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1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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plus H.c., summed over fields, families and powers of n,m. Eq.1 involves new SM singlet
fields �i which develop VEVs, leading to e↵ective Yukawa couplings suppressed by powers
of h�ii/⇤. Our scenario also involves a massive Z 0 under which the three SM families  i

have zero charge, and which only couples to it via the same singlet fields �i which have
non-zero charge under the associated U(1)0 gauge group,
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summed over fields, families and powers of n,m, where g0 is the U(1)0 gauge coupling and
we allow for di↵erent coupling strengths in the gauge coupling denominator factors ⇤0 as
compared to ⇤. The absence of a coupling at a given order corresponds to a particular ⇤
or ⇤0 becoming formally infinite. In a given model, such as the example discussed in this
paper, the various ⇤ and ⇤0 may be simply related. The key feature of this scenario is
that the same numerator factors of h�ii control both the Yukawa couplings in Eq.1 and
the Z 0 couplings in Eq.2.

Another key feature of our scenario is that the Z 0 mass is also generated by the VEVs
h�ii, so that MZ0 ⇠ g0h�ii. This implies that the observation of RK⇤ , which sets the scale
of the Z 0 mass and couplings, also sets the scale of the theory of flavour, which must both
be not far from the TeV scale. This does not happen in scalar leptoquark models, for
example, since the scalar mass can be written down by hand and it is not linked to the
flavour scale (e.g. the leptoquark mass could be at the TeV scale, while the scales h�ii
and ⇤ could be much higher, with a fixed ratio). In the case of the Z 0 scenario here all
the scales are rooted to the TeV scale, as discussed further below.

In our scenario in Eqs.1,2, in the limit that h�ii = 0, there are no Yukawa couplings and
also no couplings of SM fermions to the Z 0 since we assume they are not charged under
the associated U(1)0 gauge group. When h�ii/⇤i are switched on then both Yukawa
couplings and small non-universal and flavour dependent couplings of SM fermions to
the Z 0 are generated simultaneously, as well as the Z 0 mass itself. The above framework
then provides a link between flavour changing observables and the origin of small Yukawa
couplings of the kind that we are interested in.

In particular, there will be a connection between the experimental signal for new physics
in RK⇤ due to Z 0 exchange and the Yukawa couplings. Since the Yukawa couplings are
known, this constrains the values of h�ii/⇤i, and since we wish to explain RK⇤ via non-
universal Z 0 exchange, then this will also constrain the Z 0 mass to be around the TeV
scale, resulting in other associated experimental flavour and collider constraints which
the e↵ective theory must confront.

However there is a threefold motivation for going beyond the e↵ective description in
Eqs.1,2. Firstly, the e↵ective theory is not really adequate to describe the top quark
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Figure 13: Some possible candidate unified gauge groups.

decompose into multiplets of the SM gauge group SU(3)C×SU(2)L×U(1)Y as F = (dc, L),

corresponding to,

5 = (3,1, 1/3) ⊕ (1,2,−1/2), (9.2)

and T = (uc, Q, ec), corresponding to,

10 = (3,1,−2/3) ⊕ (3,2, 1/6) ⊕ (1,1, 1). (9.3)

Thus a complete quark and lepton SM family (Q,uc, dc, L, ec) is accommodated in the

F = 5 and T = 10 representations, with right-handed neutrinos, whose CP conjugates are

denoted as νc, being singlets of SU(5), νc = 1. The Higgs doublets Hu and Hd which break

electroweak symmetry in a two Higgs doublet model are contained in the SU(5) multiplets

H5 and H
5
.

The Yukawa couplings for one family of quarks and leptons are given by,

yuH5iTjkTlmϵijklm + yνH5iF
iνc + ydH

i
5
TijF

j , (9.4)

where ϵijklm is the totally antisymmetric tensor of SU(5) with i, j, j, k, l = 1, . . . , 5, which

decompose into the SM Yukawa couplings

yuHuQuc + yνHuLν
c + yd(HdQdc +Hde

cL). (9.5)
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Grand Unified Theories of Flavour

G
GUT

G
FAM

SU(2)L ⇥ U(1)Y SU(5) PS SO(10)

S
3

[29] [142]
A

4

[30, 34, 51, 53,64,143–145] [146–149] [68, 150,151]
T 0 [152] [153]
S

4

[31, 51, 53, 145,155] [156,157] [154] [158]
A

5

[53, 159] [160]
T

7

[161,162]
�(27) [163] [164]
�(96) [165,166] [167] [168]
DN [169]
QN [170]
other [171] [172] [173]

Table 3: Flavoured GUTs which include discrete family symmetry groups and the papers that use these sym-
metries to successfully describe the solar, atmospheric and reactor neutrino data.

vuTiTj(v⇠/M)6�i�j, where vu is the VEV of Hu. The resulting symmetric Yukawa matrix for up-type
quarks is

Y u
ij ⇠

0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A (120)

where ⇠̃ = h⇠i /M ⇠ 0.1 yielding a strong up-type mass hierarchy, with quark mixing arising in large
part from the up-sector.

The field ⇠ is in fact quite ubiquitous. As well as explaining the structure of the up-type quark mass
matrix, it is also involved in the mass hierarchy for down-type quarks and charged leptons. And it is
responsible for the mass scales for the RH neutrinos. Furthermore it yields a highly suppressed µ term
⇠ (v⇠/M)8M

GUT

.
The down-type and charged lepton Yukawa matrices Y d ⇠ Y e are obtained from terms like F�TH,

leading to nearly diagonal matrices,

Y d
LR ⇠ Y e

RL ⇠

0

BBBBB@

h⇠i ve

v2

⇤

24

h⇠i vµ

v
⇤

24

vH
24

0

0
vH

24

vµ

M2

0

0 0
v⌧

M

1

CCCCCA
(121)

where ve,µ,⌧ are flavon VEVs, while v
⇤

24

and vH
24

are VEVs of heavy Higgs ⇤
24

and H
24

. Here we
include the subscripts LR to emphasise the role of the o↵-diagonal term to LH mixing from Y d. This
term introduces CP violation into the CKM matrix via the phase of h⇠i. Note that the o↵-diagonal term
in Y e

RL gives mainly RH mixing, with only a subleading negligible contribution to LH charged lepton
mixing ✓e

12

⇠ me/mµ.
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de Anda, SFK 1803.04978

(a) The exta dimensional space. Identifying together sides a, b we obtain

T 2
. The ZSM

2 orbifolding identifies the shaded area with the non shaded.

The orbifolding Z2 identifies both areas labeled C.

(b) The e↵ective extra dimensional space

T 2/(Z2 ⇥ ZSM
2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.

7

SU(5)xS4 in 6d 

Field

Representation

S4 SU(5) U(1) P 0
SM

F 3’

¯

5 �c Brane

T±
1 1 10 a� 4d ±1

T±
2 1 10 a� 2d ±1

T±
3 1 10 a ±1

N c
s 1 1 �d +1

N c
a 1 1 �4d +1

H5 1 5 �2a +1

H5̄ 1

¯

5 �2b +1

⇠ 1 1 2d +1

⇢ 2 1 �a+ 2b+ c+ d +1

�s 3’ 1 2a+ c+ d Brane

�a 3’ 1 2a+ c+ 2d �1

�⌧ 3’ 1 �a+ 2b+ c Brane

�µ 3’ 1 �a+ 2b+ c+ 2d Brane

�e 3’ 1 �a+ 2b+ c+ 4d +1

A1 1 1 2a� 4b� 2c +1

A30 3’ 1 �a� 2b� 2c� 2d Brane

A2 2 1 2a� 4b� 2c� 8d +1

A0
1 1’ 1 2a� 4b� 2c� 4d Brane

Table 1: Complete list of chiral superfields in the model. A setup that gives exactly the desired

Yukawa terms would be with {a, b, c, d} = {7, 13, 1, 2}.

in a torus orbifold T 2/(ZSM
2

⇥Z
2

). This compactification breaks the extended SUSY and
the GUT groups. This orbifolding is done in a standard way and it is summarized in the
appendix 2.
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The superfields ⇠, ⇢,� are flavons that give structure to the SM fermion mass matrices.
Some of them lie in the bulk and some in the brane, depending on their alignment. The
fields Aa are alignment fields and whose F-term equations fix the alignment of the flavons.

We assume that compactification happens at the GUT scale so that gauge coupling
unification happens naturally and every KK mode and every extra field is located at the
GUT scale. Furthermore the compactification gives the flavour symmetry and helps to
align the flavons that break it. At low energies, we have exactly the MSSM.

As we shall see the model is rather complete and predictive. Models that aim to be
complete usually end up with a very large number of fields to achieve it [8,23,24,28]. In
this model, the extra dimensions play a big role in achieving symmetry breaking, so that
the full field content, listed in table 1, is much smaller than any previous theory.
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This also happens if we locate chiral 6d supermultiplets in the bulk. They would decom-
pose into two 4d fermions with opposite parities, a complex 4d scalar and a complex 4d
pseudoscalar. These are arranged into 2 chiral 4d supermultiplets as usual.

With P = I, the e↵ective N = 2 SUSY in 4d is broken down to N = 1.
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This e↵ectivelly breaks SU(5) ! SM , after integrating out the ED, at low energies. Fur-
thermore, if the Higgses live in the bulk, only the doublets remain light after orbifolding.
Thus we are free of the doublet-triplet splitting problem.
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This also happens if we locate chiral 6d supermultiplets in the bulk. They would decom-
pose into two 4d fermions with opposite parities, a complex 4d scalar and a complex 4d
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This e↵ectivelly breaks SU(5) ! SM , after integrating out the ED, at low energies. Fur-
thermore, if the Higgses live in the bulk, only the doublets remain light after orbifolding.
Thus we are free of the doublet-triplet splitting problem.
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Orbifolding on a torus:

see also: Burrows, SFK 0909.1433,1007.2310;
Altarelli,Feruglio,Lin hep-ph/0610165



de Anda, SFK 1803.04978

(a) The exta dimensional space. Identifying together sides a, b we obtain

T 2
. The ZSM

2 orbifolding identifies the shaded area with the non shaded.

The orbifolding Z2 identifies both areas labeled C.

(b) The e↵ective extra dimensional space

T 2/(Z2 ⇥ ZSM
2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.
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that are the branes where we locate some of the fields. These fixed branes and are
permuted by the operations

S
1

: z ! z + 1, S
2

: z + �/2, R : z ! �2z, P : z ! z⇤, P 0 : z ! �z⇤, (16)

which, after orbifolding, generate the remnant symmetry. We can write these operations
explicitly S

1

[(12)(34)], S
2

[(13)(24)], R[(243)(1)], P [(34)(1)(2)], P 0[(34)(1)(2)]. There are
only 3 independent transformations since S

2

= R2 · S
1

·R, P = P 0.

These symmetry transformations relate to the S
4

generators with S = S
1

, T = R, U = P
satisfying

S2 = T 3 = (ST )3 = U2 = (SU)2 = (TU)2 = (STU)4 = 1, (17)

which is the presentation rules for the S
4

symmetry [40]. Even though only two generators
are enough for S

4

[1], we prefer this presentation since it shows explicitly its relation to
A

4

. The transformations S, T alone generate A
4

[16]. Ignoring the individual parity
transformations P , the orbifold would have a remnant symmetry of A

4

. Note that we
have not added this symmetry by hand but a remnant of the orbifolding symmetry after
compactification. Figure 1 shows a visualization of the remnant S

4

symmetry of the extra
dimensions after orbifolding.

If we locate a field in each of the branes, they would be transformed between them
forming a reducible 4 dimensional representation. We need to obtain the decomposition
into irreducible representations [41]. Choosing S = S

1

, T = R, U = P, we obtain the
matrices

S =
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BB@
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0 0 0 1
0 0 1 0

1
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p
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1

2

!2

2
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1
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we can obtain
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✓
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◆
, T ! V †TV =

✓
T
3
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0 1

◆
, U ! V †UV =

✓
U
3

0
0 1

◆
,

(20)
so that, the 4 dimensional representation inherited from the branes can be decomposed
4 ! 3+ 1.

If instead we choose S = �S
1

, T = R, U = P , the same unitary transformation would
decompose 4 ! 3’ + 1’. It is also possible, with a di↵erent choice of generators, to
decompose it as 4 ! 2 + 1 + 1 [17]. As only one of these embeddings of S

4

can be
realized in the model, we choose S = �S

1

, T = R, U = P so that we can only have 3’s
and 1’s on the brane.
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(a) The exta dimensional space. Identifying together sides a, b we obtain

T 2
. The ZSM

2 orbifolding identifies the shaded area with the non shaded.

The orbifolding Z2 identifies both areas labeled C.

(b) The e↵ective extra dimensional space

T 2/(Z2 ⇥ ZSM
2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.
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We choose the orbifolding parity condition

P 0
SM = PSM ⌦ U, (26)

where U is one of the S
4

generators listed in eq. 24. The flavons in the brane are not
a↵ected by this condition. The flavons in the bulk are not a↵ected by the PSM matrix,
since they are GUT singlets. The bulk flavon VEVs must be eigenvectors of the U matrix.

The flavon �a is a 3’ and it has a negative parity in the boundary condition so that it
must comply with

h�ai = �U h�ai = �

0

@
1 0 0
0 0 1
0 1 0

1

A h�ai ! h�ai ⇠

0

@
0
1
�1

1

A . (27)

The flavon ⇢ is a 2 with positive parity so that it must comply with

h⇢i = U h⇢i =
✓
0 1
1 0

◆
h⇢i ! h⇢i ⇠

✓
1
1

◆
. (28)

The flavon �e is located in the bulk with positive parity, it must comply with

h�ei = �U h�ei =

0

@
1 0 0
0 0 1
0 1 0

1

A h�ei ! h�ei ⇠

0

@
a
b
b

1

A , (29)

with arbitrary a, b.

To fix the alignment of the flavons in the brane, we make use of a superpotential and the
alignment fields A in table 1. The 6d superpotential of brane and bulk fields at leading
order is in eq. 66. After compactification we obtain the simpler looking superpotential

WA ⇠ A
1

(�⌧ )
2 + A

2

(�e)
2 + A0

1

(�µ�µ + �e�⌧ ) + A
3

(�a�⌧ � ⇢�s), (30)

where we ignore the e↵ective dimensionless constants

The F-term equation coming from A
1

fixes

h�⌧ i ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (31)

with arbitrary x. We choose h�⌧ i to be the first solution.

The F-term equation from A
2

fixes the VEV

h�ei ⇠

0

@
1
0
0

1

A ,

0

@
1

�2!n

�2!2n

1

A , (32)

so that, together with the orbifold condition from eq. 29, the h�ei is fixed to be the first
choice.
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A field located on the brane AK(x)�(z� zK) that transforms as a 3’ would be written as

AK(x) = V †
iKA

3

0

i (x). (21)

A field AK(x)�(z � zK) that transforms as a 1’ would be written as

AK(x) = V †
4KA

1

0
(x). (22)

Fields located in the bulk B(x, z) can transform under any irreducible representation
with

S : B(x, z) ! S B(x, z + 1/2),

T : B(x, z) ! T B(x, �2z),

U : B(x, z) ! U B(x, z⇤),

(23)

where we use the S
4

basis

S
4

S T U
1,10 1 1 ±1

2

✓
1 0
0 1

◆ ✓
! 0
0 !2

◆ ✓
0 1
1 0

◆

3,30 1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A

0

@
1 0 0
0 !2 0
0 0 !

1

A ⌥

0

@
1 0 0
0 0 1
0 1 0

1

A

(24)

that has real S, U and simplify obtaining the CSD3 alignment [42].

We can construct bilinears with one field in the bulk and one in the brane [11]. Specifically
the singlet J coming from one 3’ B(x, z)i located in the bulk and one 3’ AK(x) located
in each brane would be

J =
X

iK

Bi(x, z)V
†
iKAK(x)�(z � zK). (25)

After compactification we can treat the flavour symmetry S
4

as usual.

3 Flavon alignment

The predictivity in flavour models comes from the specific flavon structure that define the
fermion mass matrices. These alignment is usually fixed by a superpotential. We obtain
the alignment through a combination of orbifolding and a superpotential [12, 17,25].

We assume that the flavons obtain a VEV through radiative symmetry breaking [26].
There are six flavon multiplets to be aligned. The flavons �s,⌧ are located in the brane
while �a,µ,e, ⇢ propagate in the bulk and thus are subject to the orbifold boundary con-
ditions. Since their VEVS are constant, a condition on the boundary implies a condition
on the VEV.

8

applied the vector supermultiplet:

PVµ(x,�x
5

,�x
6

)P�1 = +Vµ(x, x5

, x
6

), (7)

PV
5,6(x,�x

5

,�x
6

)P�1 = �V
5,6(x, x5

, x
6

), (8)

and

P�
1

(x,�x
5

,�x
6

)P�1 = +�
1

(x, x
5

, x
6

), (9)

P�
2

(x,�x
5

,�x
6

)P�1 = ��
2

(x, x
5

, x
6

). (10)

This also happens if we locate chiral 6d supermultiplets in the bulk. They would decom-
pose into two 4d fermions with opposite parities, a complex 4d scalar and a complex 4d
pseudoscalar. These are arranged into 2 chiral 4d supermultiplets as usual.

With P = I, the e↵ective N = 2 SUSY in 4d is broken down to N = 1.

The second orbifolding is done at

(x0
5

, x0
6

) = (x
5

+ ⇡R
1

, x
6

), (11)

with the condition
ZSM

2

: (x0
5

, x0
6

) = (�x0
5

,�x0
6

). (12)

Now the condition would be

PSM =

0

BBBB@

+1 0 0 0 0
0 +1 0 0 0
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 �1

1

CCCCA
. (13)

This e↵ectivelly breaks SU(5) ! SM , after integrating out the ED, at low energies. Fur-
thermore, if the Higgses live in the bulk, only the doublets remain light after orbifolding.
Thus we are free of the doublet-triplet splitting problem.

2.1 S
4

from orbifolding

For a better geometric display, and following [16–18], we may redefine 2⇡R
1

) 2 and
2⇡R

2

) 1. We also define z = x
5

+ ix
6

. Everything can be easily rescaled to the actual
size. Choosing ✓ = ⇡/3, and defining � = ei⇡/3, the symmetries of the orbifold from eqs.
4,6 become

T
1

: z ! z + 2, T
2

: z ! z + �, Z : z ! �z, ZSM : z � 1 ! �z + 1, (14)

where the orbifolding symmetry Z leaves four invariant points (actually 4D branes)

[z
1

, z
2

, z
3

, z
4

] = [0, 1, �/2, 1 + �/2], (15)
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This also happens if we locate chiral 6d supermultiplets in the bulk. They would decom-
pose into two 4d fermions with opposite parities, a complex 4d scalar and a complex 4d
pseudoscalar. These are arranged into 2 chiral 4d supermultiplets as usual.

With P = I, the e↵ective N = 2 SUSY in 4d is broken down to N = 1.

The second orbifolding is done at

(x0
5

, x0
6

) = (x
5

+ ⇡R
1

, x
6

), (11)

with the condition
ZSM

2

: (x0
5

, x0
6

) = (�x0
5

,�x0
6

). (12)

Now the condition would be

PSM =

0

BBBB@

+1 0 0 0 0
0 +1 0 0 0
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 �1

1

CCCCA
. (13)

This e↵ectivelly breaks SU(5) ! SM , after integrating out the ED, at low energies. Fur-
thermore, if the Higgses live in the bulk, only the doublets remain light after orbifolding.
Thus we are free of the doublet-triplet splitting problem.

2.1 S
4

from orbifolding

For a better geometric display, and following [16–18], we may redefine 2⇡R
1

) 2 and
2⇡R

2

) 1. We also define z = x
5

+ ix
6

. Everything can be easily rescaled to the actual
size. Choosing ✓ = ⇡/3, and defining � = ei⇡/3, the symmetries of the orbifold from eqs.
4,6 become

T
1

: z ! z + 2, T
2

: z ! z + �, Z : z ! �z, ZSM : z � 1 ! �z + 1, (14)

where the orbifolding symmetry Z leaves four invariant points (actually 4D branes)

[z
1

, z
2

, z
3

, z
4

] = [0, 1, �/2, 1 + �/2], (15)

5

Doublet-triplet splitting of H5

Field

Representation

S4 SU(5) U(1) P 0
SM

F 3’

¯

5 �c Brane

T±
1 1 10 a� 4d ±1

T±
2 1 10 a� 2d ±1

T±
3 1 10 a ±1

N c
s 1 1 �d +1

N c
a 1 1 �4d +1

H5 1 5 �2a +1

H5̄ 1

¯

5 �2b +1

⇠ 1 1 2d +1

⇢ 2 1 �a+ 2b+ c+ d +1

�s 3’ 1 2a+ c+ d Brane

�a 3’ 1 2a+ c+ 2d �1

�⌧ 3’ 1 �a+ 2b+ c Brane

�µ 3’ 1 �a+ 2b+ c+ 2d Brane

�e 3’ 1 �a+ 2b+ c+ 4d +1

A1 1 1 2a� 4b� 2c +1

A30 3’ 1 �a� 2b� 2c� 2d Brane

A2 2 1 2a� 4b� 2c� 8d +1

A0
1 1’ 1 2a� 4b� 2c� 4d Brane

Table 1: Complete list of chiral superfields in the model. A setup that gives exactly the desired

Yukawa terms would be with {a, b, c, d} = {7, 13, 1, 2}.

in a torus orbifold T 2/(Z
2

⇥ Z
2

). This compactification breaks the extended SUSY and
the GUT groups. This orbifolding is done in a standard way and it is summarized in the
appendix A.

The way the compactification is done leaves a remnant S
4

symmetry which we identify
as the flavour group. The fields can be chosen so that, after the compactification, they
transform under irreducible representations of this S

4

. The 4 fixed branes are related
by S

4

transformations and so are the fields located in them. Since the 4 branes are
interchanged by S

4

, we will simply refer to them as the brane. This is shown in appendix
A.1.

Besides the gauge superfields, the model contains the chiral superfields that are listed
in table 1. There we list the representation of each field under the GUT group SU(5),
the flavour group S

4

and their charges under the shaping symmetry U(1). If the field
propagates in the bulk, it should be an eigenstate of the boundary condition matrix P 0

SM

and its parity ±1 is listed in the last column. If the field is located in the brane, it is
stated as Brane in the last column.

The SM fermions lie inside the F, Ti as in an usual SU(5) theory. The flavour triplet F
contains dc and L. There are two copies of each Ti in the bulk, each with di↵erent parity
under the ZSM

2

boundary condition. The T+ contains uc and ec, while the T� contains
Q. This allows di↵erent masses for charged leptons and down quarks. We have only two
right handed neutrinos (RHN) N c

a,s, as this is the minimum case. The MSSM doublets
hu,d lie in H

5,¯5 respectively. They are located in the bulk with a positive parity so that
only the doublets are light after compactificaion, so that the doublet triplet splitting is
natural.

3

SU(5)xS4 in 6d 

(a) The exta dimensional space. Identifying together sides a, b we obtain

T 2
. The ZSM

2 orbifolding identifies the shaded area with the non shaded.

The orbifolding Z2 identifies both areas labeled C.

(b) The e↵ective extra dimensional space

T 2/(Z2 ⇥ ZSM
2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.
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Fields either distributed 
over the branes at fixed 

points or in the bulk



SU(5)xS4 in 6d 

The flavon �e is located in the bulk with positive parity, it must comply with

h�ei = �U h�ei =

0

@
1 0 0
0 0 1
0 1 0

1

A h�ei ! h�ei ⇠

0

@
a
b
b

1

A , (4)

with arbitrary a, b.

To fix the alignment of the flavons in the brane, we make use of a superpotential and the
alignment fields A in table 1. The 6d superpotential of brane and bulk fields at leading
order is in eq. 66. After compactification we obtain the simpler looking superpotential

WA ⇠ A
1

(�⌧ )
2 + A

2

(�e)
2 + A0

1

(�µ�µ + �e�⌧ ) + A
3

(�a�⌧ � ⇢�s), (5)

where we ignore the e↵ective dimensionless constants

The F-term equation coming from A
1

fixes

h�⌧ i ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (6)

with arbitrary x. We choose h�⌧ i to be the first solution.

The F-term equation from A
2

fixes the VEV

h�ei ⇠

0

@
1
0
0

1

A ,

0

@
1

�2!n

�2!2n

1

A , (7)

so that, together with the orbifold condition from eq. 4, the h�ei is fixed to be the first
choice.

The A0
1

alignment field involves two terms. The contraction �e�⌧ enters into the equation
and it is is exactly zero since the alignments are fixed to be orthogonal, as show above.
So that the F term equation from A0

1

fixes

h�µi ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (8)

where we choose the second solution.

Finally, the F term equation from A
3

fixes [26]

h�si ⇠

0

@
1
3
�1

1

A . (9)

We remark that h�a,si , h⇢i preserve SU while h�ei ,! h�µi ,!2 h�⌧ i preserve T , where
S, T, U are the S

4

generators.
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¯
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A2 2 1 2a� 4b� 2c� 8d +1
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1 1’ 1 2a� 4b� 2c� 4d Brane

Table 1: Complete list of chiral superfields in the model. A setup that gives exactly the desired

Yukawa terms would be with {a, b, c, d} = {7, 13, 1, 2}.

in a torus orbifold T 2/(Z
2

⇥ Z
2

). This compactification breaks the extended SUSY and
the GUT groups. This orbifolding is done in a standard way and it is summarized in the
appendix A.

The way the compactification is done leaves a remnant S
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symmetry which we identify
as the flavour group. The fields can be chosen so that, after the compactification, they
transform under irreducible representations of this S
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. The 4 fixed branes are related
by S
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transformations and so are the fields located in them. Since the 4 branes are
interchanged by S
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, we will simply refer to them as the brane. This is shown in appendix
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Besides the gauge superfields, the model contains the chiral superfields that are listed
in table 1. There we list the representation of each field under the GUT group SU(5),
the flavour group S

4

and their charges under the shaping symmetry U(1). If the field
propagates in the bulk, it should be an eigenstate of the boundary condition matrix P 0

SM

and its parity ±1 is listed in the last column. If the field is located in the brane, it is
stated as Brane in the last column.

The SM fermions lie inside the F, Ti as in an usual SU(5) theory. The flavour triplet F
contains dc and L. There are two copies of each Ti in the bulk, each with di↵erent parity
under the ZSM

2

boundary condition. The T+ contains uc and ec, while the T� contains
Q. This allows di↵erent masses for charged leptons and down quarks. We have only two
right handed neutrinos (RHN) N c

a,s, as this is the minimum case. The MSSM doublets
hu,d lie in H

5,¯5 respectively. They are located in the bulk with a positive parity so that
only the doublets are light after compactificaion, so that the doublet triplet splitting is
natural.

3
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The orbifolding Z2 identifies both areas labeled C.
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2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.
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Vacuum alignment of bulk flavonsThe A0
1

alignment field involves two terms. The contraction �e�⌧ enters into the equation
and it is is exactly zero since the alignments are fixed to be orthogonal, as show above.
So that the F term equation from A0

1

fixes

h�µi ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (33)

where we choose the second solution.

Finally, the F term equation from A
3

fixes [27]

h�si ⇠

0

@
1
3
�1

1

A . (34)

We remark that h�a,si , h⇢i preserve SU while h�ei ,! h�µi ,!2 h�⌧ i preserve T , where
S, T, U are the S

4

generators.

We have obtained the flavon VEV alignments

h�si = vs

0

@
1
3
�1

1

A , h�ai = va

0

@
0
1
�1

1

A , h⇢i = v⇢

✓
1
1

◆
,

h�ei = ve

0

@
1
0
0

1

A , h�µi = vµ

0

@
0
0
1

1

A , h�⌧ i = v⌧

0

@
0
1
0

1

A .

(35)

We have achieved the so called CSD3 alignment from the flavons h�s,ai using orbifolding
and the superpotential in eq. 30 which is remarkably simple compared to previous ways
to achieve it [20, 23,27,28].

4 SM fermion mass structure

The Yukawa superpotential originally is 6d and is stated in eq. 65. We will work with
the compactified superpotential, assuming that the cuto↵ scale ⇤ is close enough to the
compactification scale , we may write the e↵ective superpotential

WY = yuijH5

T�
i T+

j

✓
⇠

⇤

◆
6�i�j

+ y±
33

H
5

F�⌧T
±
3

1

⇤
+ y±

22

H
5

F�µT
±
2

1

⇤
+ y±

11

H
5

F�eT
±
1

1

⇤

+ y±
23

H
5

F�⌧T
±
2

⇠

⇤2

+ y±
13

H
5

F�⌧T
±
1

⇠2

⇤3

+ y±
12

H
5

F�µT
±
1

⇠

⇤2

+ y⌫aH5

F�aN
c
a

⇠

⇤2

+ y⌫sH5

F�sN
c
s

1

⇤
+ yNs

⇠4

⇤3

N c
aN

c
a + yNs ⇠N c

sN
c
s

+ yH
⇠10

⇤9

H
5

H
5

,

(36)

10

We choose the orbifolding parity condition

P 0
SM = PSM ⌦ U, (26)

where U is one of the S
4

generators listed in eq. 24. The flavons in the brane are not
a↵ected by this condition. The flavons in the bulk are not a↵ected by the PSM matrix,
since they are GUT singlets. The bulk flavon VEVs must be eigenvectors of the U matrix.

The flavon �a is a 3’ and it has a negative parity in the boundary condition so that it
must comply with

h�ai = �U h�ai = �

0

@
1 0 0
0 0 1
0 1 0

1

A h�ai ! h�ai ⇠

0

@
0
1
�1

1

A . (27)

The flavon ⇢ is a 2 with positive parity so that it must comply with

h⇢i = U h⇢i =
✓
0 1
1 0

◆
h⇢i ! h⇢i ⇠

✓
1
1

◆
. (28)

The flavon �e is located in the bulk with positive parity, it must comply with

h�ei = �U h�ei =

0

@
1 0 0
0 0 1
0 1 0

1

A h�ei ! h�ei ⇠

0

@
a
b
b

1

A , (29)

with arbitrary a, b.

To fix the alignment of the flavons in the brane, we make use of a superpotential and the
alignment fields A in table 1. The 6d superpotential of brane and bulk fields at leading
order is in eq. 66. After compactification we obtain the simpler looking superpotential

WA ⇠ A
1

(�⌧ )
2 + A

2

(�e)
2 + A0

1

(�µ�µ + �e�⌧ ) + A
3

(�a�⌧ � ⇢�s), (30)

where we ignore the e↵ective dimensionless constants

The F-term equation coming from A
1

fixes

h�⌧ i ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (31)

with arbitrary x. We choose h�⌧ i to be the first solution.

The F-term equation from A
2

fixes the VEV

h�ei ⇠

0

@
1
0
0

1

A ,

0

@
1

�2!n

�2!2n

1

A , (32)

so that, together with the orbifold condition from eq. 29, the h�ei is fixed to be the first
choice.

9

We choose the orbifolding parity condition

P 0
SM = PSM ⌦ U, (26)

where U is one of the S
4

generators listed in eq. 24. The flavons in the brane are not
a↵ected by this condition. The flavons in the bulk are not a↵ected by the PSM matrix,
since they are GUT singlets. The bulk flavon VEVs must be eigenvectors of the U matrix.

The flavon �a is a 3’ and it has a negative parity in the boundary condition so that it
must comply with

h�ai = �U h�ai = �

0

@
1 0 0
0 0 1
0 1 0

1

A h�ai ! h�ai ⇠

0

@
0
1
�1

1

A . (27)

The flavon ⇢ is a 2 with positive parity so that it must comply with

h⇢i = U h⇢i =
✓
0 1
1 0

◆
h⇢i ! h⇢i ⇠

✓
1
1

◆
. (28)

The flavon �e is located in the bulk with positive parity, it must comply with

h�ei = �U h�ei =

0

@
1 0 0
0 0 1
0 1 0

1

A h�ei ! h�ei ⇠

0

@
a
b
b

1

A , (29)

with arbitrary a, b.

To fix the alignment of the flavons in the brane, we make use of a superpotential and the
alignment fields A in table 1. The 6d superpotential of brane and bulk fields at leading
order is in eq. 66. After compactification we obtain the simpler looking superpotential

WA ⇠ A
1

(�⌧ )
2 + A

2

(�e)
2 + A0

1

(�µ�µ + �e�⌧ ) + A
3

(�a�⌧ � ⇢�s), (30)

where we ignore the e↵ective dimensionless constants

The F-term equation coming from A
1

fixes

h�⌧ i ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (31)

with arbitrary x. We choose h�⌧ i to be the first solution.

The F-term equation from A
2

fixes the VEV

h�ei ⇠

0

@
1
0
0

1

A ,

0

@
1

�2!n

�2!2n

1

A , (32)

so that, together with the orbifold condition from eq. 29, the h�ei is fixed to be the first
choice.
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We choose the orbifolding parity condition

P 0
SM = PSM ⌦ U, (26)

where U is one of the S
4

generators listed in eq. 24. The flavons in the brane are not
a↵ected by this condition. The flavons in the bulk are not a↵ected by the PSM matrix,
since they are GUT singlets. The bulk flavon VEVs must be eigenvectors of the U matrix.

The flavon �a is a 3’ and it has a negative parity in the boundary condition so that it
must comply with

h�ai = �U h�ai = �

0
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1 0 0
0 0 1
0 1 0

1

A h�ai ! h�ai ⇠

0

@
0
1
�1

1

A . (27)

The flavon ⇢ is a 2 with positive parity so that it must comply with

h⇢i = U h⇢i =
✓
0 1
1 0

◆
h⇢i ! h⇢i ⇠

✓
1
1

◆
. (28)

The flavon �e is located in the bulk with positive parity, it must comply with

h�ei = �U h�ei =

0

@
1 0 0
0 0 1
0 1 0

1

A h�ei ! h�ei ⇠

0

@
a
b
b

1

A , (29)

with arbitrary a, b.

To fix the alignment of the flavons in the brane, we make use of a superpotential and the
alignment fields A in table 1. The 6d superpotential of brane and bulk fields at leading
order is in eq. 66. After compactification we obtain the simpler looking superpotential

WA ⇠ A
1

(�⌧ )
2 + A

2

(�e)
2 + A0

1

(�µ�µ + �e�⌧ ) + A
3

(�a�⌧ � ⇢�s), (30)

where we ignore the e↵ective dimensionless constants

The F-term equation coming from A
1

fixes

h�⌧ i ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0
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2
2x

�1/x

1

A , (31)

with arbitrary x. We choose h�⌧ i to be the first solution.

The F-term equation from A
2

fixes the VEV

h�ei ⇠

0
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1
0
0

1

A ,

0

@
1

�2!n

�2!2n

1

A , (32)

so that, together with the orbifold condition from eq. 29, the h�ei is fixed to be the first
choice.

9

Vacuum alignment of brane flavons

The A0
1

alignment field involves two terms. The contraction �e�⌧ enters into the equation
and it is is exactly zero since the alignments are fixed to be orthogonal, as show above.
So that the F term equation from A0

1

fixes

h�µi ⇠

0

@
0
1
0

1

A ,

0
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0
0
1

1

A ,
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2
2x

�1/x

1

A , (33)

where we choose the second solution.

Finally, the F term equation from A
3

fixes [27]

h�si ⇠

0

@
1
3
�1

1

A . (34)

We remark that h�a,si , h⇢i preserve SU while h�ei ,! h�µi ,!2 h�⌧ i preserve T , where
S, T, U are the S

4

generators.

We have obtained the flavon VEV alignments
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1
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(35)

We have achieved the so called CSD3 alignment from the flavons h�s,ai using orbifolding
and the superpotential in eq. 30 which is remarkably simple compared to previous ways
to achieve it [20, 23,27,28].

4 SM fermion mass structure

The Yukawa superpotential originally is 6d and is stated in eq. 65. We will work with
the compactified superpotential, assuming that the cuto↵ scale ⇤ is close enough to the
compactification scale , we may write the e↵ective superpotential

WY = yuijH5
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1

⇤
+ yNs

⇠4

⇤3

N c
aN

c
a + yNs ⇠N c

sN
c
s

+ yH
⇠10

⇤9

H
5

H
5

,

(36)
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The A0
1

alignment field involves two terms. The contraction �e�⌧ enters into the equation
and it is is exactly zero since the alignments are fixed to be orthogonal, as show above.
So that the F term equation from A0

1

fixes

h�µi ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (33)

where we choose the second solution.

Finally, the F term equation from A
3

fixes [27]

h�si ⇠

0

@
1
3
�1

1

A . (34)

We remark that h�a,si , h⇢i preserve SU while h�ei ,! h�µi ,!2 h�⌧ i preserve T , where
S, T, U are the S

4

generators.

We have obtained the flavon VEV alignments

h�si = vs

0

@
1
3
�1

1

A , h�ai = va

0

@
0
1
�1

1

A , h⇢i = v⇢

✓
1
1

◆
,

h�ei = ve

0

@
1
0
0

1

A , h�µi = vµ

0

@
0
0
1

1

A , h�⌧ i = v⌧

0

@
0
1
0

1

A .

(35)

We have achieved the so called CSD3 alignment from the flavons h�s,ai using orbifolding
and the superpotential in eq. 30 which is remarkably simple compared to previous ways
to achieve it [20, 23,27,28].

4 SM fermion mass structure

The Yukawa superpotential originally is 6d and is stated in eq. 65. We will work with
the compactified superpotential, assuming that the cuto↵ scale ⇤ is close enough to the
compactification scale , we may write the e↵ective superpotential

WY = yuijH5

T�
i T+

j

✓
⇠

⇤

◆
6�i�j

+ y±
33

H
5

F�⌧T
±
3

1

⇤
+ y±

22

H
5

F�µT
±
2

1

⇤
+ y±

11

H
5

F�eT
±
1

1

⇤

+ y±
23

H
5

F�⌧T
±
2

⇠

⇤2

+ y±
13

H
5

F�⌧T
±
1

⇠2

⇤3

+ y±
12

H
5

F�µT
±
1

⇠

⇤2

+ y⌫aH5

F�aN
c
a

⇠

⇤2

+ y⌫sH5

F�sN
c
s

1

⇤
+ yNs

⇠4

⇤3

N c
aN

c
a + yNs ⇠N c

sN
c
s

+ yH
⇠10

⇤9

H
5

H
5

,

(36)
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We choose the orbifolding parity condition

P 0
SM = PSM ⌦ U, (26)

where U is one of the S
4

generators listed in eq. 24. The flavons in the brane are not
a↵ected by this condition. The flavons in the bulk are not a↵ected by the PSM matrix,
since they are GUT singlets. The bulk flavon VEVs must be eigenvectors of the U matrix.

The flavon �a is a 3’ and it has a negative parity in the boundary condition so that it
must comply with

h�ai = �U h�ai = �

0

@
1 0 0
0 0 1
0 1 0

1

A h�ai ! h�ai ⇠

0

@
0
1
�1

1

A . (27)

The flavon ⇢ is a 2 with positive parity so that it must comply with

h⇢i = U h⇢i =
✓
0 1
1 0

◆
h⇢i ! h⇢i ⇠

✓
1
1

◆
. (28)

The flavon �e is located in the bulk with positive parity, it must comply with

h�ei = �U h�ei =

0

@
1 0 0
0 0 1
0 1 0

1

A h�ei ! h�ei ⇠

0

@
a
b
b

1

A , (29)

with arbitrary a, b.

To fix the alignment of the flavons in the brane, we make use of a superpotential and the
alignment fields A in table 1. The 6d superpotential of brane and bulk fields at leading
order is in eq. 66. After compactification we obtain the simpler looking superpotential

WA ⇠ A
1

(�⌧ )
2 + A

2

(�e)
2 + A0

1

(�µ�µ + �e�⌧ ) + A
3

(�a�⌧ � ⇢�s), (30)

where we ignore the e↵ective dimensionless constants

The F-term equation coming from A
1

fixes

h�⌧ i ⇠

0

@
0
1
0

1

A ,

0

@
0
0
1

1

A ,

0

@
2
2x

�1/x

1

A , (31)

with arbitrary x. We choose h�⌧ i to be the first solution.

The F-term equation from A
2

fixes the VEV

h�ei ⇠

0

@
1
0
0

1

A ,

0

@
1

�2!n

�2!2n

1

A , (32)

so that, together with the orbifold condition from eq. 29, the h�ei is fixed to be the first
choice.
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We have obtained the flavon VEV alignments

h�si = vs

0

@
1
3
�1

1

A , h�ai = va

0

@
0
1
�1

1

A , h⇢i = v⇢

✓
1
1

◆
,

h�ei = ve

0

@
1
0
0

1

A , h�µi = vµ

0

@
0
0
1

1

A , h�⌧ i = v⌧

0

@
0
1
0

1

A .

(10)

We have achieved the so called CSD3 alignment from the flavons h�s,ai using orbifolding
and the superpotential in eq. 5 which is remarkably simple compared to previous ways
to achieve it [20, 23,26,27].

As stated before, we assume that the VEVs are obtained radiativelly at a smaller scale
than the cuto↵ scale ⇤. Furthermore, we assume that the flavons obtain a general complex
VEV, breaking the original CP symmetry.

3 SM fermion mass structure

The Yukawa superpotential originally is 6d and is stated in eq. 65. We will work with
the compactified superpotential, assuming that the cuto↵ scale ⇤ is close enough to the
compactification scale , we may write the e↵ective superpotential

WY = yuijH5

T�
i T+

j

✓
⇠

⇤

◆
6�i�j

+ y±
33

H
5

F�⌧T
±
3

1

⇤
+ y±

22

H
5

F�µT
±
2

1

⇤
+ y±

11

H
5

F�eT
±
1

1

⇤

+ y±
23

H
5

F�⌧T
±
2

⇠

⇤2

+ y±
13

H
5

F�⌧T
±
1

⇠2

⇤3

+ y±
12

H
5

F�µT
±
1

⇠

⇤2

+ y⌫aH5

F�aN
c
a

⇠

⇤2

+ y⌫sH5

F�sN
c
s

1

⇤
+ yNs

⇠4

⇤3

N c
aN

c
c + yNs ⇠N c

sN
c
s

+ yH
⇠10

⇤9

H
5

H
5

,

(11)

where the e↵ective dimensionless coupling constants y are expected to be O(1) and real
due to the imposed trivial CP symmetry.

The first line in eq. 11 gives masses to the up quarks. Since Q comes from T�, while uc

comes from T+, the up quark matrix is not symmetric, as in usual SU(5) theories. The
top mass is e↵ectively renormalisable while the others are not. Defining

h⇠, vii /⇤ = ⇠̃, ṽi, (12)

where i = e, µ, ⌧, a, s, we write the up quark mass matrix 4

Mu = vu

0

@
y
11

⇠̃4 y
12

⇠̃3 y
13

⇠̃2

y
21

⇠̃3 y
22

⇠̃2 y
23

⇠̃
y
31

⇠̃2 y
32

⇠̃ y
33

1

A . (13)

4
All the mass matrices are given in the LR convention.
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Field

Representation

S4 SU(5) U(1) P 0
SM

F 3’

¯

5 �c Brane

T±
1 1 10 a� 4d ±1

T±
2 1 10 a� 2d ±1

T±
3 1 10 a ±1

N c
s 1 1 �d +1

N c
a 1 1 �4d +1

H5 1 5 �2a +1

H5̄ 1

¯

5 �2b +1

⇠ 1 1 2d +1

⇢ 2 1 �a+ 2b+ c+ d +1

�s 3’ 1 2a+ c+ d Brane

�a 3’ 1 2a+ c+ 2d �1

�⌧ 3’ 1 �a+ 2b+ c Brane

�µ 3’ 1 �a+ 2b+ c+ 2d Brane

�e 3’ 1 �a+ 2b+ c+ 4d +1

A1 1 1 2a� 4b� 2c +1

A30 3’ 1 �a� 2b� 2c� 2d Brane

A2 2 1 2a� 4b� 2c� 8d +1

A0
1 1’ 1 2a� 4b� 2c� 4d Brane

Table 1: Complete list of chiral superfields in the model. A setup that gives exactly the desired

Yukawa terms would be with {a, b, c, d} = {7, 13, 1, 2}.

in a torus orbifold T 2/(Z
2

⇥ Z
2

). This compactification breaks the extended SUSY and
the GUT groups. This orbifolding is done in a standard way and it is summarized in the
appendix A.

The way the compactification is done leaves a remnant S
4

symmetry which we identify
as the flavour group. The fields can be chosen so that, after the compactification, they
transform under irreducible representations of this S

4

. The 4 fixed branes are related
by S

4

transformations and so are the fields located in them. Since the 4 branes are
interchanged by S

4

, we will simply refer to them as the brane. This is shown in appendix
A.1.

Besides the gauge superfields, the model contains the chiral superfields that are listed
in table 1. There we list the representation of each field under the GUT group SU(5),
the flavour group S

4

and their charges under the shaping symmetry U(1). If the field
propagates in the bulk, it should be an eigenstate of the boundary condition matrix P 0

SM

and its parity ±1 is listed in the last column. If the field is located in the brane, it is
stated as Brane in the last column.

The SM fermions lie inside the F, Ti as in an usual SU(5) theory. The flavour triplet F
contains dc and L. There are two copies of each Ti in the bulk, each with di↵erent parity
under the ZSM

2

boundary condition. The T+ contains uc and ec, while the T� contains
Q. This allows di↵erent masses for charged leptons and down quarks. We have only two
right handed neutrinos (RHN) N c

a,s, as this is the minimum case. The MSSM doublets
hu,d lie in H

5,¯5 respectively. They are located in the bulk with a positive parity so that
only the doublets are light after compactificaion, so that the doublet triplet splitting is
natural.

3

(a) The exta dimensional space. Identifying together sides a, b we obtain

T 2
. The ZSM

2 orbifolding identifies the shaded area with the non shaded.

The orbifolding Z2 identifies both areas labeled C.

(b) The e↵ective extra dimensional space

T 2/(Z2 ⇥ ZSM
2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.
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Yukawa operators

small mu term

Majorana masses
Dirac masses

Up type quark masses

Down type and lepton masses

Field

Representation

S4 SU(5) U(1) P 0
SM

F 3’

¯

5 �c Brane

T±
1 1 10 a� 4d ±1

T±
2 1 10 a� 2d ±1

T±
3 1 10 a ±1

N c
s 1 1 �d +1

N c
a 1 1 �4d +1

H5 1 5 �2a +1

H5̄ 1

¯

5 �2b +1

⇠ 1 1 2d +1

⇢ 2 1 �a+ 2b+ c+ d +1

�s 3’ 1 2a+ c+ d Brane

�a 3’ 1 2a+ c+ 2d �1

�⌧ 3’ 1 �a+ 2b+ c Brane

�µ 3’ 1 �a+ 2b+ c+ 2d Brane

�e 3’ 1 �a+ 2b+ c+ 4d +1

A1 1 1 2a� 4b� 2c +1

A30 3’ 1 �a� 2b� 2c� 2d Brane

A2 2 1 2a� 4b� 2c� 8d +1

A0
1 1’ 1 2a� 4b� 2c� 4d Brane

Table 1: Complete list of chiral superfields in the model. A setup that gives exactly the desired

Yukawa terms would be with {a, b, c, d} = {7, 13, 1, 2}.

in a torus orbifold T 2/(ZSM
2

⇥Z
2

). This compactification breaks the extended SUSY and
the GUT groups. This orbifolding is done in a standard way and it is summarized in the
appendix 2.

The way the compactification is done leaves a remnant S
4

symmetry which we identify
as the flavour group. The fields can be chosen so that, after the compactification, they
transform under irreducible representations of this S

4

. The 4 fixed branes are related
by S

4

transformations and so are the fields located in them. Since the 4 branes are
interchanged by S

4

, we will simply refer to them as the brane. This is shown in appendix
2.1.

Besides the gauge superfields, the model contains the chiral superfields that are listed
in table 1. There we list the representation of each field under the GUT group SU(5),
the flavour group S

4

and their charges under the shaping symmetry U(1). If the field
propagates in the bulk, it should be an eigenstate of the boundary condition matrix P 0

SM

and its parity ±1 is listed in the last column. If the field is located in the brane, it is
stated as Brane in the last column.

The SM fermions lie inside the F, Ti as in an usual SU(5) theory. The flavour triplet F
contains dc and L. There are two copies of each Ti in the bulk, each with di↵erent parity
under the ZSM

2

boundary condition. The T+ contains uc and ec, while the T� contains
Q. This allows di↵erent masses for charged leptons and down quarks. We have only two
right handed neutrinos (RHN) N c

a,s, as this is the minimum case. The MSSM doublets
hu,d lie in H

5,¯5 respectively. They are located in the bulk with a positive parity so that
only the doublets are light after compactification, so that the doublet triplet splitting is
natural.

3

where the e↵ective dimensionless coupling constants y are expected to be O(1) and real
due to the imposed trivial CP symmetry.

The first line in eq. 36 gives masses to the up quarks. Since Q comes from T�, while uc

comes from T+, the up quark matrix is not symmetric, as in usual SU(5) theories. The
top mass is e↵ectively renormalisable while the others are not. Defining

h⇠, vii /⇤ = ⇠̃, ṽi, (37)

where i = e, µ, ⌧, a, s, we write the up quark mass matrix 4

Mu = vu

0

@
y
11

⇠̃4 y
12

⇠̃3 y
13

⇠̃2

y
21

⇠̃3 y
22

⇠̃2 y
23

⇠̃
y
31

⇠̃2 y
32

⇠̃ y
33

1

A . (38)

The second and third lines of eq. 36 give masses to down quarks and charged leptons.
The down quark matrix is

Md = vd

0

@
y�
11

ṽe y�
12

ṽµ⇠̃ y�
13

ṽ⌧ ⇠̃2

0 y�
22

ṽµ y�
23

ṽ⌧ ⇠̃
0 0 y�

33

ṽ⌧

1

A , (39)

while the charged lepton mass matrix is

(M e)⇤ = vd

0

@
y+
11

ṽe 0 0
y+
12

ṽµ⇠̃ y+
22

ṽµ 0
y+
13

ṽ⌧ ⇠̃2 y+
23

ṽ⌧ ⇠̃ y+
33

ṽ⌧

1

A . (40)

Since ec comes from T+ and Q comes from T� the Yukawa terms have di↵erent and
independent couplings y±ij for each one. This way the charged lepton mass matrix is
completely independent of the down quark mass matrix.

The fourth line in eq. 36 gives the Dirac neutrino mass matrix and the right handed
neutrino Majorana mass matrix

M ⌫
D = vu

0

@
0 y⌫s ṽs

�y⌫a ṽa⇠̃ �y⌫s ṽs
y⌫a ṽa⇠̃ 3y⌫s ṽs

1

A , MN =

✓
yNa ⇠̃3 0
0 yNs

◆
h⇠i . (41)

The RHN are very heavy so that the left handed neutrinos become very light after the
seesaw mechanism has been implemented,

M ⌫ = M ⌫
D(M

N)�1(M ⌫)T

=
v2u
h⇠i

(y⌫a)
2ṽ2a

yNa ⇠̃

0

@
0 0 0
0 1 �1
0 �1 1

1

A+
v2u
h⇠i

(y⌫s )
2ṽ2s

yNs

0

@
1 �1 3
�1 1 �3
3 �3 9

1

A .
(42)

This structure for the neutrino mass matrix is called the Littlest Seesaw [20].

4
All the mass matrices are given in the LR convention.
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where the e↵ective dimensionless coupling constants y are expected to be O(1) and real
due to the imposed trivial CP symmetry.

The first line in eq. 36 gives masses to the up quarks. Since Q comes from T�, while uc

comes from T+, the up quark matrix is not symmetric, as in usual SU(5) theories. The
top mass is e↵ectively renormalisable while the others are not. Defining

h⇠, vii /⇤ = ⇠̃, ṽi, (37)

where i = e, µ, ⌧, a, s, we write the up quark mass matrix 4

Mu = vu

0

@
y
11

⇠̃4 y
12

⇠̃3 y
13

⇠̃2

y
21

⇠̃3 y
22

⇠̃2 y
23

⇠̃
y
31

⇠̃2 y
32

⇠̃ y
33

1

A . (38)

The second and third lines of eq. 36 give masses to down quarks and charged leptons.
The down quark matrix is

Md = vd

0

@
y�
11

ṽe y�
12

ṽµ⇠̃ y�
13

ṽ⌧ ⇠̃2

0 y�
22

ṽµ y�
23

ṽ⌧ ⇠̃
0 0 y�

33

ṽ⌧

1

A , (39)

while the charged lepton mass matrix is

(M e)⇤ = vd

0

@
y+
11

ṽe 0 0
y+
12

ṽµ⇠̃ y+
22

ṽµ 0
y+
13

ṽ⌧ ⇠̃2 y+
23

ṽ⌧ ⇠̃ y+
33

ṽ⌧

1

A . (40)

Since ec comes from T+ and Q comes from T� the Yukawa terms have di↵erent and
independent couplings y±ij for each one. This way the charged lepton mass matrix is
completely independent of the down quark mass matrix.

The fourth line in eq. 36 gives the Dirac neutrino mass matrix and the right handed
neutrino Majorana mass matrix

M ⌫
D = vu

0

@
0 y⌫s ṽs

�y⌫a ṽa⇠̃ �y⌫s ṽs
y⌫a ṽa⇠̃ 3y⌫s ṽs

1

A , MN =

✓
yNa ⇠̃3 0
0 yNs

◆
h⇠i . (41)

The RHN are very heavy so that the left handed neutrinos become very light after the
seesaw mechanism has been implemented,

M ⌫ = M ⌫
D(M

N)�1(M ⌫)T

=
v2u
h⇠i

(y⌫a)
2ṽ2a

yNa ⇠̃

0

@
0 0 0
0 1 �1
0 �1 1

1

A+
v2u
h⇠i

(y⌫s )
2ṽ2s

yNs

0

@
1 �1 3
�1 1 �3
3 �3 9

1

A .
(42)

This structure for the neutrino mass matrix is called the Littlest Seesaw [20].

4
All the mass matrices are given in the LR convention.
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Littlest seesaw = CSD3 No LH charged lepton mixing to leading order

Up matrix has small mixing and no phases Down matrix gives Cabibbo mixing and CP phase

4.1 Low energy parameters and physical phases

We assume that the scaled VEVs in Eq.37 take hierarchical values,

|ṽe| ⌧ |ṽµ| ⌧ |ṽ⌧ |, |ṽa|, |ṽs|, |⇠̃| < 1, (43)

perhaps due to radiative breaking at di↵erent scales, The idea is that powers of these
VEVs are responsible for the hierarchies between the fermion masses, allowing all the y
parameters appearing in the mass matrices of the previous section to be O(1). However
in practice, a couple of these y parameters will need to be of order 5%. To the extent
that these parameters are O(1), our model may be regarded as providing a “natural”
explanation of the quark and lepton (including neutrino) masses and mixings, including
the CP phases, as we now discuss.

We have imposed trivial CP symmetry, so that all coupling constants y are real. However,
the same mechanism that drives the flavon VEVs may spontaneously break CP. We will
assume this is the case by having all flavon VEVs generally complex, with phases

arg(vf ) = ⌘f , (44)

where f is each flavon. We can always absorb phases into the fermion fields and we
redefine

u2

L,R ! e�i⌘⇠u2

L,R, u1

L,R ! e�2i⌘⇠u1

L,R,

d1R ! e�i⌘ed1R, d2R ! e�i⌘µd2R, d3R ! e�i⌘⌧d3R,

e1L ! ei⌘ee1L, e2L ! ei⌘µe2L, e3L ! ei⌘⌧ e3L,

⌫i
L ! e�i⌘a+i⌘⇠⌫i

L, ⌫2

L ! �⌫2

L.

(45)

With these phase redefinitions, the charged fermion mass matrices of the previous section
may be rewritten in terms of explicitly real parameters and physical phases,

Mu = vu

0

@
y
11

|⇠̃|4 y
12

|⇠̃|3 y
13

|⇠̃|2
y
21

|⇠̃|3 y
22

|⇠̃|2 y
23

|⇠̃|
y
31

|⇠̃|2 y
32

|⇠̃| y
33

1

A

Md = vd

0

@
y�
11

|ṽe| y�
12

|ṽµ⇠̃|ei⌘⇠ y�
13

|ṽ⌧ ⇠̃2|e2i⌘⇠
0 y�

22

|ṽµ| y�
23

|ṽ⌧ ⇠̃|ei⌘⇠
0 0 y�

33

|ṽ⌧ |

1

A

M e = vd

0

@
y+
11

|ṽe| 0 0
y+
12

|ṽµ⇠̃|e�i⌘⇠ y+
22

|ṽµ| 0
y+
13

|ṽ⌧ ⇠̃2|e�2i⌘⇠ y+
23

|ṽ⌧ ⇠̃|e�i⌘⇠ y+
33

|ṽ⌧ |

1

A ,

(46)

while the low energy neutrino mass matrix, after the seesaw mechanism has been imple-
mented, may be expressed as 5,

M ⌫ = µa

0

@
0 0 0
0 1 1
0 1 1

1

A+ µs |⇠̃|ei⌘
0

@
1 1 3
1 1 3
3 3 9

1

A , (47)
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N ⌫̄cR⌫R, for Majorana masses.
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4.1 Low energy parameters and physical phases

We assume that the scaled VEVs in Eq.37 take hierarchical values,

|ṽe| ⌧ |ṽµ| ⌧ |ṽ⌧ |, |ṽa|, |ṽs|, |⇠̃| < 1, (43)

perhaps due to radiative breaking at di↵erent scales, The idea is that powers of these
VEVs are responsible for the hierarchies between the fermion masses, allowing all the y
parameters appearing in the mass matrices of the previous section to be O(1). However
in practice, a couple of these y parameters will need to be of order 5%. To the extent
that these parameters are O(1), our model may be regarded as providing a “natural”
explanation of the quark and lepton (including neutrino) masses and mixings, including
the CP phases, as we now discuss.

We have imposed trivial CP symmetry, so that all coupling constants y are real. However,
the same mechanism that drives the flavon VEVs may spontaneously break CP. We will
assume this is the case by having all flavon VEVs generally complex, with phases

arg(vf ) = ⌘f , (44)

where f is each flavon. We can always absorb phases into the fermion fields and we
redefine

u2

L,R ! e�i⌘⇠u2

L,R, u1

L,R ! e�2i⌘⇠u1

L,R,

d1R ! e�i⌘ed1R, d2R ! e�i⌘µd2R, d3R ! e�i⌘⌧d3R,

e1L ! ei⌘ee1L, e2L ! ei⌘µe2L, e3L ! ei⌘⌧ e3L,

⌫i
L ! e�i⌘a+i⌘⇠⌫i

L, ⌫2

L ! �⌫2

L.

(45)

With these phase redefinitions, the charged fermion mass matrices of the previous section
may be rewritten in terms of explicitly real parameters and physical phases,

Mu = vu

0

@
y
11

|⇠̃|4 y
12

|⇠̃|3 y
13

|⇠̃|2
y
21

|⇠̃|3 y
22

|⇠̃|2 y
23

|⇠̃|
y
31

|⇠̃|2 y
32

|⇠̃| y
33

1

A

Md = vd

0
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y�
11

|ṽe| y�
12

|ṽµ⇠̃|ei⌘⇠ y�
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|ṽ⌧ ⇠̃2|e2i⌘⇠
0 y�
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|ṽµ| y�
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0 0 y�
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|ṽ⌧ |
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A

M e = vd
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|ṽe| 0 0
y+
12

|ṽµ⇠̃|e�i⌘⇠ y+
22

|ṽµ| 0
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13

|ṽ⌧ ⇠̃2|e�2i⌘⇠ y+
23

|ṽ⌧ ⇠̃|e�i⌘⇠ y+
33

|ṽ⌧ |

1

A ,

(46)

while the low energy neutrino mass matrix, after the seesaw mechanism has been imple-
mented, may be expressed as 5,

M ⌫ = µa

0

@
0 0 0
0 1 1
0 1 1

1

A+ µs |⇠̃|ei⌘
0

@
1 1 3
1 1 3
3 3 9

1

A , (47)
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perhaps due to radiative breaking at di↵erent scales, The idea is that powers of these
VEVs are responsible for the hierarchies between the fermion masses, allowing all the y
parameters appearing in the mass matrices of the previous section to be O(1). However
in practice, a couple of these y parameters will need to be of order 5%. To the extent
that these parameters are O(1), our model may be regarded as providing a “natural”
explanation of the quark and lepton (including neutrino) masses and mixings, including
the CP phases, as we now discuss.

We have imposed trivial CP symmetry, so that all coupling constants y are real. However,
the same mechanism that drives the flavon VEVs may spontaneously break CP. We will
assume this is the case by having all flavon VEVs generally complex, with phases

arg(vf ) = ⌘f , (44)

where f is each flavon. We can always absorb phases into the fermion fields and we
redefine

u2

L,R ! e�i⌘⇠u2

L,R, u1

L,R ! e�2i⌘⇠u1

L,R,

d1R ! e�i⌘ed1R, d2R ! e�i⌘µd2R, d3R ! e�i⌘⌧d3R,

e1L ! ei⌘ee1L, e2L ! ei⌘µe2L, e3L ! ei⌘⌧ e3L,

⌫i
L ! e�i⌘a+i⌘⇠⌫i

L, ⌫2

L ! �⌫2

L.

(45)

With these phase redefinitions, the charged fermion mass matrices of the previous section
may be rewritten in terms of explicitly real parameters and physical phases,

Mu = vu

0

@
y
11

|⇠̃|4 y
12

|⇠̃|3 y
13

|⇠̃|2
y
21

|⇠̃|3 y
22

|⇠̃|2 y
23

|⇠̃|
y
31

|⇠̃|2 y
32

|⇠̃| y
33

1

A

Md = vd

0

@
y�
11
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|ṽ⌧ ⇠̃|e�i⌘⇠ y+
33
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while the low energy neutrino mass matrix, after the seesaw mechanism has been imple-
mented, may be expressed as 5,

M ⌫ = µa

0

@
0 0 0
0 1 1
0 1 1

1

A+ µs |⇠̃|ei⌘
0

@
1 1 3
1 1 3
3 3 9

1

A , (47)

5
We use the convention � 1

2M
⌫ ⌫̄L⌫

c
L and � 1

2M
N ⌫̄cR⌫R, for Majorana masses.

12

4.1 Low energy parameters and physical phases

We assume that the scaled VEVs in Eq.37 take hierarchical values,
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|ṽ⌧ |

1

A

M e = vd

0

@
y+
11
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while the low energy neutrino mass matrix, after the seesaw mechanism has been imple-
mented, may be expressed as 5,
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Parameter Model

✓q12 13.026�

✓q13 0.193�

✓q23 2.237�

�q 69.21�

yu 2.92⇥ 10

�6

yc 1.43⇥ 10

�3

yt 5.34⇥ 10

�1

yd 4.81⇥ 10

�6

ys 9.52⇥ 10

�5

yb 5.38⇥ 10

�3

Parameter Model

✓l12 33.63�

✓l13 8.54�

✓l23 47.2�

�l 234.15�

ye 1.97⇥ 10

�6

yµ 4.16⇥ 10

�4

y⌧ 7.07⇥ 10

�3

�m2
21/eV

2
7.51⇥ 10

�5

�m2
31/eV

2
2.52⇥ 10

�3

m1/meV 0

m2/meV 8.67

m3/meV 50.23

↵23 33.85�

Table 2: Fermion masses and mixings fitted in the model. They resemble exactly the observed

ones with �2 ⇡ 0. The observables are at the GUT scale and with tan� = 5. The quark masses,

charged lepton masses and CKM parameters come from [29]. The neutrino observables come

from [30]. The fit has been performed using the Mixing Parameter Tools (MPT) package [31].

where
⌘ = 2⌘s � 2⌘a + ⌘⇠, (48)

and

µa,s =
(vuy⌫a,s)

2

|v⇠|yNa,s
. (49)

So finally we have only 2 physical phases ⌘, ⌘⇠, plus 2 left handed neutrino mass parame-
ters µa,s and 21 dimensionless O(1) parameters y, noting that the VEV ratios |ṽi|, |⇠̃| are
not physical low energy degrees of freedom but are used just to absorb the hierarchies
between fermion masses.

4.2 Numerical Fit

With these parameters we may perform a fit for the fermion masses and mixings, compar-
ing the model to these values run up to the GUT scale. In table 2 we show the observables
that can be obtained using the parameters in table 3. We can fit perfectly the full SM
fermion content observables run up to the GUT scale with �2 ⇡ 0, choosing tan � = 5
and assuming negligible SUSY threshold corrections. We can obtain an equally good fit
with di↵erent tan� and this one is chosen arbitrarily.

The VEV ratios |ṽi| in table 3 are not physical degrees of freedom and are chosen to
generate the hierarchies between the fermion mass parameters. For the given choice of
VEV ratios, most of the dimensionless real parameters y turn out to be O(1), although
a couple of these parameters, y

32

and y�
33

, are about 5%, and a couple more, y+
23

and y+
33

,
are about 20%. However, this choice of parameters does not appear to be a statistically
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The second and third lines of eq. 11 give masses to down quarks and charged leptons.
The down quark matrix is

Md = vd

0

@
y�
11

ṽe y�
12

ṽµ⇠̃ y�
13

ṽ⌧ ⇠̃2

0 y�
22

ṽµ y�
23

ṽ⌧ ⇠̃
0 0 y�

33

ṽ⌧

1

A , (14)

while the charged lepton mass matrix is

(M e)⇤ = vd

0

@
y+
11

ṽe 0 0
y+
12

ṽµ⇠̃ y+
22

ṽµ 0
y+
13

ṽ⌧ ⇠̃2 y+
23

ṽ⌧ ⇠̃ y+
33

ṽ⌧

1

A . (15)

Since ec comes from T+ and Q comes from T� the Yukawa terms have di↵erent and
independent couplings y±ij for each one. This way the charged lepton mass matrix is
completely independent of the down quark mass matrix.

The fourth line in eq. 11 gives the Dirac neutrino mass matrix and the right handed
neutrino Majorana mass matrix

M ⌫
D = vu

0

@
0 y⌫s ṽs

�y⌫a ṽa⇠̃ �y⌫s ṽs
y⌫a ṽa⇠̃ 3y⌫s ṽs

1

A , MN =

✓
yNa ⇠̃3 0
0 yNs

◆
h⇠i . (16)

The RHN are very heavy so that the left handed neutrinos become very light after the
seesaw mechanism has been implemented,

M ⌫ = M ⌫
D(M

N)�1(M ⌫)T

=
v2u
h⇠i

(y⌫a)
2ṽ2a

yNa ⇠̃

0

@
0 0 0
0 1 �1
0 �1 1

1

A+
v2u
h⇠i

(y⌫s )
2ṽ2s

yNs

0

@
1 �1 3
�1 1 �3
3 �3 9

1

A .
(17)

This structure for the neutrino mass matrix is called the Littlest Seesaw [20].

3.1 Low energy parameters and physical phases

We assume that the scaled VEVs in Eq.12 take hierarchical values,

|ṽe| ⌧ |ṽµ| ⌧ |ṽ⌧ |, |ṽa|, |ṽs|, |⇠̃| < 1, (18)

perhaps due to radiative breaking at di↵erent scales, The idea is that powers of these
VEVs are responsible for the hierarchies between the fermion masses, allowing all the y
parameters appearing in the mass matrices of the previous section to be O(1). However
in practice, a couple of these y parameters will need to be of order 5%. To the extent
that these parameters are O(1), our model may be regarded as providing a “natural”
explanation of the quark and lepton (including neutrino) masses and mixings, including
the CP phases, as we now discuss.
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SU(5)xS4 in 6d 

(a) The exta dimensional space. Identifying together sides a, b we obtain

T 2
. The ZSM

2 orbifolding identifies the shaded area with the non shaded.

The orbifolding Z2 identifies both areas labeled C.

(b) The e↵ective extra dimensional space

T 2/(Z2 ⇥ ZSM
2 ). This is the whole bulk.

The four invariant branes z1,2,3,4 are

shown.

(c) The four branes are permuted by the symmetries

S1, S2, R. These symmetries identify the sides a, b, c
while R rotates everything by identifying sides d.

(d) By actually gluing together sides a, b, c we obtain a

tetrahedron, whose vertices are related by the symme-

try group A4.

(e) The symmetries S1, S2, R generate A4. By also con-

sidering independent parities P, P 0
we obtain the re-

flected bulk space.

(f) Identifying sides a, b, c for each space we obtain a

tetrahedron and a reflected one. The pair of tetrahedra

lie inside a cube, whose vertices are related by the sym-

metry group S4. The left image shows all the sides of

the tetrahedra while the one on the right is solid for a

better visualization.

Figure 1: Visualization on the remnant S4 symmetry after orbifolding of the extra dimensions.
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Björkeroth, de Anda, de Medeiros Varzielas, SFK 1503.03306

Solves the strong CP problem:  arg det (MuMd)=0

SFK 1304.6264 



Figure 1: Predicted values from LSA with ⌘ = 2⇡
3 (or LSB with ⌘ = �2⇡

3 ) of oscillation

parameters depending on the input parameters ma and mb. Regions corresponding to the

experimentally determined 1� (solid lines) and 3� (dashed lines) ranges for each parameter

are also shown.
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Figure 2: Regions in the ma-mb plane with fixed ⌘ = 2⇡/3 (⌘ = �2⇡/3) for LSA (LSB)

corresponding to the experimentally determined 1� and 3� ranges for ✓13, �m2
21 and�m2

31.

3.2 Predictions of oscillation parameters with ⌘ as a free parameter

In the versions of the LS models with ⌘ as an additional free parameter, the mixing angles

and phases now depend on both the ratio r = mb/ma and ⌘. The masses m3 and m2

depend on all three input parameters; however, their ratio m2/m3 (and therefore the ratio

�m2
21/�m2

31) will depend only on r and ⌘. As previously, the strongest contraints come

from the very precise measurements of ✓13 and the mass-squared di↵erences �m2
21 and
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The Littlest Seesaw
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2 input parameters
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3 mixing angles, 
1 Dirac CP phase, 
2 Majorana phases 
= 9 observables
Currently measured 

5 observables 

Very predictive!

Predicts:

Good agreement!

1512.07531

Google

e.g. max. atm & max. CPV                  
due to approx. mu-tau sym
SFK, Nishi 1807.00023

7 A numerical benchmark: CSD(3) with ⌘ = 2⇡/3

We now illustrate the success of the scheme by presenting numerical results for the neutrino
mass matrix in Eq.23 for the particular choice of input parameters, namely n = 3 and
⌘ = 2⇡/3, 2

m⌫ = m
a

0

@
0 0 0
0 1 1
0 1 1

1

A +m
b

ei2⇡/3

0

@
1 3 1
3 9 3
1 3 1

1

A . (24)

This numerical benchmark was first presented in [15, 16]. In section 14 we will propose a
simple LS model which provides a theoretical justification for this choice of parameters.

In Table 1 we compare the above numerical benchmark resulting from the neutrino mass
matrix in Eq.24 to the global best fit values from [25] (setting m

1

= 0). The agreement
between CSD(3) and data is within about one sigma for all the parameters, with similar
agreement for the other global fits [26, 27].

m
a

(meV)

m
b

(meV)

⌘
(rad)

✓
12

(

�
)

✓
13

(

�
)

✓
23

(

�
)

�
CP

(

�
)

m
1

(meV)

m
2

(meV)

m
3

(meV)

26.57 2.684
2⇡

3
34.3 8.67 45.8 -86.7 0 8.59 49.8

Value from [25] 33.48+0.78

�0.75

8.50+0.20

�0.21

42.3+3.0

�1.6

-54+39

�70

0 8.66±0.10 49.57±0.47

Table 1: Parameters and predictions for CSD(3) with a fixed phase ⌘ = 2⇡/3 from [15]. In
addition we predict � = 71.9� which is not shown in the Table since the neutrinoless double
beta decay parameter is mee = mb = 2.684 meV for the above parameter set which is practically
impossible to measure in the forseeable future. These predictions may be compared to the global
best fit values from [25] (for m1 = 0), given on the last line.

Using the results in Table 1, the baryon asymmetry of the Universe (BAU) resulting from
N

1

= N
atm

leptogenesis was estimated for this model [16]:

Y
B

⇡ 2.5⇥ 10�11 sin ⌘


M

1

1010 GeV

�
. (25)

Using ⌘ = 2⇡/3 and the observed value of Y
B

fixes the lightest right-handed neutrino mass:

M
1

= M
atm

⇡ 3.9⇥ 1010 GeV. (26)

The phase ⌘ determines the BAU via leptogenesis in Eq.25. In fact it controls the entire
PMNS matrix, including all the lepton mixing angles as well as all low energy CP violation.
The leptogenesis phase ⌘ is therefore the source of all CP violation arising from this model,

2Note that the seesaw mechanism results in a light e↵ective Majorana mass matrix given by the Lagrangian
Le↵ = � 1

2⌫Lm⌫⌫c
L + H.c.. This corresponds to the convention of Appendix A.
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NR � �

SU(2)L 1 1 1
U(1)Y 0 0 0

Z
2

+ - -

Table 1: New fields representations of the model, where NR are the two right-handed neutrinos,
while � and � are a new DS complex scalar and fermion, respectively.

Lagrangian of the model can be divided in four parts

L = L
SM

+ L
Seesaw

+ L
DS

+ L
portal

, (1)

where the first term is the SM Lagrangian, the Seesaw term is responsible for neutrino masses,
the DS part contains all the kinetic and mass terms of the dark particles � and �, while the last
term consists of the interactions that connect the visible and the dark sectors. In particular, the
last three terms read

L
Seesaw

= �Y↵�LL↵
˜HNR� � 1

2

MRN c
RNR + h.c. , (2)

L
DS

= �
�
i/@ �m�

�
�+ |@µ�|�m2

� |�|2 + V (�) , (3)

L
portal

= y
DS

��NR + h.c , (4)

where LL↵ are the left-handed lepton doublets (↵ = e, µ⌧ and � = 1, 2) and

H =

 
G+

vSM+h0
+iG0

p
2

!
(5)

is the SM Higgs doublet with ˜H = i⌧
2

H⇤. In Eq, (3), the quantities m� and m� are the masses
of the fermion and the scalar, respectively, and V (�) is a general potential for the scalar field
allowed by the Z

2

symmetry. We assume that the discrete Z
2

symmetry is an exact symmetry
of the model so that the scalar field does not acquire a v.e.v. (a detailed analysis of the scalar
potential is beyond the scope of this paper). Finally, the visible and dark sectors are connected
through the right-handed neutrino portal defined in Eq. (4), where for the sake of simplicity we
have assumed the same real coupling y

DS

between the two right-handed neutrinos and the DS
particles. It is worth noticing that in this framework the Higgs portal defined by the coupling
yH� |H|2 |�|2 is also allowed. However, the aim of the present analysis is to investigate the impact
of the right-handed neutrino portal on the DM phenomenology and to highlight the interesting
connection between neutrinos and DM particles. Hence, for this reason we consider the coupling
yH� to be negligible.

Let us now discuss in detail the Littlest Seesaw model defined by the Lagrangian given in
Eq. (2). The first term is a Yukawa-like coupling while the second one is the Majorana mass
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3

The Dark Side of 
the Littlest Seesaw

Figure 4: Left Panel: right-handed neutrino coupling y
DS

as a function of the seesaw energy
scale MR. The bands (only visible for m� = m�) corresponds to different choices of the ratio
m�/MR. Right Panel: relative contribution of DS (solid lines) and ⌫�Yukawa (dashed lines)
scattering processes to the DM relic abundance. In both panels, the different colours correspond
to different values for the ratio m�/m� for ordering type A with MR  m�  m�.

Figure 5: Right-handed neutrino coupling y
DM

in the plane MR – m�/m� able to reproduce the
correct DM relic abundance. The black line highlights the choices of parameters at which the
equality of the DS and ⌫�Yukawa contributions occurs (for ordering type A with MR  m� 
m�).

that simultaneously produce � and � particles for T � m�. Then, when h��i � H, the scalar
particles decay into the dark fermions whose yield just doubles.

In Fig.s 4 and 5 we report the main results of the present numerical analysis focusing on the
ordering type A (m� � MR, m�). In particular, in the left panel of Fig. 4 it is depicted how

14

Leptogenesis-
friendly 

Fimpzillas

Two RHN portal 
No Higgs portal !

Figure 2: Example of DM production through freeze-in mechanism for the benchmark values:
MR = 10

3 GeV, m� = 10

5 GeV, m� = 10

7 GeV (ordering type A with MR  m�  m�) and
y
DS

= 7.5 ⇥ 10

�6. Left Panel: yields of DM particles and dark scalars as a function of the
auxiliary variable x = MR/T . Right Panel: interactions rates of the different processes involved
in the Boltzmann equations (21) and (22).

T
=
M
P
la
nc
k

ΩDMh2 = (ΩDMh2)obs

MR = 1010 GeV

mχ = 1012 GeV

mϕ = 1014 GeV

yDS = 1.9 × 10-8

m
ϕ

m
χ

M
R
1
=
M
R
2

Yχ

Yϕ

10-10 10-5 100 105
10-26
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Y
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Figure 3: Example of DM production through freeze-in mechanism for the benchmark values
MR = 10

10 GeV, m� = 10

12 GeV, m� = 10

14 GeV (ordering type A with MR  m�  m�) and
y
DS

= 1.9⇥ 10

�8. The description of the plots is the same of Fig. 2.

⌫�Yukawa one. This means that the DS processes provide the dominant contribution to the DM
production. On the other hand, according to Eq. (34), for larger values of the seesaw energy scale
MR the DS processes become less efficient and the DM production starts to be instead driven by
⌫�Yukawa scatterings. In Fig. 3 we show a benchmark case of ordering type A where ⌫�Yukawa
scatterings dominate the DM production. In particular, we consider the values MR = 10

10 GeV,
m� = 10

12 GeV, m� = 10

14 GeV and y
DS

= 1.9 ⇥ 10

�8. In this case, both the yields of � and
� particles increase and freeze-in at T = m�. This is due to the fact that, as show in the right
panel, the dominant contribution to the DM production is provided by the ⌫�Yukawa processes
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Freeze-in mechanism 
for fimpzillas

Chianese, SFK 1806.10606;
see also: Bhattacharya,
de Medeiros Varzielas, 
Karmakar, SFK and Sil,
1806.00490;
Becker 1806.08579 

Chianese, SFK 1806.10606
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�

�⇤

�

nj

ni
y
DS

y
DS

�

�

�

nj

ni
y
DS

y
DS

(a) Dark Sector scatterings

nj

�,�⇤

�,� ⌫i, ⌫i, `
±
i

h0, G0, G⌥

y
DS

y⌫

(b) Neutrino Yukawa scatterings

Figure 1: Dominant scattering processes responsible for DM production in the case of ordering
type A. Here ni represent the heavy neutrino mass eigenstates (dominantly from the right-handed
neutrinos NR) while ⌫i represent the light neutrino mass eigenstates (dominantly from ⌫L in the
doublet LL).

where the right-handed neutrinos NR are taken to be in thermal equilibrium with photons. In
the above expressions, we have neglected all the other subdominant terms suppressed by the
condition Y�,� ⌧ Y eq

�,� according to the freeze-in production paradigm. Moreover, we do not take
into account all the other scattering processes with right-handed neutrinos that are suppressed
by the active-sterile neutrino mixing ✓ ⌘ mDM

�1

R (see Ref.s [129, 130]). This is indeed a good
approximation in the case where the right-handed neutrinos are heavier than the electroweak
energy scale. Hence, we can mainly distinguish three different classes of processes (see Fig. 1),
whose expressions are reported in the Appendix. In particular, we have:

• Dark Sector scatterings: the first term in the two Boltzmann equations refers to the
scattering processes ��⇤ ! ninj and �� ! ninj , respectively. In particular, we have

h� viDS

�� =

X

i,j=1,2

⌦
���⇤!ninj v

↵
, (23)

h� viDS

�� =

X

i,j=1,2

⌦
���!ninj v

↵
. (24)

The amplitudes of such processes are obtained with different contractions of the right-
handed neutrino portal in Eq. (4) and, therefore, the corresponding thermal averaged cross
sections are proportional to the coupling y4

DS

;

• Neutrino Yukawa scatterings: the second term in both equations corresponds to the
scattering processes that originate from the neutrino Yukawa interaction given in Eq. (2).
According to the Goldstone Boson Equivalence Theorem, we consider also the processes
involving the other degrees of freedom of the Higgs doublet, G0 and G±. Hence, we have

h� vi⌫�Yukawa

�� =

3X

i=1

h⌦
���!⌫ih0 v

↵
+

⌦
���!⌫iG0 v

↵
+

D
���!`±i G⌥ v

Ei
. (25)

8



Phenomenological
hints from B physics

Low scale theories of flavour

Part II



So far this looks very similar to the basis used for the up type quarks, in Eqs.16, 21
with the replacements Q ! L, with uc ! ec and a relabelling L2 $ L3 and ec2 $ ec3.
Indeed, without further assumption, the Yukawa matrices seem to be dominated by the
element with the largest angle, which would imply that the second family charged lepton
is the heaviest, so we would interpret that as the ⌧ lepton. However, let us suppose that
for some reason the Yukawa coupling ye42 is very small in this basis, with the hierarchy
ye42 ⌧ ye34 so that the charged lepton Yukawa matrix is in fact dominated by the first
matrix in Eq.23, even though the angles are assumed to be small. The first matrix is rank
one, so the muon mass is provided by the small contribution from the second matrix. We
shall also assume for later phenomenological reasons that ye24 ⌧ ye34 so there is small left-
handed charged lepton mixing. Most of the large lepton mixing is assumed to originate
in the neutrino sector.

2.9 Phenomenology

With the preceding assumptions, the relevant terms in the Lagrangian can be written as,

L � Z 0
µ

�
gbbb̄L�

µbL + gµµµ̄L�
µµL

�
. (25)

where gbb = g0(sQ34)
2, gµµ = g0(sL24)

2.

RK and RK⇤ As discussed in the Introduction, one possible explanation of the RK and
RK⇤ measurements in LHCb is that the low-energy Lagrangian below the weak scale
contains an additional contribution to the e↵ective 4-fermion operator with left-handed
muon, b-quark, and s-quark fields:

�Le↵ � Gbsµ(b̄L�
µsL)(µ̄L�µµL) + h.c., Gbsµ ⇡ 1

(31.5 TeV)2
. (26)

We can express the coe�cient Gbsµ as function of the couplings in Eq. 25,

Gbsµ = �gbsgµµ
M2

Z0
= �Vtsgbbgµµ

M2
Z0

. (27)

Together, Eqs. (26) and (27) imply the constraint on the parameters gbb, gµµ and MZ0 :

gbbgµµ
M2

Z0
⇡ 1

(6.4 TeV)2
. (28)

Bs � Bs mixing

The Z 0 coupling to bs leads to an additional tree-level contribution to Bs � Bs mixing
due to the e↵ective operator arising from integrating out the Z 0 at tree level:

�Le↵ � �Gbs

2
(s̄L�

µbL)
2 + h.c, Gbs =

g2bs
M2

Z0
=

g2bbV
2
ts

M2
Z0

. (29)
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Could originate from massive Z’ model with couplings 
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Figure 6: Particles that can mediate RK at tree level: a Z 0 or a lepto-quark, scalar or vector.

and therefore one needs to consider the associated experimental constraints. The first operator
a↵ects Bs mass mixing for which the relative measurements, together with CKM fits, imply
cBSM

bLbL
= (�0.09 ± 0.08)/(110 TeV)2 , i.e. the bound |cBSM

bLbL
| < 1/(210 TeV)2 [35, 36]. The second

operator is constrained by CCFR data on the neutrino trident cross section, yielding the weaker
bound |cBSM

µL⌫µ
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references [39–58]. Typically these models contain a Z 0 with mass MZ0 savagely coupled to

[gbs(s̄�µPLb) + h.c.] + gµL(µ̄�µPLµ) . (22)

The model can reproduce the flavour anomalies with cbLµL = �gbsgµL/M2

Z0 as illustrated in
figure 6a. At the same time the Z 0 contributes to the Bs mass mixing with cbLbL = �g2

bs/2M
2

Z0 .
The bound from �MBs can be satisfied by requiring a large enough gµL in order to reproduce
the b ! s`+`� anomalies. Left-handed leptons are unified in a SU(2)L doublet L = (⌫L, `L),
such that also the neutrino operator cµL⌫µ = �g2

µL
/M2

Z0 is generated. However the latter does
not yield a strong constraint on gµL .

Another possibility is for the Z 0 to couple to the 3-rd generation left-handed quarks with
coupling gt and to lighter left-handed quarks with coupling gq. The coupling gbs arises as
gbs = (gt � gq)(UQd

)ts after performing a flavour rotation UQd
among left-handed down quarks

to their mass-eigenstate basis. The matrix element (UQd
)ts is presumably not much larger

than Vts and possibly equal to it, if the CKM matrix V = UQuU
†
Qd

is dominated by the rotation
among left-handed down quarks, rather than by the rotation UQu among left-handed up quarks.

Then, the parameter space of the Z 0 model gets severely constrained by combining per-
turbative bounds on gµL . In addition the LHC bounds on pp ! Z 0 ! µµ̄ can be relaxed by
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So far this looks very similar to the basis used for the up type quarks, in Eqs.16, 21
with the replacements Q ! L, with uc ! ec and a relabelling L2 $ L3 and ec2 $ ec3.
Indeed, without further assumption, the Yukawa matrices seem to be dominated by the
element with the largest angle, which would imply that the second family charged lepton
is the heaviest, so we would interpret that as the ⌧ lepton. However, let us suppose that
for some reason the Yukawa coupling ye42 is very small in this basis, with the hierarchy
ye42 ⌧ ye34 so that the charged lepton Yukawa matrix is in fact dominated by the first
matrix in Eq.23, even though the angles are assumed to be small. The first matrix is rank
one, so the muon mass is provided by the small contribution from the second matrix. We
shall also assume for later phenomenological reasons that ye24 ⌧ ye34 so there is small left-
handed charged lepton mixing. Most of the large lepton mixing is assumed to originate
in the neutrino sector.

2.9 Phenomenology

With the preceding assumptions, the relevant terms in the Lagrangian can be written as,

L � Z 0
µ

�
gbbb̄L�

µbL + gµµµ̄L�
µµL

�
. (25)

where gbb = g0(sQ34)
2, gµµ = g0(sL24)

2.

RK and RK⇤ As discussed in the Introduction, one possible explanation of the RK and
RK⇤ measurements in LHCb is that the low-energy Lagrangian below the weak scale
contains an additional contribution to the e↵ective 4-fermion operator with left-handed
muon, b-quark, and s-quark fields:

�Le↵ � Gbsµ(b̄L�
µsL)(µ̄L�µµL) + h.c., Gbsµ ⇡ 1

(31.5 TeV)2
. (26)

We can express the coe�cient Gbsµ as function of the couplings in Eq. 25,

Gbsµ = �gbsgµµ
M2

Z0
= �Vtsgbbgµµ

M2
Z0

. (27)

Together, Eqs. (26) and (27) imply the constraint on the parameters gbb, gµµ and MZ0 :

gbbgµµ
M2

Z0
⇡ 1

(6.4 TeV)2
. (28)

Bs � Bs mixing

The Z 0 coupling to bs leads to an additional tree-level contribution to Bs � Bs mixing
due to the e↵ective operator arising from integrating out the Z 0 at tree level:

�Le↵ � �Gbs

2
(s̄L�

µbL)
2 + h.c, Gbs =

g2bs
M2

Z0
=

g2bbV
2
ts

M2
Z0

. (29)
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1. the RK ratio [3]

RK =
BR (B+ ! K+µ+µ�)

BR (B+ ! K+e+e�)
= 0.745 ± 0.09

stat

± 0.036
syst

; (3)

2. the branching ratios of the semi-leptonic decays B ! K(⇤)µ+µ� [4] and Bs ! �µ+µ� [5];

3. the angular distributions of the decay rate of B ! K⇤µ+µ�. In particular, the so-called
P 0
5

observable shows the most significant discrepancy [4, 6, 7].

For the observables in points 2 and 3 the main source of uncertainty is theoretical. It
resides in the proper evaluation of the form factors and in the estimate of the non-factorizable
hadronic corrections. Recently, great theoretical e↵ort went into the understanding of these
aspects, see refs. [8–18] for an incomplete list of references. The latest global fit [19] to the
relevant b ! s`+`� observables shows that the presence of new physics can ameliorate the
fit compared to the SM by more than 4�, and similar results have been obtained previously
by various groups [20, 21]. Despite these encouraging hints of new physics, it is hard to draw
strong conclusions, since very conservative analyses of the theoretical hadronic uncertainties
substantially reduce the global significance on the presence of new physics in the semi-leptonic
B-meson decays [16].

In this framework, given their reduced sensitivity to theoretical uncertainties, the RK and
RK⇤ observables o↵er a neat way to establish potential violation of lepton flavour universality.
Future data will be able to further reduce the statistical uncertainty on these quantities. In
addition, measurements of other ratios RH analogous to RK , with H = Xs, �, K

0

(1430), f
0

will
constitute relevant independent tests [2, 22].

The paper is structured as follows. In section 2 we discuss the relevant observables and how
they are a↵ected by additional e↵ective operators. We perform a global fit in section 3. We
show that, even restricting the analysis to the theoretically clean RK , RK⇤ ratios, the overall
deviation from the SM starts to be significant, at the 4� level, and to point towards some
model building directions. Other observables, unfortunately a↵ected by sizeable theoretical
uncertainties, corroborate this picture. Such results prompt us to investigate, in section 4, a
few theoretical interpretations. We discuss models including Z 0, lepto-quark exchanges, new
states a↵ecting the observables via quantum corrections, and models of composite Higgs.

2 E↵ective operators and observables

Upon integrating out heavy degrees of freedom the relevant processes can be described, near
the Fermi scale, in terms of the e↵ective Lagrangian

L
e↵

=
X

`,X,Y

cbX`Y ObX`Y (4)
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Figure 3: The parameter space in the (gµµ, gbb) plane compatible with RK(⇤) anomalies and
flavour constraints (white). The Z 0 mass varies over the plane, with a unique Z 0 mass for
each point in the plane as determined by Eq. 28. We show the recent Bs mixing constraints
(light blue), and the trident bounds (orange); for reference we also display the previous weaker
Bs mixing bounds (dark blue). The green, red, purple and black lines correspond to MZ0 =
10, 100, 1000, 10000 GeV respectively. Figure taken from [24].

3 The A4 Model
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Such a new contribution is highly constrained by the measurements of the mass di↵erence
�Ms of neutral Bs mesons leading to a 2017 bound from updated lattice results of
(Gbs)�1/2 ⇠ 500 TeV as compared to the 2015 bound of (Gbs)�1/2 ⇠ 150 TeV.

Neutrino trident

The production of a muon pair from the scattering of a muon-neutrino o↵ the Coulomb
field of a nucleus, known as neutrino trident production, is a rare process that has been
observed in a few experiments. In our case the trident production ⌫µN ! ⌫µµ+µ�N
is mediated by the Z 0 coupling to left-handed muons which leads to a new tree-level
contribution to the e↵ective 4-lepton interaction

�Le↵ � �Gµ

2
(¯̀L�

µ`L)
2, Gµ =

g2µµ
M2

Z0
. (30)

Such an operator is bounded by (Gµ)�1/2 ⇠ 400 GeV.

LHC searches

The LHC measurements of the SM gauge boson Z decaying to four muons, Z ! 4µ, with
the second muon pair produced in the SM via a virtual photon, sets relevant constraints
in the low mass region of Z 0 models, 5 . MZ0 . 70 GeV, where the virtual photon
may be replaced by a Z 0 coupling to four muons. For heavier Z 0 masses, the subprocess
bb̄ ! Z 0 ! µ+µ� can be probed by dimuon resonance searches at the LHC, leading
to further collider limits on the Z 0 mass and couplings. The strongest limits exist from
ATLAS for Z 0 masses between about 150 GeV and 5 TeV.

2.10 Results

The allowed region of parameter space in the (gµµ, gbb) plane compatible with RK(⇤)

anomalies and the above constraints is shown as the white regions in Fig. 3, taken from
[24], where the original references from which the constraints are extracted are given.
The main point is that there are allowed regions of parameter space which satisfy all
constraints, for example in the region MZ0 ⇠ 100 � 1000 GeV with gbb ⇠ 0.001 � 0.01
and gµµ ⇠ 0.1 � 1. For example a good point is gbb ⇠ 0.02 and gµµ ⇠ 1 and MZ0 ⇠ 1
TeV. If we recall that gbb = g0(sQ34)

2 and gµµ = g0(sL24)
2, and the top Yukawa coupling is

yt ⇠ sQ34y
u
43 ⇠ 1 then this could be achieved by sQ34 ⇠ 0.14, sL24 ⇠ 1, g0 ⇠ 1, h�i ⇠ 1 TeV

but would require yu43 ⇠ 7 which is in the non-perturbative region.

Although the model can successfully account for RK and RK⇤ , it implies unnatural and
possibly non-perturbative parameters.

On the experimental side, the challenge is to close the allowed parameter space of the
model by improving limits by making better precision measurements of the trident ⌫µN !
µ+µ�⌫µN process, by improving the theoretical precision of the SM prediction for the Bs

meson mass di↵erence, as well as by improved LHC sensitivity to bb̄ ! Z 0 ! µ+µ�.
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(Gbs)�1/2 ⇠ 500 TeV as compared to the 2015 bound of (Gbs)�1/2 ⇠ 150 TeV.

Neutrino trident

The production of a muon pair from the scattering of a muon-neutrino o↵ the Coulomb
field of a nucleus, known as neutrino trident production, is a rare process that has been
observed in a few experiments. In our case the trident production ⌫µN ! ⌫µµ+µ�N
is mediated by the Z 0 coupling to left-handed muons which leads to a new tree-level
contribution to the e↵ective 4-lepton interaction

�Le↵ � �Gµ

2
(¯̀L�

µ`L)
2, Gµ =

g2µµ
M2

Z0
. (30)

Such an operator is bounded by (Gµ)�1/2 ⇠ 400 GeV.

LHC searches

The LHC measurements of the SM gauge boson Z decaying to four muons, Z ! 4µ, with
the second muon pair produced in the SM via a virtual photon, sets relevant constraints
in the low mass region of Z 0 models, 5 . MZ0 . 70 GeV, where the virtual photon
may be replaced by a Z 0 coupling to four muons. For heavier Z 0 masses, the subprocess
bb̄ ! Z 0 ! µ+µ� can be probed by dimuon resonance searches at the LHC, leading
to further collider limits on the Z 0 mass and couplings. The strongest limits exist from
ATLAS for Z 0 masses between about 150 GeV and 5 TeV.

2.10 Results

The allowed region of parameter space in the (gµµ, gbb) plane compatible with RK(⇤)

anomalies and the above constraints is shown as the white regions in Fig. 3, taken from
[24], where the original references from which the constraints are extracted are given.
The main point is that there are allowed regions of parameter space which satisfy all
constraints, for example in the region MZ0 ⇠ 100 � 1000 GeV with gbb ⇠ 0.001 � 0.01
and gµµ ⇠ 0.1 � 1. For example a good point is gbb ⇠ 0.02 and gµµ ⇠ 1 and MZ0 ⇠ 1
TeV. If we recall that gbb = g0(sQ34)

2 and gµµ = g0(sL24)
2, and the top Yukawa coupling is

yt ⇠ sQ34y
u
43 ⇠ 1 then this could be achieved by sQ34 ⇠ 0.14, sL24 ⇠ 1, g0 ⇠ 1, h�i ⇠ 1 TeV

but would require yu43 ⇠ 7 which is in the non-perturbative region.

Although the model can successfully account for RK and RK⇤ , it implies unnatural and
possibly non-perturbative parameters.

On the experimental side, the challenge is to close the allowed parameter space of the
model by improving limits by making better precision measurements of the trident ⌫µN !
µ+µ�⌫µN process, by improving the theoretical precision of the SM prediction for the Bs

meson mass di↵erence, as well as by improved LHC sensitivity to bb̄ ! Z 0 ! µ+µ�.
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plus H.c., summed over fields, families and powers of n,m. Eq.1 involves new SM singlet
fields �i which develop VEVs, leading to e↵ective Yukawa couplings suppressed by powers
of h�ii/⇤. Our scenario also involves a massive Z 0 under which the three SM families  i

have zero charge, and which only couples to it via the same singlet fields �i which have
non-zero charge under the associated U(1)0 gauge group,
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summed over fields, families and powers of n,m, where g0 is the U(1)0 gauge coupling and
we allow for di↵erent coupling strengths in the gauge coupling denominator factors ⇤0 as
compared to ⇤. The absence of a coupling at a given order corresponds to a particular ⇤
or ⇤0 becoming formally infinite. In a given model, such as the example discussed in this
paper, the various ⇤ and ⇤0 may be simply related. The key feature of this scenario is
that the same numerator factors of h�ii control both the Yukawa couplings in Eq.1 and
the Z 0 couplings in Eq.2.

Another key feature of our scenario is that the Z 0 mass is also generated by the VEVs
h�ii, so that MZ0 ⇠ g0h�ii. This implies that the observation of RK⇤ , which sets the scale
of the Z 0 mass and couplings, also sets the scale of the theory of flavour, which must both
be not far from the TeV scale. This does not happen in scalar leptoquark models, for
example, since the scalar mass can be written down by hand and it is not linked to the
flavour scale (e.g. the leptoquark mass could be at the TeV scale, while the scales h�ii
and ⇤ could be much higher, with a fixed ratio). In the case of the Z 0 scenario here all
the scales are rooted to the TeV scale, as discussed further below.

In our scenario in Eqs.1,2, in the limit that h�ii = 0, there are no Yukawa couplings and
also no couplings of SM fermions to the Z 0 since we assume they are not charged under
the associated U(1)0 gauge group. When h�ii/⇤i are switched on then both Yukawa
couplings and small non-universal and flavour dependent couplings of SM fermions to
the Z 0 are generated simultaneously, as well as the Z 0 mass itself. The above framework
then provides a link between flavour changing observables and the origin of small Yukawa
couplings of the kind that we are interested in.

In particular, there will be a connection between the experimental signal for new physics
in RK⇤ due to Z 0 exchange and the Yukawa couplings. Since the Yukawa couplings are
known, this constrains the values of h�ii/⇤i, and since we wish to explain RK⇤ via non-
universal Z 0 exchange, then this will also constrain the Z 0 mass to be around the TeV
scale, resulting in other associated experimental flavour and collider constraints which
the e↵ective theory must confront.

However there is a threefold motivation for going beyond the e↵ective description in
Eqs.1,2. Firstly, the e↵ective theory is not really adequate to describe the top quark
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Flavourful  Z’ models
Introduce a vector-like fourth family which 

carries U(1)’ charges (anomaly free)
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Figure 1: Diagrams in the model which lead to the e↵ective Yukawa couplings in the mass
insertion approximation.
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Figure 2: Diagrams in the model which lead to the e↵ective Z 0 couplings in the mass insertion
approximation.

2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),
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plus H.c., summed over fields and families, which can be compared to Eq.1.

The model also involves a massive Z 0 under which the three SM families  i, c
i have zero

U(1)0 charge. Although the usual Z 0 couplings g0Z 0
µ 

†
i�

µ j are forbidden for i, j = 1, . . . 3,
the fourth vector-like family has non-zero U(1)0 charge, and e↵ective Z 0 couplings may
be generated by the two mass insertion diagrams in Fig.2,
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So far this looks very similar to the basis used for the up type quarks, in Eqs.16, 21
with the replacements Q ! L, with uc ! ec and a relabelling L2 $ L3 and ec2 $ ec3.
Indeed, without further assumption, the Yukawa matrices seem to be dominated by the
element with the largest angle, which would imply that the second family charged lepton
is the heaviest, so we would interpret that as the ⌧ lepton. However, let us suppose that
for some reason the Yukawa coupling ye42 is very small in this basis, with the hierarchy
ye42 ⌧ ye34 so that the charged lepton Yukawa matrix is in fact dominated by the first
matrix in Eq.23, even though the angles are assumed to be small. The first matrix is rank
one, so the muon mass is provided by the small contribution from the second matrix. We
shall also assume for later phenomenological reasons that ye24 ⌧ ye34 so there is small left-
handed charged lepton mixing. Most of the large lepton mixing is assumed to originate
in the neutrino sector.

2.9 Phenomenology

With the preceding assumptions, the relevant terms in the Lagrangian can be written as,

L � Z 0
µ

�
gbbb̄L�

µbL + gµµµ̄L�
µµL

�
. (25)

where gbb = g0(sQ34)
2, gµµ = g0(sL24)

2.

RK and RK⇤ As discussed in the Introduction, one possible explanation of the RK and
RK⇤ measurements in LHCb is that the low-energy Lagrangian below the weak scale
contains an additional contribution to the e↵ective 4-fermion operator with left-handed
muon, b-quark, and s-quark fields:

�Le↵ � Gbsµ(b̄L�
µsL)(µ̄L�µµL) + h.c., Gbsµ ⇡ 1

(31.5 TeV)2
. (26)

We can express the coe�cient Gbsµ as function of the couplings in Eq. 25,

Gbsµ = �gbsgµµ
M2

Z0
= �Vtsgbbgµµ

M2
Z0

. (27)

Together, Eqs. (26) and (27) imply the constraint on the parameters gbb, gµµ and MZ0 :

gbbgµµ
M2

Z0
⇡ 1

(6.4 TeV)2
. (28)

Bs � Bs mixing

The Z 0 coupling to bs leads to an additional tree-level contribution to Bs � Bs mixing
due to the e↵ective operator arising from integrating out the Z 0 at tree level:

�Le↵ � �Gbs

2
(s̄L�

µbL)
2 + h.c, Gbs =

g2bs
M2

Z0
=

g2bbV
2
ts

M2
Z0

. (29)
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is the heaviest, so we would interpret that as the ⌧ lepton. However, let us suppose that
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ye42 ⌧ ye34 so that the charged lepton Yukawa matrix is in fact dominated by the first
matrix in Eq.23, even though the angles are assumed to be small. The first matrix is rank
one, so the muon mass is provided by the small contribution from the second matrix. We
shall also assume for later phenomenological reasons that ye24 ⌧ ye34 so there is small left-
handed charged lepton mixing. Most of the large lepton mixing is assumed to originate
in the neutrino sector.
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With the preceding assumptions, the relevant terms in the Lagrangian can be written as,
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2, gµµ = g0(sL24)

2.

RK and RK⇤ As discussed in the Introduction, one possible explanation of the RK and
RK⇤ measurements in LHCb is that the low-energy Lagrangian below the weak scale
contains an additional contribution to the e↵ective 4-fermion operator with left-handed
muon, b-quark, and s-quark fields:
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We can express the coe�cient Gbsµ as function of the couplings in Eq. 25,
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Together, Eqs. (26) and (27) imply the constraint on the parameters gbb, gµµ and MZ0 :

gbbgµµ
M2

Z0
⇡ 1

(6.4 TeV)2
. (28)

Bs � Bs mixing

The Z 0 coupling to bs leads to an additional tree-level contribution to Bs � Bs mixing
due to the e↵ective operator arising from integrating out the Z 0 at tree level:
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RK(*) and the origin of Yukawa couplings

Field SU(3)c SU(2)L U(1)Y U(1)0

Qi 3 2 1/6 0
uc
i 3 1 �2/3 0

dci 3 1 1/3 0
Li 1 2 �1/2 0
eci 1 1 1 0
⌫c
i 1 1 0 0

Q4 3 2 1/6 1
uc
4 3 1 �2/3 1

dc4 3 1 1/3 1
L4 1 2 �1/2 1
ec4 1 1 1 1
⌫c
4 1 1 0 1

Q4 3 2 �1/6 �1
uc
4 3 1 2/3 �1

dc4 3 1 �1/3 �1
L4 1 2 1/2 �1
ec4 1 1 �1 �1
⌫c
4 1 1 0 �1

� 1 1 0 1

Hu 1 2 1/2 �1
Hd 1 2 �1/2 �1

Table 1: The model consists of three left-handed chiral families  i = Qi, Li and  c
i =

uc
i , d

c
i , e

c
i , ⌫

c
i (i = 1, 2, 3), plus a fourth vector-like family consisting of  4, 

c
4 plus  4, c

4,
together with the U(1)0 breaking scalar fields � and the two Higgs scalar doublets Hu, Hd

which are both negatively charged under U(1)0.

5

2 The model

2.1 The renormalisable Lagrangian

The model we consider here is defined in Table 1. The model involves three chiral
families  i(0), c

i (0), plus a fourth vector-like family consisting of  4(1), c
4(1) plus the

conjugate representations  4(�1), c
4(�1), where the U(1)0 charges are shown in paren-

theses. The gauged U(1)0 is broken by the singlet scalars �(1), with vacuum expectation
values (VEVs) around the TeV scale, yielding a massive Z 0 at this scale. Since the Higgs
doublets H(�1) are charged under the U(1)0, this forbids all Yukawa couplings, except
those which couple the first three families to the fourth family.

A similar model was proposed as a model of e↵ective Yukawa couplings in [26]. The main
di↵erence is that the model here involves a gauged U(1)0 resulting in e↵ective Yukawa and
flavourful Z 0 couplings as in Eqs.1 and 2 which are related, while in [26] only the e↵ective
Yukawa couplings were considered. A welcome consequence of this is that, unlike [26], we
shall not require an additional Z2 symmetry to forbid renormalisable Yukawa couplings.
Instead such couplings are forbidden by the gauged U(1)0 under which the fourth vector-
like family and Higgs doublets are charged. In addition, we shall go beyond the mass
insertion approximation of [26], which breaks down for the top quark Yukawa coupling.
Another di↵erence is that the model in [26] was supersymmetric, while our model here is
not. However we require two Higgs doublets Hu, Hd, both with negative U(1)0 charge.
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Figure 1: Diagrams in the model which lead to the e↵ective Yukawa couplings in the mass
insertion approximation, where H = Hu, Hd.

The allowed renormalisable Yukawa couplings and explicit masses allowed by U(1)0 are,

Lren = y i4H i 
c
4 + y 4iH 4 

c
i + x i � i 4 + x 

c

i � 
c
i 

c
4 +M 

4  4 4 +M c

4  c
4 

c
4 (3)

plus H.c., summed over fields and families, where x, y are dimensionless coupling con-
stants ideally of order unity, while M are explicit mass terms of order a few TeV.
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Figure 2: Diagrams in the model which lead to the e↵ective Z 0 couplings in the mass insertion
approximation.

2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),

LY uk
eff =

x 
c

j h�i
M c

4

y i4H i 
c
j +

x i h�i
M 

4

y 4jH i 
c
j (4)

plus H.c., summed over fields and families, which can be compared to Eq.1.

The model also involves a massive Z 0 under which the three SM families  i, c
i have zero

U(1)0 charge. Although the usual Z 0 couplings g0Z 0
µ 

†
i�

µ j are forbidden for i, j = 1, . . . 3,
the fourth vector-like family has non-zero U(1)0 charge, and e↵ective Z 0 couplings may
be generated by the two mass insertion diagrams in Fig.2,

LZ0

eff =
x i h�i
M 

4

x j h�i
M 

4

g0Z 0
µ 

†
i�

µ j +
x 

c

i h�i
M c

4

x 
c

j h�i
M c

4

g0Z 0
µ 

c†
i �

µ c
j (5)

summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 

4 and M c

4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.

There is a such a Yukawa matrix as in Eq.4 for each of the four charged sectors  =
u, d, e, ⌫. In the case of neutrinos, this refers to the Dirac Yukawa matrix, and there
will be a further Majorana mass matrix for the singlet neutrinos M ⌫c

ij ⌫
c
i ⌫

c
j . Since nothing
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RK(*) and the origin of Yukawa couplings

Field SU(3)c SU(2)L U(1)Y U(1)0

Qi 3 2 1/6 0
uc
i 3 1 �2/3 0

dci 3 1 1/3 0
Li 1 2 �1/2 0
eci 1 1 1 0
⌫c
i 1 1 0 0

Q4 3 2 1/6 1
uc
4 3 1 �2/3 1

dc4 3 1 1/3 1
L4 1 2 �1/2 1
ec4 1 1 1 1
⌫c
4 1 1 0 1

Q4 3 2 �1/6 �1
uc
4 3 1 2/3 �1

dc4 3 1 �1/3 �1
L4 1 2 1/2 �1
ec4 1 1 �1 �1
⌫c
4 1 1 0 �1

� 1 1 0 1

Hu 1 2 1/2 �1
Hd 1 2 �1/2 �1

Table 1: The model consists of three left-handed chiral families  i = Qi, Li and  c
i =

uc
i , d

c
i , e

c
i , ⌫

c
i (i = 1, 2, 3), plus a fourth vector-like family consisting of  4, 

c
4 plus  4, c

4,
together with the U(1)0 breaking scalar fields � and the two Higgs scalar doublets Hu, Hd

which are both negatively charged under U(1)0.
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2 The model

2.1 The renormalisable Lagrangian

The model we consider here is defined in Table 1. The model involves three chiral
families  i(0), c

i (0), plus a fourth vector-like family consisting of  4(1), c
4(1) plus the

conjugate representations  4(�1), c
4(�1), where the U(1)0 charges are shown in paren-

theses. The gauged U(1)0 is broken by the singlet scalars �(1), with vacuum expectation
values (VEVs) around the TeV scale, yielding a massive Z 0 at this scale. Since the Higgs
doublets H(�1) are charged under the U(1)0, this forbids all Yukawa couplings, except
those which couple the first three families to the fourth family.

A similar model was proposed as a model of e↵ective Yukawa couplings in [26]. The main
di↵erence is that the model here involves a gauged U(1)0 resulting in e↵ective Yukawa and
flavourful Z 0 couplings as in Eqs.1 and 2 which are related, while in [26] only the e↵ective
Yukawa couplings were considered. A welcome consequence of this is that, unlike [26], we
shall not require an additional Z2 symmetry to forbid renormalisable Yukawa couplings.
Instead such couplings are forbidden by the gauged U(1)0 under which the fourth vector-
like family and Higgs doublets are charged. In addition, we shall go beyond the mass
insertion approximation of [26], which breaks down for the top quark Yukawa coupling.
Another di↵erence is that the model in [26] was supersymmetric, while our model here is
not. However we require two Higgs doublets Hu, Hd, both with negative U(1)0 charge.
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Figure 1: Diagrams in the model which lead to the e↵ective Yukawa couplings in the mass
insertion approximation, where H = Hu, Hd.

The allowed renormalisable Yukawa couplings and explicit masses allowed by U(1)0 are,
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plus H.c., summed over fields and families, where x, y are dimensionless coupling con-
stants ideally of order unity, while M are explicit mass terms of order a few TeV.
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Figure 2: Diagrams in the model which lead to the e↵ective Z 0 couplings in the mass insertion
approximation.

2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),
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j +

x i h�i
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4

y 4jH i 
c
j (4)

plus H.c., summed over fields and families, which can be compared to Eq.1.

The model also involves a massive Z 0 under which the three SM families  i, c
i have zero

U(1)0 charge. Although the usual Z 0 couplings g0Z 0
µ 

†
i�

µ j are forbidden for i, j = 1, . . . 3,
the fourth vector-like family has non-zero U(1)0 charge, and e↵ective Z 0 couplings may
be generated by the two mass insertion diagrams in Fig.2,
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summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 

4 and M c

4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.

There is a such a Yukawa matrix as in Eq.4 for each of the four charged sectors  =
u, d, e, ⌫. In the case of neutrinos, this refers to the Dirac Yukawa matrix, and there
will be a further Majorana mass matrix for the singlet neutrinos M ⌫c

ij ⌫
c
i ⌫

c
j . Since nothing
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Figure 2: Diagrams in the model which lead to the e↵ective Z 0 couplings in the mass insertion
approximation.

2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),
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plus H.c., summed over fields and families, which can be compared to Eq.1.

The model also involves a massive Z 0 under which the three SM families  i, c
i have zero

U(1)0 charge. Although the usual Z 0 couplings g0Z 0
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†
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summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 

4 and M c

4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.

There is a such a Yukawa matrix as in Eq.4 for each of the four charged sectors  =
u, d, e, ⌫. In the case of neutrinos, this refers to the Dirac Yukawa matrix, and there
will be a further Majorana mass matrix for the singlet neutrinos M ⌫c
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2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),
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plus H.c., summed over fields and families, which can be compared to Eq.1.

The model also involves a massive Z 0 under which the three SM families  i, c
i have zero

U(1)0 charge. Although the usual Z 0 couplings g0Z 0
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†
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µ j are forbidden for i, j = 1, . . . 3,
the fourth vector-like family has non-zero U(1)0 charge, and e↵ective Z 0 couplings may
be generated by the two mass insertion diagrams in Fig.2,
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summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 

4 and M c

4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.

There is a such a Yukawa matrix as in Eq.4 for each of the four charged sectors  =
u, d, e, ⌫. In the case of neutrinos, this refers to the Dirac Yukawa matrix, and there
will be a further Majorana mass matrix for the singlet neutrinos M ⌫c
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RK(*) and the origin of Yukawa couplings

Field SU(3)c SU(2)L U(1)Y U(1)0

Qi 3 2 1/6 0
uc
i 3 1 �2/3 0

dci 3 1 1/3 0
Li 1 2 �1/2 0
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i 1 1 0 0
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uc
4 3 1 �2/3 1
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Table 1: The model consists of three left-handed chiral families  i = Qi, Li and  c
i =

uc
i , d

c
i , e

c
i , ⌫

c
i (i = 1, 2, 3), plus a fourth vector-like family consisting of  4, 

c
4 plus  4, c

4,
together with the U(1)0 breaking scalar fields � and the two Higgs scalar doublets Hu, Hd

which are both negatively charged under U(1)0.
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2 The model

2.1 The renormalisable Lagrangian

The model we consider here is defined in Table 1. The model involves three chiral
families  i(0), c

i (0), plus a fourth vector-like family consisting of  4(1), c
4(1) plus the

conjugate representations  4(�1), c
4(�1), where the U(1)0 charges are shown in paren-

theses. The gauged U(1)0 is broken by the singlet scalars �(1), with vacuum expectation
values (VEVs) around the TeV scale, yielding a massive Z 0 at this scale. Since the Higgs
doublets H(�1) are charged under the U(1)0, this forbids all Yukawa couplings, except
those which couple the first three families to the fourth family.

A similar model was proposed as a model of e↵ective Yukawa couplings in [26]. The main
di↵erence is that the model here involves a gauged U(1)0 resulting in e↵ective Yukawa and
flavourful Z 0 couplings as in Eqs.1 and 2 which are related, while in [26] only the e↵ective
Yukawa couplings were considered. A welcome consequence of this is that, unlike [26], we
shall not require an additional Z2 symmetry to forbid renormalisable Yukawa couplings.
Instead such couplings are forbidden by the gauged U(1)0 under which the fourth vector-
like family and Higgs doublets are charged. In addition, we shall go beyond the mass
insertion approximation of [26], which breaks down for the top quark Yukawa coupling.
Another di↵erence is that the model in [26] was supersymmetric, while our model here is
not. However we require two Higgs doublets Hu, Hd, both with negative U(1)0 charge.
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plus H.c., summed over fields and families, where x, y are dimensionless coupling con-
stants ideally of order unity, while M are explicit mass terms of order a few TeV.
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2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),
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summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 

4 and M c

4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.
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summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 

4 and M c

4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.
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Field SU(3)c SU(2)L U(1)Y U(1)0

Qi 3 2 1/6 0
uc
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dci 3 1 1/3 0
Li 1 2 �1/2 0
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which are both negatively charged under U(1)0.
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families  i(0), c

i (0), plus a fourth vector-like family consisting of  4(1), c
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conjugate representations  4(�1), c
4(�1), where the U(1)0 charges are shown in paren-

theses. The gauged U(1)0 is broken by the singlet scalars �(1), with vacuum expectation
values (VEVs) around the TeV scale, yielding a massive Z 0 at this scale. Since the Higgs
doublets H(�1) are charged under the U(1)0, this forbids all Yukawa couplings, except
those which couple the first three families to the fourth family.

A similar model was proposed as a model of e↵ective Yukawa couplings in [26]. The main
di↵erence is that the model here involves a gauged U(1)0 resulting in e↵ective Yukawa and
flavourful Z 0 couplings as in Eqs.1 and 2 which are related, while in [26] only the e↵ective
Yukawa couplings were considered. A welcome consequence of this is that, unlike [26], we
shall not require an additional Z2 symmetry to forbid renormalisable Yukawa couplings.
Instead such couplings are forbidden by the gauged U(1)0 under which the fourth vector-
like family and Higgs doublets are charged. In addition, we shall go beyond the mass
insertion approximation of [26], which breaks down for the top quark Yukawa coupling.
Another di↵erence is that the model in [26] was supersymmetric, while our model here is
not. However we require two Higgs doublets Hu, Hd, both with negative U(1)0 charge.
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2.2 Mass insertion approximation

Although the usual Yukawa couplings y ijH i c
j are forbidden for i, j = 1, . . . 3 (since H

are charged under U(1)0) e↵ective 3⇥ 3 Yukawa couplings may be generated by the two
mass insertion diagrams in Fig.1 (up to an irrelevant minus sign),
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summed over fields and families, which can be compared to Eq.2. The above model is
therefore an example of a renormalisable model which can lead to the e↵ective theory of
the kind discussed in the Introduction, namely one in which Yukawa and Z 0 couplings
are both controlled by the same physics, in this case the VEVs h�i and the fourth family
vector-like masses M 
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4 . Moreover, the mass of the Z 0 is given by MZ0 = g0h�i,
which is the same scale at which the Yukawa couplings are generated. However, while
the Yukawa couplings are generated at first order, the Z 0 couplings are generated at
second order in the mass insertion approximation. We shall discuss the phenomenological
implications of this later. For the moment, let us return to the Yukawa couplings and
discuss them in some more detail.
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Finale

Theories of Flavour near Planck Scale
•Well motivated by SUSY GUTs
•Include discrete family symmetry from string theory 
•Many possibilities - hard to test (but Littlest Seesaw)
•Need to discover SUSY!

Theories of Flavour near Electroweak scale

•Motivated by anomalies in B physics
•Many phenomenological constraints
•Models under construction 

The Flavour Puzzle
•Not going away - biggest problem of SM ? 
•More interesting since neutrino mass & mixing 


