk component and the relative inclination of disks
prior to the merger. Mergers of halos with different central
density profiles produce remnants with very similar axis ratios.
When a disk component is present, the shape of the remnant
DM halo depends sensitively upon the initial relative inclina-
tion of the disks. Inclined disk mergers lead to a very spherical
stellar remnant and a correspondinglymore spherical DM halo,
compared to the halo-only cases. Coplanar disk mergers lead
to a very disk-like stellar component (small c a), and a DM
halo that is nearly as flattened as in the halo-only mergers. We
discuss the implications of these results in the next section.

4. DISCUSSION AND CONCLUSIONS

We show that halos in cosmological simulations with cooling
are considerably more spherical than in dissipationless simula-
tions. The difference decreases with increasing radius but can
be significant even at the virial radius. This is somewhat sur-
prising because cooling affects the mass distribution apprecia-
bly only in the inner 10% of the virial radius.
The condensation of baryons due to cooling leads to a more

concentrated distribution of DM, as it responds to the increas-
ing gravitationalfield of baryons in the center (Blumenthal et al.
1986). Thus, dissipation results in a significantly more cen-
trally concentrated mass distribution and a deeper gravitational
potential. Dubinski (1994) showed that this leads to the evolu-
tion of the halo toward a more spherical shape in a few cross-
ing times, arguing that as the central condensation grows, the
overall potential becomes rounder. This shifts the boundaries
between orbital families markedly, decreasing the fraction of
regular box orbits that serve as the backbone of a triaxial mass
distribution (Gerhard & Binney 1985; Udry & Martinet 1994;
Barnes & Hernquist 1996; Merritt & Quinlan 1998; Valluri &
Merritt 1998).
In hierarchical models of structure formation, halos grow

via a sequence of violent mergers and periods of slow accre-
tion. Although cooling can gradually make a halo more spheri-
cal, subsequentmergers can produce highly elongated remnants
(e.g., Moore et al. 2003), erasing the effect of dissipation dis-
cussed above. If no significant cooling occurs after the last ma-
jor merger5, the triaxiality of the halo will be largely determined
by the merger. Hence it is important to consider how cooling
affects the shapes of merger remnants. To this end, we analyze
a suite of controlled merger simulations of pure DM halos and
halos with embedded disks.
Cooling can directly affect the shape of stellar remnants dur-

ingmergers (Barnes &Hernquist 1996). However, a large amount
of cooling gas may be needed for this to significantly affect the
shapes of DM halos. Indeed, we compare remnant shapes in
mergers of disk+halo systems in which disks contain both stars
and a modest amount of gas (10% of the total disk mass), with
and without cooling. This comparison shows that the effect of
dissipation on the shapes of dark halos during the mergers of
these stellar-dominated disks is negligible.

5 For example, if the merger occurs after most of the gas is converted to stars
or the cooling time in the merger remnant is long.

r/Rvir
0.1 1.0

With Baryons
Baryons tend to make 
halos more spherical 
than they appear in 
gravity-only N-body 
simulations.

Kazantzidis+05



MW-like Sims With 
Baryons

Figure 1. Shapes of triaxial dark matter halos as a function of the ellipsoidal radius R =p
(x/a)2 + (y/b)2 + (z/c)2 as parametrized by short axis scale length/long axis scale length (c/a) and in-

termediate axis scale length/long axis scale length (b/a) for the three halos studied in this work. In g1536DM
the halo is highly prolate with c/a ⇠ 0.45 and b/a ⇠ 0.55. With baryons added (middle panel), this halo
becomes close to axisymmetric b/a ⇠ 1, but remains somewhat flattened (b/c ⇠ 0.75). g15784 (right panel,
baryonic physics included) is nearly spherical within 50 kpc.

consistently (1) have a geometric mean radius
p
abc = r, and (2) are the eigenvectors of the

second moment tensor of the mass distribution within the ellipsoidal shell. In practice, this
is done by starting with a spherical shell, calculating the second moment tensor, deforming
the shape of the shell to match the eigenvectors of the tensor, and iterating until the solution
has converged; this is very similar to the method advocated by [40].

Figure 1 shows the halo shape axis ratios as a function of the ellipsoidal radius R =p
(x/a)2 + (y/b)2 + (z/c)2 for the three di↵erent halos studied in this work. In the DM only

simulation (figure 1 left) c/a ⇠ 0.45 and b/a ⇠ 0.55 indicating that this halo is highly prolate
(football shaped) except in the inner most region (⇠2 kpc). In contrast, g1536 with baryons
is close to axisymmetric b/a ⇠ 1, but quite flattened (0.6¡b/c < 0.8), while g15784 has
0.9 < b/a < 1 and c/a ⇠ 0.9 indicating that it is is nearly spherical within 50 kpc. g1536DM
is the most triaxial because of the absence of baryons [12, 19–22], while the di↵erences in the
shapes of g1536 and g15784 reflects the di↵erences in their cosmological accretion histories.
Comparison of these three halos therefore enables us to assess the general applicability of
our results. It is also interesting to note that in all cases, both c/a and c/b are relatively
constant as a function of radius (which is not true of all cosmological simulations [40], but is
not unique to these simulations [11]).

3 Local Dark Matter Distribution

Of relevance to direct detection experiments is the amount and velocity distribution of the
dark matter particles in the neighborhood of the Earth, with the overall rate of WIMP-
nucleus interactions proportional to the former and the energy spectrum of the interactions
dependent on the latter (faster WIMPs can transfer more energy in a collision with a nucleus).
Though the N-body simulations are not precisely representative of the Milky Way, they are
qualitatively very similar and thus useful conclusions can be drawn from examining direct
detection signals expected in such halos. For each simulation we compute the detection
signals in the frame-of-reference of a planet with Earth-like motion relative to the Galactic

– 5 –

DM only With Baryons
With Baryons
Kelso+16; see also Zhu+17

• This effect is evident in zoom-in simulations 
tailored to mimic the Milky Way



Takeaway
• Baryons alter the shapes of dark matter halos, 

generally making them more spherical.

• Difficult to use the shapes of halos to determine 
the degree of relaxation halos have experienced.

• This “sphericalization” also extends to the 
velocity ellipsoid

• A simple, standard halo model is a better 
description of the local dark matter density than 
N-body only simulations might suggest. 
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Halo ProfilesCusp-core transformations induced by AGN feedback 5
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Figure 2. The evolution of the mean density profiles of dark matter haloes extracted from HAGN (green lines), HnoAGN (red lines) and HDM (blue

lines). We focus on four distinct fixed mass intervals: ∼ 5×1011M⊙ (first column), ∼ 1012M⊙ (second column), ∼ 5×1012M⊙ (third column)

and ≥ 1013M⊙ (fourth column). Three different epochs are also considered: high redshift (first line), intermediate redshift (second line) and z = 0
(third line). For indicative purposes only, the two vertical dashed lines at r = 1 kpc and r = 5 kpc represent respectively the simulation grid size

and a recommended resolution limit following Power et al. (2003). The error bars correspond to the dispersion. These plots suggest that HnoAGN

haloes have always very dense and cuspy central regions. On the contrary, AGN feedback tends to flatten the profiles especially at intermediate

redshifts (z ∼ [1.6 − 2.7]) whereas a “cusp regeneration” is observed at z = 0. Finally, we also show at z = 0 the mean density profiles of

dark matter haloes of similar mass range extracted from the Eagle simulation (Schaller et al. 2015a). The latter results suggest there are some slight

differences especially for lower mass halos (5× 1011M⊙) but quite consistent results for massive ones.

reasons, we adopt instead a simple fixed physical scale for r1
and r2: we probe the inner 1-5 (γ′) or 1-10 (ADM|noAGN) kpc

of DM haloes for any redshift and halo mass. The different

choice of value for r2 used for γ′ and ADM|noAGN illustrates

the fact that the results presented in this paper are robust to

variations of up to a factor 2 in the values of r1 and r2.

3.2 Visual inspection: a three phases scenario?

Fig. 2 shows the averaged spherical density profiles ρAGN,

ρnoAGN and ρDM derived for haloes pertaining to our different

mass sub-samples and at three different redshifts. At a given

time, they clearly appear different from one other especially

in the central region (r ! 20 kpc). Conversely, they seem in-

distinguishable at large radii, suggesting that the presence of

baryons and/or AGN feedback induces noticeable effects only

on small scales.

Now, if one analyses the evolution of the mean HDM,

HnoAGN and HAGN halo density profiles separately, clear

trends can be noticed. First, as expected from numerous pre-

vious studies, the HDM density profiles are always centrally

cuspy: their inner slopes are consistent with a NFW profile (as

shown in the next section). Note also that at fixed halo mass,

the HDM density profiles are more extended, less concentrated,

at present times than at high redshift. This well known result is

mainly due to the fact that low redshift haloes have undergone

more (major) mergers than their high redshift analogues, and

these mergers tend to diffuse material at larger radii (see for in-

stance Klypin et al. 2016). As a consequence, for a fixed mass

interval, the density in the halo inner region progressively de-

creases as more and more mass is distributed at large radii.

The HnoAGN halo density profiles are always much steeper

and have higher central values compared to those in the other

simulations. For a fixed mass interval, no significant varia-

tion in profile shape as a function of redshift is observed. Fi-

nally, the HAGN density profiles present a more complex evo-

lution. At high redshift (z ≥ 4) the halo density profiles of

the two first mass bins (i.e. 5 × 1011M⊙ and 1012M⊙) are
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Figure 2. The evolution of the mean density profiles of dark matter haloes extracted from HAGN (green lines), HnoAGN (red lines) and HDM (blue

lines). We focus on four distinct fixed mass intervals: ∼ 5×1011M⊙ (first column), ∼ 1012M⊙ (second column), ∼ 5×1012M⊙ (third column)

and ≥ 1013M⊙ (fourth column). Three different epochs are also considered: high redshift (first line), intermediate redshift (second line) and z = 0
(third line). For indicative purposes only, the two vertical dashed lines at r = 1 kpc and r = 5 kpc represent respectively the simulation grid size

and a recommended resolution limit following Power et al. (2003). The error bars correspond to the dispersion. These plots suggest that HnoAGN

haloes have always very dense and cuspy central regions. On the contrary, AGN feedback tends to flatten the profiles especially at intermediate

redshifts (z ∼ [1.6 − 2.7]) whereas a “cusp regeneration” is observed at z = 0. Finally, we also show at z = 0 the mean density profiles of

dark matter haloes of similar mass range extracted from the Eagle simulation (Schaller et al. 2015a). The latter results suggest there are some slight

differences especially for lower mass halos (5× 1011M⊙) but quite consistent results for massive ones.
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vious studies, the HDM density profiles are always centrally

cuspy: their inner slopes are consistent with a NFW profile (as
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at present times than at high redshift. This well known result is
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these mergers tend to diffuse material at larger radii (see for in-
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interval, the density in the halo inner region progressively de-

creases as more and more mass is distributed at large radii.
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and have higher central values compared to those in the other

simulations. For a fixed mass interval, no significant varia-

tion in profile shape as a function of redshift is observed. Fi-
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Figure 12. Comparison between the DM density profiles from the DM-only and hydrodynamical runs for Halos A (left) and B (right). The DM profile from
the DM-only run is adiabatically contracted via the stellar density profile from the hydro run. See section 5.1 for further explanations.

Figure 13. The three panels show typical DM density profiles for satellites from the DM-only run (left) and the hydrodynamical run, where the right panel
shows a profile with a steeper inner slope with respect to the cored DM profile flattened by SN feedback in the central panel. We fitted the profiles with an
↵� � � � function (equation 6).
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Figure 13. The three panels show typical DM density profiles for satellites from the DM-only run (left) and the hydrodynamical run, where the right panel
shows a profile with a steeper inner slope with respect to the cored DM profile flattened by SN feedback in the central panel. We fitted the profiles with an
↵� � � � function (equation 6).
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DM Only Sim
Subs with galaxies Subs w/o galaxies

• Simulations with strong SN feedback can induce 
inner profile shallowing in subhalos both with 
and without galaxies within them.



Takeaway
• Baryons can alter the density profiles of both 

MW-like halos and their subhalos.

• The manner in which they are modified depends 
upon simulation physics and implementations as 
well as physical complexities such as time since 
AGN activity or star formation.

• Statements about DM that rely on particular 
assumptions about density profiles cannot yet be 
taken robustly. 



Sagittarius
• The Sagittarius dwarf galaxy is a galaxy that is 

currently being stripped of material due to its 
interaction with the Milky Way.

• Sagittarius’ tidal streams were observed in SDSS.

• It has been proposed that this could lead to 
enhanced direct search rates because the 
Sagittarius material has a large relative velocity 
to the Solar System (e.g., Freese+04; Savage+06; Nataragan+11; …)



Sagittarius

Figure 1. Upper panels: distributions of stars and dark matter from the disrupting Sagittarius dwarf
satellite galaxy (green and gray particles, respectively), in our light Sgr and heavy Sgr models. In this
perspective, the Milky Way disk plane is denoted by concentric blue rings at 5-kpc radial intervals,
to a Galactocentric distance of 25 kpc. Lower panels: surface density maps of Sgr stars and dark
matter through the disk mid-plane for each model, computed in a slice with depth of 2 kpc, similar
to the width of the Galactic disk. Note that the leading stellar stream does not pass directly through
the solar neighborhood, although a significant amount of dark matter belonging to that stream is
found near the Sun (as shown by red particles in the upper inset panels, and by grayscale shading in
the lower panels). Indeed, the projected contours of stellar density and dark matter density are not
concentric, particularly in the more heavily-stripped light Sgr model.

tidal debris. We demonstrate that neglecting important modifications to N -body predictions,
such as the presence of a large stellar Galactic disk and the ongoing Sagittarius dwarf merger,
both structures that are known to exist, may well result in systematic misestimations of the
expected event rates and annual modulation signatures in direct detection experiments. The
stellar disk of the Milky Way itself, being in approximate equilibrium with its dark matter
host halo, has concomitantly drawn the near-midplane region of the dark matter halo into
a phase-space distribution peaked at higher velocity and with larger deviations from the
Maxwellian form than found in dark matter-only simulations. These results follow from
models of disk-halo equilibria formulated in ref. [38] and are related to numerous previous
statements of uncertainty in the local dark matter density and velocity distribution in Milky
Way models, as in the reconstructions of [39, 40] among many other efforts.
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Sagittarius

Figure 1. Upper panels: distributions of stars and dark matter from the disrupting Sagittarius dwarf
satellite galaxy (green and gray particles, respectively), in our light Sgr and heavy Sgr models. In this
perspective, the Milky Way disk plane is denoted by concentric blue rings at 5-kpc radial intervals,
to a Galactocentric distance of 25 kpc. Lower panels: surface density maps of Sgr stars and dark
matter through the disk mid-plane for each model, computed in a slice with depth of 2 kpc, similar
to the width of the Galactic disk. Note that the leading stellar stream does not pass directly through
the solar neighborhood, although a significant amount of dark matter belonging to that stream is
found near the Sun (as shown by red particles in the upper inset panels, and by grayscale shading in
the lower panels). Indeed, the projected contours of stellar density and dark matter density are not
concentric, particularly in the more heavily-stripped light Sgr model.

tidal debris. We demonstrate that neglecting important modifications to N -body predictions,
such as the presence of a large stellar Galactic disk and the ongoing Sagittarius dwarf merger,
both structures that are known to exist, may well result in systematic misestimations of the
expected event rates and annual modulation signatures in direct detection experiments. The
stellar disk of the Milky Way itself, being in approximate equilibrium with its dark matter
host halo, has concomitantly drawn the near-midplane region of the dark matter halo into
a phase-space distribution peaked at higher velocity and with larger deviations from the
Maxwellian form than found in dark matter-only simulations. These results follow from
models of disk-halo equilibria formulated in ref. [38] and are related to numerous previous
statements of uncertainty in the local dark matter density and velocity distribution in Milky
Way models, as in the reconstructions of [39, 40] among many other efforts.
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Takeaway

• Dark matter from the Sagittarius disruption 
should be quite extended and likely penetrates 
the Solar System despite the fact that the stellar 
material from Sagittarius impacts the stellar disk 
several kpc from the Solar System.

• Dark matter from Sagittarius can make up ~1% 
(at most 5%) of the local dark matter but impacts 
the Solar System with vSag ~ 400-500 km/s.

Purcell+13



Takeaway
• Using these simulations we find (Purcell+13)

• Possibly large (20-100%) increases in DD rates 
for low-mass dark matter (≲ 20 GeV)

• A significant (up to factor of 2) decrease in the 
amplitude in the annual modulation signal for 
low-mass dark matter

• A shift in phase of the annual modulation by 
as much as 30 days.



Subhalos & Baryons

4 S. Garrison-Kimmel et al.

Figure 1. Visualizations of dark matter (DM) in the Latte m12i halo. Coloring indicates log10 of the local dark matter density. From
left to right, the columns show the dark matter-only (DMO) simulation, the fully baryonic simulation using FIRE physics, and the dark
matter-only run that adds an analytic, embedded disk potential to the halo center (DM+disk), where the disk properties are matched
to the baryonic simulation. The top row illustrates a cube 500 kpc on a side, while the bottom row zooms in on a cube 100 kpc across.
The presence of the central galaxy (either real or embedded) leads to an enhancement in the DM density at the center. Substructure
counts are roughly similar on large scales in all cases (top row), but the tidal field of the central galaxy eliminates many subhalos within
⇠ 50 kpc (bottom row). Although the embedded disk potential does not capture all of the e↵ects of baryons, it does e↵ectively capture
subhalo depletion in the inner halo, where searches for dark substructure via lensing or stellar streams are most sensitive. We quantify
these di↵erences in Figures 2 – 3.

photo-electric heating. Every star particle is treated as a sin-
gle stellar population with a mass, age, and metallicity. We
tabulate all feedback event rates, luminosities and energies,
mass-loss rates, and other quantities directly from stellar
evolution models (STARBURST99 v7.0; Leitherer et al. 1999)
assuming a Kroupa (2001) initial mass function (IMF).

Full details of FIRE-2 are provided in Hopkins et al.
(2017). The source code and numerical parameters of our
baryonic simulations are exactly identical to those in all
FIRE-2 simulations (Wetzel et al. 2016; Su et al. 2016; Fitts
et al. 2016).

The FIRE simulations have been shown to reproduce a
wide variety of observables, including the relationships be-
tween stellar mass and halo mass, the Kennicutt-Schmidt
law, bursty star formation histories, the star forming main
sequence (Hopkins et al. 2014), galactic winds (Muratov
et al. 2015, 2017), the gas and stellar phase M

?

-metallicity
relations (Ma et al. 2016), the M

?

-size relation (El-Badry
et al. 2016), the HI content of galaxy halos at both low
and high redshift (Faucher-Giguère et al. 2015, 2016; Hafen
et al. 2017), and the structure and star formation histo-

ries of isolated dwarf galaxies (Oñorbe et al. 2015; Chan
et al. 2015; Fitts et al. 2016). Moreover, in simulations of
MW-mass halos, in addition to forming a realistic MW-like
galaxy in terms of stellar mass and disk morphology (Wetzel
et al. 2016; Ma et al. 2017), the FIRE model yields reason-
able populations of dwarf galaxies around those galaxies, in
terms of the distributions of stellar masses and velocity dis-
persions, as well as a wide range of star formation histories
that agree well with those of the actual MW satellites.

Both m12i and m12f form thin, radially extended stellar
disks with M

?

(R < R90, z < z90) = 6.2⇥ 1010 M� and 7.5⇥
1010 M�, respectively, where R90 and z90 are the radius and
height that contain 90% of the mass. Thus, these galaxies
are comparable to, if slightly more massive than, the MW
in stars (Bland-Hawthorn & Gerhard 2016). At z = 0, the
total gas fraction, Mgas/(M?

+Mgas), within R90 and z90 is
13% for m12i and 15% for m12f.

The gravitational force softenings and kernel smooth-
ing lengths for gas particles are fully adaptive and con-
servative (following Price & Monaghan 2007). Hydrody-
namic smoothings and gravitational force softenings are al-

MNRAS 000, 1–20 (2017)
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Also, Zolotov+12, Brooks+13, Peirani+16, …
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Fig. 2.— The DM density profiles of SPH satellites (solid black lines) and their DM-only counterparts (blue dashed lines) at z = 0. The
left panel shows the three most luminous SPH satellites, which are also still gas-rich at z = 0. The middle panel shows the three most
luminous, gas-free satellites, and the right panel shows the three least luminous SPH satellites. Luminous SPH satellites have significantly
shallower central density profiles than DM-only satellites, while low-luminosity SPH satellites retain central density cusps similar to their
DM-only counterparts.

are no spurious numerical effects introduced by the lower
mass baryonic particles in the SPH runs.

4. MASS DEPENDENT EVOLUTION OF SATELLITES
WITH BARYONS

In this Section, we study the evolution of the satellites
to understand the processes that lead to the lower con-
centration of mass at z =0 in the SPH satellites. We
first focus on the evolution at high redshift, and demon-
strate that DM core creation occurs in the most luminous
satellites prior to their infall. After infall, we show that
tidal stripping effects exacerbate the mass discrepancy
between SPH satellites and their DM-only counterparts.

4.1. The Impact of Baryons Before Infall

We now examine the evolution of vc from high z to in-
fall for all of the satellites in our sample. The top panel
of Figure 3 shows the change in the DM contribution to
vc at 1 kpc between SPH satellites and their DM-only
counterparts at infall, as a function of the stellar mass of
the SPH satellites at infall. It can be seen in this panel
that satellites that have formed more stars prior to infall
(those with M⋆ > 107M⊙ at infall) undergo a significant
decrease in DM mass interior to 1 kpc, in comparison
to their matched counterparts in the DM-only runs. The
DM rotation curves of these luminous satellites are there-
fore 2− 16 km/s lower than those of DM-only satellites.
(Masses in the DM-only run have been reduced by fbar
for a direct comparison.) We conclude that baryonic ef-
fects lower the central DM densities, and hence lower the
central DM circular velocity, of massive satellites prior
to infall.
The bottom panel of Figure 3 shows the total change

in vc at 1 kpc between SPH satellites and their DM-
only counterparts at infall. This panel shows that the
overall reduction in total vc is is not as strong as the
reduction in DM vc. Although the DM mass has been
reduced for satellites with M⋆ > 107M⊙, the presence of
baryons contributes to the central masses in such a way
that the overall mass is not necessarily reduced compared
to the DM-only case prior to infall. Note that this is not
adiabatic contraction, in which the central DM densities
are increased due to the cooling of baryons, as we have

Fig. 3.— The difference between vc at 1 kpc in the SPH and
DM-only runs at infall, as a function of the stellar mass in the SPH
satellite at infall. Top panel: The difference in the DM contribution
to vc at 1 kpc for matched SPH and DM-only subhalos. Bottom
panel: The difference in total vc at 1kpc.

just demonstrated that the baryonic runs have compa-
rable or lower DM densities to the DM-only runs. We
demonstrate below that once gas is stripped from the
SPH satellites after infall, the reduction seen in the DM
masses and the reduction in total mass are in agreement.
The global trend of ∼3 km/s reduction in total vc in the

reduced density of satellites 
due to baryons

Zolotov+12; see also D’Onghia+10; 
Pennarubia+10; Arraki+14; Zhu+17; …
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Figure 2. Top: Cumulative counts of subhalos above a given maximum circular velocity, Vmax, within 100 kpc of the two hosts, m12i
(left) and m12f (right) – Appendix A presents the counts within 50 kpc and 300 kpc. For reference, the upper-most, light colored dashed
lines (labeled “Raw DMO”) indicate the results of the DMO simulations without applying the correction for the baryon fraction (that
is, without multiplying by

p

1� fb). Henceforth we apply this correction for all comparisons. Lower panels plot the ratio between the
cumulative counts of subhalos in the DMO or embedded disk runs to the FIRE baryonic simulations. For both systems, the DMO
simulation overpredicts the number of subhalos as compared with the baryonic simulation by at least 2⇥ at all Vmax: the average ratios
plotted in the lower panels are 2.2 and 3.9 in m12i and m12f, respectively. Adding only the galactic disk potential brings the substructure
counts to within ⇠ 20% agreement at all Vmax (average ratios of 1.2 and 1.06). Bottom: Cumulative counts of subhalos within a given
radius. We include subhalos down to Vmax = 5km s�1 (bound mass M ' 5⇥ 106 M�), which are well-resolved. While the total excess of
subhalos within 300 kpc ⇡ Rvir is ⇡ 50% in the DMO simulations, this excess rises to ⇡ 3⇥ within 50 kpc. Moreover, the disk completely

destroys all subhalos that are within 17–20 kpc by z = 0, where searches for dark substructure through stream heating are most sensitive:
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Figure 5. . The cumulative distribution of the number of subhalos from the
DMO (black solid line) and Hydro (red solid line) simulations, as a function
of the maximum circular velocity vmax (top panel) and the subhalo mass
Msub (bottom panel). The gray dashed lines are fits from the literature,
N(> vmax) / v

�3
max (top panel), or N(> Msub) / M

�1
sub (bottom

panel). Bright satellites (subhalos that have stars) are represented by the
pink solid curve, while observations by Peñarrubia et al. (2008a) are shown
with blue dots, for comparison.

closer to the observations, and the discrepancy between the two
becomes even smaller when detection and completeness limits of
current surveys are accounted for.

At the massive end, vmax > 20 km s�1, the number of bright
satellites agrees well with observations and it matches that of DM
subhalos. The value of vmax ⇠ 20 km s�1 marks a transition in
dwarf galaxy formation shaped by reionization, similar to previ-
ous studies (Okamoto et al. 2008; Okamoto & Frenk 2009). The
total number of massive dwarf galaxies with vmax > 30 km s�1

within the virial radius rvir of the central galaxy is 6 in our Hydro
simulation, which is almost half the value (11) of massive subha-
los found in the DMO simulation. Note that this corresponds to the
mass range of the “massive failures” considered in Boylan-Kolchin
et al. (2011, 2012). Still, our result is slightly higher than the to-
tal number (4) of massive satellites in the Milky Way, including

LMC and SMC, which have vmax above 30 km s�1 (Peñarrubia
et al. 2008a). Moreover, detailed variations from one main galaxy
to another could, in principle, resolve the residual discrepancy.

The sharp contrast in the number of dwarf galaxies between
the DMO and Hydro simulations highlights the critical role of bary-
onic physics in galaxy formation, and it points to a potentially vi-
able solution of the “missing satellite” and the “too big to fail”
problems, in agreement with suggestions by some previous stud-
ies (e.g., Brooks et al. 2013; Sawala et al. 2014a; Mollitor et al.
2015).

3.2 Mass Functions of Subhalos

In order to investigate effects of baryons on the subhalo mass,
in Figure 6 we compare the subhalo mass Msub (top panel)
and the maximum circular velocity vmax (bottom panel) at z =
0 of the matched pairs between the two simulations. As the
fitting curve (black solid line) is below the diagonal dashed
line (Msub(Hydro) = Msub(DMO), or vmax(Hydro) =
vmax(DMO)), it is clearly seen that the majority of subhalos in
the Hydro simulation are less massive than their counterparts in the
DMO simulation, similar to the subhalo abundance findings in Sec-
tion 3.1. The subhalo mass function of the Hydro simulation peaks
at ⇠ 5 ⇥ 106 h�1M�, which is about a factor of 2 lower than the
peak of the DMO subhalo mass function at ⇠ 107 h�1M�.

In the Hydro simulation, only massive subhalos can form
stars. The minimum mass for subhalos to host star formation is
log(Msub) = 7.5 (or vmax = 10 km s�1), although it may be
affected by the resolution of the simulation. In the mass range
between 108 h�1M� and 109 h�1M� where we have sufficient
mass and spatial resolution, there is a mixture of “dark” sub-
halos and bright satellites (subhalos that contain stars). Such a
co-existence of dark subhalos and bright satellites implies that a
linear Mhalo �M⇤ correlation, as commonly assumed in semi-
analytical galaxy models and abundance matching techniques (e.g.
Guo et al. 2010; Moster et al. 2013), may not hold in the dwarf
galaxy regimes, since some massive halos do not host galaxies
with stars. This would complicate the application of the abundance
matching to dwarf galaxies (Garrison-Kimmel et al. 2014b; Guo &
White 2014) and the assignment of galaxies to dark matter halos in
N�body simulations.

Another important parameter is the peak mass of each sub-
halo, Mpeak, defined as the maximum mass attained by the pro-
genitor before it was accreted by its host. Using the peak mass
is currently the standard method in abundance matching or semi-
analytical modeling when dealing with subhalos (e.g. Guo & White
2014; Garrison-Kimmel et al. 2014b), since this quantity represents
a physical state unmodified by the subsequent interaction between
the subhalo and the host. Figure 7 shows a comparison of Mpeak

from the DMO and Hydro simulations. We find that subhalos be-
low 109 h�1M� generally have lower Mpeak in the Hydro simula-
tion than in the DMO simulation, and that subhalos with peak mass
higher than 109 h�1M� are able to form stars. However, there are a
few “outliers”: two subhalos with peak mass above 109 h�1M� re-
main completely dark, while three subhalos with peak mass below
109 h�1M� actually contain stars. The fitting of the data shows
that,

logMpeak[Hydro] = 1.10 logMpeak[DMO]� 1.05, (2)

which means that the subhalo peak mass is ⇠30% lower in the
Hydro simulation than in the DMO simulation for Mpeak ⇠
109 h�1M�, and ⇠44% lower for Mpeak ⇠ 108 h�1M�.

c� 2015 RAS, MNRAS 000, 1–22
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Takeaway
• Baryonic effects reduce the densities of small 

dark matter satellite halos as well as their 
abundance in state-of-the-art simulations.

• These effects include ionizing radiation from the 
MW itself as well as energy injection from SNe.

• The dominant effect is the additional tidal force 
that halos experience due to the MW disk.

• This reduction in subhalo abundance can have 
important consequences for small-scale CDM 
predictions.



Subhalo 
Populations

Figure 2. Cumulative probability-density functions, across all 10,000 realizations in each modeled
host halo mass, describing the distribution of the largest subhalo-value per realization of the parameter
Γmax, as described in § 4. Γmax ≤ 1 is our gross criterion for determining whether or not a particular
subhalo population is consistent with the observed properties of the Milky Way dwarfs, hence the gray
shaded region in all panels. In the left panel, we include all subhalos and evaluate the probability of
drawing a dwarf galaxy population consistent with the observedMilky Way satellites. The center panel
explores the effect of cutting the fiducial samples, requiring a relatively quiescent accretion history for
inclusion (see relevant text in § 4. Following the example of [12], in the right panel we remove from our
fiducial samples the three densest subhalos, most similar to the presently-ongoing accretions of the
Magellanic Clouds and the Sagittarius dwarf. The orange shaded region in this panel represents the
mean ±1σ range of Γmax = (1.37± 0.21, 1.51± 0.18) for halo masses Mhost = (1012.0, 1012.2) h−1 M⊙,
where realizations are stacked in multiples of six for comparison to the Aquarius suite of halos also
residing in this mass range.

consistent with the results of our analytic models, while also moderately populating the
observationally-allowed region of the vmax − rmax plane.

Any individual realization of a subhalo population is a particular sub-sample of this
broad distribution of satellites. In order to make a simple comparison between the data
and theoretical predictions, we characterize the subhalo population within a given host halo
realization by a single parameter and explore the distribution of this parameter among host
halo realizations. We select the maximum value of Γ in any given realization as our summary
statistic, Γmax. If Γmax ≤ 1, then all subhalos in that realization would lie within the
observationally-allowed region of the vmax-rmax parameter space. In the absence of posterior
distributions in vmax and rmax for each of the observed dwarf galaxies, it is difficult to make
a more detailed comparison. We adopt Γmax ≤ 1 as our gross criterion intended to describe
satellite populations consistent with the Milky Way dwarf satellites as constrained by ref. [44]
and adopted by ref. [12].

In Figure 2, we show the cumulative probability density for a random Milky Way real-
ization to have a specific value of Γmax, allowing us to determine what fraction of host halos
have a subhalo population where the maximally-dense satellite has Γmax ≤ 1.0. Including

– 7 –

Purcell & Zentner+12

Measure of Subhalo Density
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Figure 1. Plots of all possible combinations of the host halo parameters investigated in this paper. The orange dashed region indicates the range of estimated
values for Sb galaxy host halos; these have morphology similar to the Milky Way (which is estimated to be SBb/c). The black point with errorbars represent
the estimated properties for the Milky Way host halo described in Section 2. We emphasize that these are approximate estimates and in many cases are di�cult
to constrain well. The blue points are the 5 nearest neighbors to the Milky Way within this 4-dimensional parameter space; their identification is discussed
in Section A2. The Spearman correlation coe�cient and p-values for all of the correlations shown here are presented in Table 1. The Milky Way lies at the
outskirts of each of these projections.

lines. Portions of the plots which lie below the resolution limit de-
scribed in Section 2.1 (i.e., with V

frac
max < 0.065) are indicated by the

hatched region.
The black points represent the 11 classical satellites of the

Milky Way, using values from Xue et al. (2008); van der Marel
& Kallivayalil (2014); Kallivayalil et al. (2013); Kuhlen (2010);
Boylan-Kolchin et al. (2012); Rashkov et al. (2012); McConnachie
et al. (2012); Jiang & van den Bosch (2015) compiled in Table 1
of Jiang & van den Bosch (2015). The only kinematic information
available for the Milky Way dwarf spheroidals is the line-of-sight
velocities of stars, which can be used to constrain the dynamical
mass of the dwarf. In the case of Sculptor, Draco, Leo II, Fornax,
Sextans, Carina, Leo I, and Ursa Minor, Kuhlen (2010); Boylan-
Kolchin et al. (2012) use the Via Lactea II simulation or the Aquar-

ius suite of simulations, respectively, to assign weights to subhalos
in the simulations according to how well they match the dynami-
cal mass of each respective Milky Way satellite, and then use the
weighted average of Vmax for those subhalos as an estimate of the
satellite’s Vmax value. For example, Boylan-Kolchin et al. (2012)
computes a distribution function of possible Vmax by assigning a
weight from the estimated likelihood that each subhalo from their
six randomly-selected Milky Way-mass host halos is consistent with
the given satellite’s mass. A key assumption made is that the sim-
ulated halos of a given mass will match the kinematics of Milky
Way satellites’ halos of the same estimated mass. For the Large
Magellanic Cloud (LMC) van der Marel & Kallivayalil (2014) uses
proper motions and line of sight velocity measurements of stars in
the LMC in concordance with a model of a flat rotating disk to

MNRAS 000, 1–21 (2018)
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(a) (b) (c) (d)

Figure 2. Cumulative velocity functions Nsat(> V

sat
max/V host

max = V

frac
max ) of satellite halos for samples split according to various host halo properties. The black

points indicate the 11 classical Milky Way satellites (Mvir ' 1010M�). The gray region around each point is the result of Gaussian perturbations with amplitude
given by the error in each satellite’sV frac

max . Separate cumulative velocity functions are shown for halos divided into quartiles by, from left to right: (a) concentration
(cNFW), (b) spin (�B), (c) shape (c/a), and (d) scale factor at last major merger (aLMM); color labeling is indicated in each panel’s legend. In the bottom panel
of each plot is shown the ratio of each curve to the average cumulative velocity function including all host halos. These normalized plots include a black dashed
line at Nfrac(> Vmax)/hN i = 1 to indicate where there is no separation between the quartiles. The gray regions around Nsat(> V

frac
max )/hN i = 1 indicate the

68% and 95% confidence regions for a case with no deviation from the mean value due to Poisson errors (given the average number of subhalos and the total
number of host halos that fall in a quartile where we use 11). Portions of the figures below the resolution limit of the simulations used, V sat

max/V host
max = 0.065

(described in Section 2.1), are depicted by the hatched regions. At low velocities the cumulative velocity functions exhibit statistically significant separations
amongst various host halo properties.

3.2 Predicting Milky Way Subhalo Abundances

To address this question, we have built power-law scaling relation
models which utilize various combinations of halo properties as
predictors for the cumulative number of subhalos above a given
value of Vmax, in order to produce more accurate predictions of the
subhalo abundance for the Milky Way. We describe these models in
detail in Section A3 but summarize them here.

The first model considered is a relatively simple one, incor-
porating only cNFW model and halo mass to predict subhalo abun-
dance; we refer to it as our “one-parameter model” hereafter (since
the mass dependence is forced to be a direct proportionality in our
fits, there is only one halo parameter with a coe�cient determined
by fitting; the fit does incorporate a second parameter setting the
scale of the overall subhalo numbers at a given velocity, however).
This approach can be motivated by Mao et al. (2015)’s conclusion
that halo concentration provides su�cient information to predict
subhalo abundance in halos of a given mass. We compare predic-
tions from this simple model to results from a power-law model built
using an optimized combination of the examined host halo proper-
ties, which has greater statistical explanatory power; we will refer to
it as our “three-parameter model”, though again it also incorporates
a mass proportionality and a normalization factor.

Specifically, the three-parameter model includes concentra-
tion, spin, and shape (as well as the assumption, motivated by tests
with larger simulations, that subhalo abundance is proportional to
mass). This specific set of parameters was chosen because it had
lower Akaike and Bayesian Information criteria than other models
considered, which included all combinations of the halo parameters
used in this paper; quadratic terms combining those parameters; and

1st order polynomial cross terms e.g. cNFW ⇥ c/a, that had as many
as 5 total parameters (apart from a constant term). These low in-
formation criterion values indicate that this model provides a better
fit for subhalo abundances, given the number of free parameters in

the model, than any others considered. Details of this evaluation are
given in Section A3. Although both models provide useful predic-
tions of subhalo abundances, we would expect the three-parameter
model to always provide a more accurate prediction than the one-
parameter model, as the one-parameter model is a special case of
the three-parameter model (so further optimization via the other
parameters can only improve performance; see Table A1 and dis-
cussion). We use these two models to estimate subhalo abundances
for the Milky Way; by comparing their results we can assess the
robustness of our predictions.

We obtain the best predictions of subhalo abundances with
a model where the number of subhalos has a power-law depen-
dence on all relevant parameters, as described in Section A3 and
Section A4. We define such a power-law model as:

N

pred
sub = k ⇥

÷
i

x

↵
i

i

, (6)

where N

pred
sub is the predicted subhalo abundance, k sets the scale of

the abundances, and ↵
i

is the exponent for the i

th halo parameter x

i

used in the model (e.g., cNFW).
Because we are trying to predict the cumulative subhalo abun-

dance for the Milky Way even at relatively high velocity thresh-
olds where most halos have few subhalos, the Gaussian assumption
which underlies the method of least-squares linear regression is not
valid for this problem (following the usual rule of thumb that the
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Figure 3. Top panel: Cumulative velocity function for the Milky Way from a
one-parameter scaling relation model which predicts subhalo abundance as a
function of halo concentration. The purple line corresponds to the prediction
of the model at each threshold value ofV frac

max for the Milky Way, based on the
MW halo’s estimated properties. The black line corresponds to the average
CVF for all of the 45 zoom-in host halos, while the blue lines are the CVFs
for the five nearest neighbours to the Milky Way in parameter space, as
indicated in Fig. 1. The darker and lighter purple regions indicate the 68
and 95 percent confidence regions about the purple line due to uncertainties
in both fit parameters (evaluated via bootstrap re-sampling) and in Milky
Way properties (evaluated by re-drawing values from Milky Way parameter
uncertainties before evaluating the models). The darker and lighter orange
regions indicate 68 and 95 percent confidence regions which incorporate
Poisson scatter in subhalo abundances as well. Bottom panel: Ratios of
the CVFs to the average CVF of all simulated Milky Way-like halos. The
one-parameter model predicts that the Milky Way’s host halo should have
(at 95% confidence) 31-44% fewer subhalos than average at the low V

frac
max

end and 38-64% fewer subhalos than average at the high V

frac
max end (though

Poisson scatter can dwarf this e�ect, especially at high V

frac
max ) compared to

an average dark matter halo of the same mass.

expect this model to also yield more compact confidence intervals
for the abundance of subhalos around the Milky Way, but in Table 2
the opposite holds true (e.g., the 95% confidence interval including
all sources of scatter spans 26% in the one-parameter model versus
30% in the three-parameter model). This can be explained at least
in part by the uncertainties in Milky Way halo properties beyond
concentration, the e�ects of which will alter the confidence intervals
for the three-parameter model, but not for the one-parameter case.

Fig. 3 and Fig. 4 make clear that at V

frac
max above 0.2 the typical

Figure 4. As Fig. 3 but for a three-parameter scaling relation model, which
predicts subhalo abundance as a function of concentration, spin, and halo
shape. Similar to the one-parameter model, the three-parameter model pre-
dicts that the Milky Way’s host halo should have 22-44% fewer subhalos
than average at the low V

frac
max end (at 95% confidence) and up to 43-72%

fewer subhalos at the high V

frac
max end. Again, additional error from Poisson

scatter can dwarf this e�ect, especially at high V

frac
max .

halo whose properties match the Milky Way’s will have even fewer
subhalos compared to the average - a deficiency in excess of 60%.
This makes it somewhat more surprising that the MW should have
any relatively large satellites such as the Large and Small Magellanic
Clouds (LMC and SMC) or Sagittarius (the SMC and Sagittarius
correspond to the two highest-Vsat

mac points in each figure; the LMC
is o� the plot with Vmax = 91.7 kms�1), as more massive satellites
are rarer in the halos most like the one which hosts our Galaxy.

With these results we can define fits for the parameter ex-
ponents, ↵

i

, and the scale k as functions of V

frac
max for both the

one-parameter and three-parameter models. These functions can be
used in order to determine a CVF for any set of host halos. The
functions and process is described in Section A5.

3.3 Halo Properties and Subhalo Scaling Relations

As briefly mentioned previously, the issue of ’too-big-to-fail’
(TBTF) refers to the overabundance of specifically massive and
dense subhalos predicted from CDM simulations in comparison to
the number of luminous satellites that the Milky Way has been ob-
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Takeaway
• Given our rough knowledge of the structural 

properties of the MW halo, we can develop a 
model (based on simulations) for subhalo 
abundance conditioned on these properties (at 
fixed halo mass)

• Our model predicts that MW-like halos should 
have 20-50% fewer subhalos than the average 
subhalo abundance for all halos of the same 
mass.



Summary 
• Baryonic processes can lead to subtle 

rearrangements of dark matter on surprisingly 
large scales compared to N-body simulations.

• Baryonic processes can alter halo shapes and 
profiles, but to a degree that remains uncertain.

• Subhalo abundances and inner profiles can 
likewise be modified to an uncertain degree by 
baryonic processes.

• MW-like halos may host somewhat fewer 
subhalos than average halos of their mass.



simulation credit: A. Kravtsov


