Probing the SM: Top quarks and beyond

Michele Gallinaro LIP Lisbon March 23, 2018

Top quarks as window to New Physics
 Top-Higgs associated production
 Top quark signatures in SUSY
 Higgs and Dark Matter

SM confirmed by the data

Excellent agreement with all experimental results

Top quarks as window to BSM physics

Top quark affects stability of Higgs mass

t W/Z h

Contributions grow with Λ :

 $m^2 = m_0^2 + g^2 \Lambda^2$

Cancellation?

Solutions:

- Naturalness: There is no problem
- Weakly-coupled model at TeV scale
 - -New particles to cancel SM divergences
 - -Top partners: new scalar/vectors coupled to top, exotic top decays
- Strongly-coupled model at TeV scale
 - ttbar resonances, bound states, 4-top production, etc.
- New space-time structure
 - Introduce extra space dimensions to lower Planck scale cutoff to ~1TeV
 - KK excitations

The top quark

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Heavy particle, preferential coupling?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Is there any sign of NP in top production/decay?

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Heavy particle, preferential coupling?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Is there any sign of NP in top production/decay?

Study characteristics

Regions hard to explore

8

Top quark decays

Cross section: multi-dimensional fit

CMS Preliminary

CMS, dilepton eµ

L_{int} = 43 pb⁻¹, 50 ns

PBL 116 (2016) 052002

CMS, dilepton eu *

CMS-PAS-TOP-16-005

scale uncertainty scale \oplus PDF $\oplus \alpha_e$ uncertainty

NNLO+NNLL PRL 110 (2013) 252004

m_{top} = 172.5 GeV, α_s(M_s) = 0.118±0.001

σ_{,τ} summary, √s = 13 TeV

July 2016

σ, ± (stat) ± (syst) ± (lumi)

746 ± 58 ± 53 ± 36 pb

793 ± 8 ± 38 ± 21 pb

CMS-TOP-16-006

- Lepton+jet final state
- Keep selection as inclusive as possible
- Categorize events according to (b-)jet multiplicity
 - high-purity vs background dominated
 - Constrain systematics (JES, ISR/FSR, modeling, etc)
- Combined fit of M_{Ib} to signal and backgrounds

Precise cross section measurement

Probing the Wtb vertex

PRD 85 (2012) 112007, PLB 739 (2014) 23

Dileptons with taus

- cross section measurement including τs
- Includes only 3rd generation quarks/leptons
- Syst unc: tauld, fakes

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	eτ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- If top quark plays special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W
- Search for final states with taus: charged Higgs

How does a top quark decay?

- almost always t→Wb (i.e. V_{tb}~1)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - − can decay W→I_V (I=e, μ , τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

Measure R in dilepton channel

- Probe heavy flavor content of ttbar events
- Use ttbar dilepton final state
 - small background
- Measure:

- Selection:
 - 2 leptons+ ≥2 jets + MET
 - no b-tagging in preselection

N.Cim. B125(2010)983, PLB 736(2014)33

- Goals:
 - measure $\epsilon(b)$ and R

Signal or background?

• Use tail to model background in signal region

Signal vs. background

N.Cim. B125(2010)983, PLB 736(2014)33

Scale shape to match spectrum observed with M_{li} >180 GeV

Heavy flavor content

N.Cim. B125(2010)983, PLB 736(2014)33

Measurement

- b-tagging multiplicity parametrized as function of R ϵ_{b} , ϵ_{q} , top contribution
- Number of reconstructed t \rightarrow Wq is estimated from lepton-jet invariant mass

• R=1.01±0.03 (stat.⊕ syst.)

– Lower boundary with confidence interval @95%CL after requiring $R \le 1 \Rightarrow R > 0.955$ @95%CL

Measure R

- Variation of the likelihood used to measure R from data
- Fit different categories

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

Summary of R results

Why top quark properties?

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of m_W and m_{top}
- Other properties (EWK coupling, production asymmetries, etc.) are predicted by SM
- Precise measurements could reveal breakdown of SM

Precise mass measurement

arXiv:1509.04044

Top quark mass results

W boson polarization

arXiv:1612.02577, PRD 93(2016)052007

- W bosons can be produced with left-handed, right-handed, or longitudinal polarization
- Top decay vertex in the SM is characterized by V-A structure
 - Fractions of polarization states are well predicted
- Can probe by measuring the angular distributions of the W boson decay products
- New physics could alter the polarization

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

 θ^*

W+

Spin correlation

PRD 93(2016)052007

- Important tool for precise studies
- Top quark produced are not polarized
 - ...but spins between quark and anti-quark are correlated
- Top quark decays before spins decorrelate
 - It decays before hadronization $(\tau \sim 10^{-25} \text{ s}) \Rightarrow$ spin information transmitted to decay products
 - No need to reconstruct full ttbar system
- Spin correlation depends on production mode
- It may differ from SM expectations
 - Decays to charged Higgs and b quark (t \rightarrow H⁺b)
 - Other BSM scenarios

How else is Top produced?

PRD102(2009)182003, PRD81(2010)054028

Single top quark production

Probing top quark production

Differential measurements

- Testing QCD, measuring properties, searching for new physics, ...
- Function of kinematics, global variables, associated production
- Increased sensitivity: top quark pairs produced at rest

 $-\sigma$ (M_{tt}>1 TeV at 13 TeV) =8 x σ (M_{tt}>1 at 8 TeV)

 \Rightarrow Unique opportunity to probe boosted production at 13 TeV

Boosted topology

- All-hadronic topology
 - Top p_T boosted, jets are collimated
 - Decay products and FSR collected in a "fat" jet
- Look at jet substructure
- Measure mass (no neutrinos)

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

Leading jet mass (GeV) 3 26

300

250

100

50

100

150

200

Boosted topology

 In many models there is high potential to discover new physics in the top sector in search for heavy resonances

$$pp \to X \to t\bar{t}$$

• Simple approach to merge neighboring jets

- At LHC energy, EWK scale particles produced beyond threshold
- · Jets are highly collimated
- Decay products and FSR collected in a fat jet

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

Merged let

Mass jet $\sim M_{top}$

Jet/Event selection

- Locate hadronic energy deposit in detector by choosing initial jet finding algorithm
- Impose jet selection cuts on fat jet
 - Recombine jet constituents with new algorithm
 - Filtering: recombine n sub-jets min d(i,j)
 - Trimming: recombine sub-jets with min $\ensuremath{p_{\text{T}}}$
- Minimum distance between jets is R

UE, ISR, Pile-up, hard interaction

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

⇒

Boosted topology: Top

- Highly boosted top: three hadronic decays of the top are merged in one top jet
- Moderately boosted top: three hadronic decays of the top are merged in one W jet plus and one b jet candidates

Top quark pair resonance

CMS-B2G-15-002, B2G-15-003

- No resonance expected in SM
- Why is top so heavy?
 - new physics?
 - is third generation 'special'?
- Search for massive neutral bosons decaying via a ttbar quark pair
- Experimental check
 - search for bump in the inv. mass spectrum
 - progressive loss in reconstruction ability due to jet merging
 - reconstruct M_{ttbar} in different categories (e/µ, *n*-jets, *n* b-tags)
 - I+jet events: full event reconstruction

ttbar+Higgs

- ttbar produced in association with H
 - -ttbar is a "clean" tag
- direct measurement of Higgs couplings

ttbar+heavy flavour

arXiv:1411.5621, TOP-16-010

- Study rate of ttbb: $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$
- Anomalous tt+jets could signal BSM final states
- First direct measurement of typical bkg to top-Higgs coupling
 - Irreducible non-resonant bkg from ttbb
- Improved theoretical understanding of ttH(bb) crucial to ttH and NP searches

$$\sigma_{
m t\bar{t}b\bar{b}}/\sigma_{
m t\bar{t}jj}=0.022\pm0.003\,
m (stat)\pm0.005\,
m (syst)$$

• In Run1 measured value higher but compatible (1.6σ) with NLO calculation

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

ttH

- Direct study of top Yukawa coupling
- Explore all accessible Higgs decay modes
 - H \rightarrow bb,WW,ZZ with multilepton final states

g 000000

g

H⁰

Ŧ

ttH, H→bb

Events

60

30

20

JHEP 09(2014)087, EPJC 75(2015)251, HIG-16-038

- Study ttH(\rightarrow bb) final state
- Select SL and DL events
- Categorize N_{iets}, N_{lep}, N_{btags}
- Assign events a b-tag likelihood
- low- and high-purity categories §
 - Signal: ttH
 - Background: tt+bb
- ttH and tH allows direct access to Yukawa coupling

ttH: multi-leptons, $\tau\tau$

ttH: multi-leptons, $\tau\tau$

- Multi-leptons: SS, 3L and 4L
- ttH with $H \rightarrow \tau \tau$
- \Rightarrow categories per charge, flavor

ttV production (V=γ,W,Z)

- Large datasets give access to rare tt+W and tt+Z processes
- ttZ: direct probe ot top-Z coupling (new physics?)
- ttW: important background to NP searches

- Use multi-lepton final states
 - -2 same-sign charge leptons, 3 or 4 lepton final states

ttV production (V=γ,W,Z)

CMS-TOP-13-011, EPJC 74(2014)3060, TOP-14-008, TOP-16-017

Flavor Changing Neutral Currents

- Expect small signal from SM
- ...but signal may be large in BSM models

Scalar top quark

- SUSY is one plausible extension of the SM
- due to the heavy top quark, mass splitting between \tilde{t}_1 and \tilde{t}_2 can be large, such that the lighter stop \tilde{t}_1 can be even lighter than the top quark
- Decays dictated by mass spectrum of other SUSY particles

(b)

Heavy stop:

 $\tilde{t} \rightarrow b \tilde{\chi}^+ \rightarrow b W \tilde{\chi}_1^0$

 $\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \rightarrow b W \widetilde{\chi}_1^0$

Top and SUSY

EPJC 74 (2014) 3109, arXiv:1603.02303, SUS-16-002

 If SUSY exists and is responsible for solution of hierarchy problem, naturalness arguments suggest that SUSY partners of top quark (stop) may have mass close to m_{top} to cancel top quark loop contributions to Higgs mass

$$egin{aligned} & ilde{t} o t ilde{\chi}_1^0 o b W ilde{\chi}_1^0 \ ilde{t} o b ilde{\chi}_1^+ o b W ilde{\chi}_1^0 \end{aligned}$$
 "heavy"

- Small predicted cross section
 - for 175GeV: 40pb@8TeV
- Stop pair production: $t\bar{t}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$
 - -similar to ttbar lepton+jet and dilepton ch. -Additional MET from neutralinos
- change in ttbar cross section

Top cross section: dileptons

p

 $\tilde{\mathbf{X}}_{1}^{0}$

 $\tilde{\mathbf{X}}_{1}^{0}$

42

- Indirect searches
- SUSY models could produce final states very similar (with additional MET)

Multi-top production

arXiv:1605.03171, TOP-16-016, 1702.06164

- Production of 4 tops is an attractive scenario in a number of new physics models
- The SM cross section is 9fb@13TeV
- Use lepton+jets final state
- Combination of kinematical variables and multivariate techniques
- Data are consistent with bkg expectations
- Set upper limit cross section 69fb @95%CL
- Search for same-sign dileptons
- Several models considered
- Consider multiple search regions defined by MET, hadronic energy, number of (b-) jets, and p_T of the leptons in the events

Searches for new particles

ATLAS Exotics Searches* - 95% CL Exclusion ATLAS Preliminary Status: August 2016 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ Jets† E^{miss} ∫⊥ dt[fb⁻¹] Model ℓ, γ Limit Reference ADD $G_{KK} + g/q$ 6.58 TeV ≥ 1 j Yes 3.2 n = 21604.07773 ADD non-resonant (/ 2 e, µ 20.3 1.7 TeV n = 3 HLZ1407.2410 1 e, µ ADD QBH $\rightarrow \ell q$ 1 i 20.3 n = 61311.2006 ADD QBH dimensio 21 _ 15.7 87 TeV n = 6ATLAS-CONE-2016-069 ADD BH high $\sum p_T$ _ 3.2 n = 6, $M_D = 3$ TeV, rot BH 1606.02265 $\geq 1 \ e, \mu$ > 2 i 8.2 TeV ADD BH multijet ≥ 3 j 3.6 n = 6, $M_D = 3$ TeV, rot BH 1512 02586 _ 9.55 Te\ RS1 $G_{KK} \rightarrow \ell \ell$ 2 e, µ 20.3 2.68 TeV $k/\overline{M}_{Pl} = 0.1$ 1405.4123 RS1 $G_{KK} \rightarrow \gamma \gamma$ 3.2 TeV $k/\overline{M}_{Pl} = 0.1$ 2γ _ 3.2 1606.03833 Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell v$ 1 e, µ 1 J Yes 13.2 1.24 $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2016-062 KK mas Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ G_{KK} mass 360-860 GeV 4 b 13.3 $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2016-049 Bulk RS $g_{KK} \rightarrow tt$ $\geq 1 \text{ b}, \geq 1 \text{J/2j}$ Yes BR = 0.925 1505.07018 1 e.u 20.3 Tier (1,1), $BR(A^{(1,1)} \rightarrow tt) = 1$ 2UED / RPP 1 e, µ $\geq 2 b, \geq 4 j$ Yes ATLAS-CONF-2016-013 3.2 TeV KK mass 2 e, µ SSM $Z' \rightarrow \ell \ell$ 13.3 4.05 TeV ATLAS-CONF-2016-045 SSM $Z' \rightarrow \tau \tau$ 2τ _ 19.5 2.02 TeV 1502.07177 Leptophobic $Z' \rightarrow bb$ 2 b 32 1603.08791 mas TeV SSM $W' \rightarrow \ell v$ 1 e, µ Yes 13.3 4.74 TeV ATLAS-CONF-2016-061 HVT $W' \rightarrow WZ \rightarrow qqvv$ model A 0 e, µ 1 J Yes 13.2 2.4 TeV $g_V = 1$ ATLAS-CONF-2016-082 W' mass HVT $W' \rightarrow WZ \rightarrow qqqq$ model B 2 J 15.5 3.0 TeV $g_V = 3$ ATLAS-CONF-2016-055 W' mass 2.31 TeV HVT $V' \rightarrow WH/ZH$ model B multi-channel 3.2 $g_V = 3$ 1607.05621 LRSM $W'_{R} \rightarrow tb$ 1 e, µ 2 b, 0-1 j 1410.4103 Yes 20.3 .92 Te LRSM $W'_{P} \rightarrow tb$ 0 e, µ \geq 1 b, 1 J _ 20.3 76 TeV 1408.0886 CI qqqq 2 j **19.9 TeV** $\eta_{LL} = -1$ ATLAS-CONF-2016-069 _ 15.7 G Clllgg 2 e, µ 3.2 **25.2 TeV** $\eta_{LL} = -1$ 1607.03669 CI uutt 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 20.3 4.9 Te $|C_{RR}| = 1$ 1504 04605 Axial-vector mediator (Dirac DM) $g_a=0.25, g_y=1.0, m(\chi) < 250 \text{ GeV}$ 0 e, µ ≥ 1 j Yes 32 1.0 Te 1604.07773 DM Axial-vector mediator (Dirac DM) 0 e, µ, 1 γ $g_q=0.25, g_{\chi}=1.0, m(\chi) < 150 \text{ GeV}$ 1 i Yes 3.2 710 GeV 1604.01306 ZZXX EFT (Dirac DM) 0 e, µ $1 J_{1} \le 1 J_{1}$ Yes 3.2 550 GeV $m(\chi) < 150 \text{ GeV}$ ATLAS-CONF-2015-080 Scalar LQ 1st gen ≥ 2 j 3.2 1.1 $\beta = 1$ 1605.06035 2e _ Ŋ Scalar LQ 2nd gen ≥ 2 j $\beta = 1$ 1605.06035 2μ 32 1 05 T Scalar LQ 3rd gen $1 e, \mu$ ≥1 b, ≥3 j Yes $\beta = 0$ 1508.04735 20.3 VLQ $TT \rightarrow Ht + X$ 1 e, µ $\geq 2 \; b, \geq 3 \; j$ 20.3 T in (T.B) doublet Yes 855 Ge 1505.04306 $VLQ YY \rightarrow Wb + X$ 1 e, µ $\geq 1 \text{ b}, \geq 3 \text{ j}$ Yes 20.3 770 Ge Y in (B,Y) doublet 1505.04306 $VLQ BB \rightarrow Hb + X$ 1 e, µ $\geq 2 b, \geq 3 j$ Yes 20.3 735 G isospin sinalet 1505.04306 $VLQ BB \rightarrow Zb + X$ 2/≥3 e,µ ≥2/≥1 b -20.3 755 GeV B in (B,Y) doublet 1409.5500 $VLQ QQ \rightarrow WqWq$ 1 e, µ ≥ 4 j Yes 20.3 1509.04261 590 GeV VLQ $T_{5/3}T_{5/3} \rightarrow WtWt$ 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 3.2 ATLAS-CONF-2016-032 990 Ge Excited quark $q^* \rightarrow q\gamma$ 1γ 1 j 3.2 4.4 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1512.05910 Excited quark $q^* \rightarrow qg$ 2 i 15.7 only u^* and d^* , $\Lambda = m(q^*)$ ATLAS-CONF-2016-069 mass 5.6 TeV Excited quark $b^* \rightarrow bg$ _ 1 b, 1 j 8.8 2.3 TeV ATLAS-CONF-2016-060 Excited quark $b^* \rightarrow Wt$ 1 or 2 e, µ 1 b, 2-0 j Yes $f_{g} = f_{L} = f_{R} = 1$ 1510 02664 20.3 TeV Excited lepton ℓ^* $\Lambda=3.0 \text{ TeV}$ 3 e, µ 20.3 1411 2921 Excited lepton v^{*} 6 TeV $\Lambda = 1.6 \text{ TeV}$ 3 e,μ,τ _ 20.3 1411.2921 LSTC $a_T \rightarrow W\gamma$ $1e, \mu, 1\gamma$ Yes 20.3 1407.8150 I BSM Majorana v 2 e, µ 2 j 20.3 2.0 TeV $m(W_R) = 2.4$ TeV, no mixing 1506.06020 Higgs triplet $H^{\pm\pm} \rightarrow ee$ 2 e (SS) 13.9 DY production, $BR(H_I^{\pm\pm} \rightarrow ee)=1$ ATLAS-CONF-2016-051 570 GeV Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ 20.3 DY production, BR($H_{l}^{\pm\pm} \rightarrow \ell \tau$)=1 1411.2921 3 e. µ. τ Monotop (non-res prod) 1 e, µ 1 b Yes 20.3 $a_{\rm non-res} = 0.2$ 1410 5404 Multi-charged particles DY production, |q| = 5e1504.04188 20.3 785 Ge\ DY production, $|g| = 1g_D$, spin 1/2 Magnetic monopoles 7.0 1509.08059 $\sqrt{s} = 8 \text{ TeV}$ √s = 13 TeV 10^{-1} 10 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Cross sections at the LHC

Increased reach at 13 TeV

M. Gallinaro - "Probing the SM: Top quark properties and beyond" - March 23, 2018

Summary

- Top quarks are valuable probes of SM
- Excellent consistency but SM is incomplete
 - Extensions foresee existence of additional bosons
 - Searches for BSM bosons ongoing
- Dominant background for New Physics searches
- Due to large mass, top quarks may couple to heavy objects
- Deviations from SM may indicate New Physics
- More data will enhance the sensitivity
 - -Higgs, multi-top, boosted objects, SUSY, Dark matter, etc.