A Realistic U(2) Model of Flavor

based on arXiv: 1805.07341 with M. Linster

$$
m_{\{u, d, e, \nu\}} \sim\left(\begin{array}{ccc}
0 & \varepsilon^{2} & 0 \\
\varepsilon^{2} & \varepsilon^{2} & \left\{\varepsilon, \varepsilon^{2}, \varepsilon, \varepsilon^{2}\right\} \\
0 & \left\{\varepsilon, \varepsilon, \varepsilon^{2}, \varepsilon^{2}\right\} & \left\{1, \varepsilon, \varepsilon, \varepsilon^{2}\right\}
\end{array}\right)
$$

Robert Ziegler (CERN)

Outline

Realistic extension of original $\mathrm{U}(2)$ models by Barbieri \& al

R. Barbieri, G. Dvali, L. Hall '96, R. Barbieri, L. Hall, A. Romanino '97,

Differences: • viable CKM

- does not need SUSY
- Neutrinos

Quarks \&
Charged Leptons

Dirac Neutrinos in $\mathrm{U}(2)$

Majorana Neutrinos U(2) Axiflavon in $\mathrm{D}_{6} \times \mathrm{U}(\mathrm{I})$

The Model

Classic FLASY Model based on

$$
U(2)_{F} \equiv S U(2)_{F} \times U(1)_{F}
$$

SM quantum numbers

- compatible with $\operatorname{SU}(5)$ GUT

$$
\mathbf{1 0}=Q, U, E \quad \overline{\mathbf{5}}=L, E
$$

- generations transform as $\mathbf{2 + 1}$

$$
\mathbf{1 0}_{i}=1 \mathbf{1 0}_{a}+\mathbf{1 0}_{3}
$$

- need to specify $4 \mathrm{U}(\mathrm{I})_{\mathrm{F}}$ charges $X_{10_{3}}=0 \quad X_{10_{a}}=X_{\overline{5}_{a}}=X_{\overline{5}_{3}}=1$

U(2) Breaking with Flavons

- 2 flavons in $\mathbf{2 + 1}$ with charge -I

$$
\phi=\mathbf{2}_{-1} \quad \chi=\mathbf{1}_{-1}
$$

- VEVs slightly below cutoff $\boldsymbol{\Lambda}$

$$
\begin{array}{cc}
\langle\phi\rangle=\binom{\varepsilon_{\phi} \Lambda}{0} & \langle\chi\rangle=\varepsilon_{\chi} \Lambda \\
\epsilon_{\phi} \sim 0.03 & \epsilon_{\chi} \sim 0.01
\end{array}
$$

	$\mathbf{1 0}_{a}$	$\overline{\mathbf{5}}_{a}$	$\mathbf{1 0}_{3}$	$\overline{\mathbf{5}}_{3}$	H	ϕ_{a}	χ
$S U(2)_{F}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
$U(1)_{F}$	1	1	0	1	0	-1	-1

Up-Quark Sector

Invariant Yukawa Lagrangian needs Flavon insertions

$$
\begin{aligned}
\mathcal{L}_{u} & =\frac{\lambda_{11}^{u}}{\Lambda^{6}} \chi^{4}\left(\phi_{a}^{*} Q_{a}\right)\left(\phi_{b}^{*} U_{b}\right) H+\frac{\lambda_{12}^{u}}{\Lambda^{2}} \chi^{2} \epsilon_{a b} Q_{a} U_{b} H+\frac{\lambda_{13}^{u}}{\Lambda^{3}} \chi^{2}\left(\phi_{a}^{*} Q_{a}\right) U_{3} H \\
& +\frac{\lambda_{22}^{u}}{\Lambda^{2}}\left(\epsilon_{a b} \phi_{a} Q_{b}\right)\left(\epsilon_{c d} \phi_{c} U_{d}\right) H+\frac{\lambda_{23}^{u}}{\Lambda}\left(\epsilon_{a b} \phi_{a} Q_{b}\right) U_{3} H+\frac{\lambda_{31}^{u}}{\Lambda^{3}} \chi^{2} Q_{3}\left(\phi_{a}^{*} U_{a}\right) H \\
& +\frac{\lambda_{32}^{u}}{\Lambda} Q_{3}\left(\epsilon_{a b} \phi_{a} U_{b}\right) H+\lambda_{33}^{u} Q_{3} U_{3} H,
\end{aligned}
$$

Flavon vevs generate hierarchical Yukawa structure

$$
Y_{u} \approx\left(\begin{array}{ccc}
\lambda_{11}^{u} \varepsilon_{\phi}^{2} \varepsilon_{\chi}^{4} & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{13}^{u} \varepsilon_{\phi} \varepsilon_{\chi}^{2} \\
-\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\
\lambda_{31}^{u} \varepsilon_{\phi} \varepsilon_{\chi}^{2} & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u}
\end{array}\right) \approx\left(\begin{array}{ccc}
0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\
-\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\
0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u}
\end{array}\right)
$$

Quark and Charged Lepton Sector

Analogous structure in down- and charged lepton sector

$$
\begin{array}{r}
Y_{u} \approx\left(\begin{array}{ccc}
0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\
-\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\
0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u}
\end{array}\right), \\
Y_{e} \approx\left(\begin{array}{cccc}
0 & Y_{12}^{e} \varepsilon_{\chi}^{2} & 0 \\
-\lambda_{12}^{e} \varepsilon_{\chi}^{2} & \lambda_{22}^{e} \varepsilon_{\phi}^{2} & \lambda_{23}^{e} \varepsilon_{\phi} \\
0 & \lambda_{32}^{e} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{e} \varepsilon_{\chi}
\end{array}\right)
\end{array}
$$

1-2 mixing $\sim \epsilon_{\chi}^{2} / \epsilon_{\phi}^{2}$
2-3 mixing $\left[\mathbf{d}_{\mathbf{R}} \& \mathbf{e}_{\mathbf{L}}\right] \sim \epsilon_{\phi} / \epsilon_{\chi}$
2-3 mixing $\left[\mathbf{u}_{\mathbf{L}}, \mathbf{u}_{\mathbf{R}}, \mathbf{d}_{\mathbf{L}}, \mathbf{e}_{\mathbf{R}}\right] \sim \epsilon_{\phi} \sim V_{c b}$
1-3 mixing $=(\mathbf{1}-2$ mixing) \times (2-3 mixing)

Analytics

Texture zeros accurately relate masses and mixing angles

$$
\begin{aligned}
& \left|\begin{array}{l}
\text { 2-3 mixing } \\
\begin{array}{l}
\text { angle in RH } \\
\text { down sector }
\end{array} \\
\left|V_{t d}\right| \approx \sqrt{\frac{m_{d}}{m_{s}}} \sqrt{c_{23}^{R d}}\left|\left|V_{c b}\right|-e^{i \phi_{2}} \frac{s_{23}^{R d}}{c_{23}^{R d}} \frac{m_{s}}{m_{b}}\right| \\
c_{23}^{R d}
\end{array} e^{i\left(\phi_{2}-\phi_{1}\right)} \sqrt{\frac{m_{u}}{m_{c}}}\right| \\
& \left|V_{u b}\right| \approx\left|\sqrt{\frac{m_{u}}{m_{c}}}\right| V_{c b}\left|-e^{i \phi_{1}} \sqrt{\frac{m_{d}}{m_{s}}} \sqrt{c_{23}^{R d}} \frac{s_{23}^{R d}}{c_{23}^{R d}} \frac{m_{s}}{m_{b}}\right|
\end{aligned}
$$

In original $\mathrm{U}(2)$ models $s_{23}^{R d} \sim V_{c b}$

$$
\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}
$$

Off by more than 3σ : need $s_{23}^{R d} \sim 1$ to fix
(but get additional phase dependence)

Numerical Fit

Fit parameters $\left\{\lambda_{i j}^{u, d, e}, \varepsilon_{\phi}, \varepsilon_{\chi}\right\}$ with SM observables
Use quality measure for "O(I)-ness" of $\lambda_{i j}^{u, d, e}$
$x_{\mathcal{O}_{(1)}^{2}}^{2}=\sum_{\lambda_{i j}^{p}} \frac{\left(\log \left(\left|\lambda_{i j}^{p}\right|\right)\right)^{2}}{2 \cdot 0.55^{2}} \rightarrow \lambda_{i j}^{u, d, e}$ with 95% prob. in $[\mathrm{I} / 3,3]$
e.g. for single parameter $\lambda=\{3,5,7,10,50,100\}$ get contribution $\Delta \chi_{\mathcal{O}(1)}^{2}=\{2,4,6,9,25,35\}$

Fit satisfactory if

$$
\begin{aligned}
\chi_{\mathcal{O}(1)}^{2} & \leq \# \text { pars } \\
\chi^{2} & \leq \# \mathrm{obs}
\end{aligned}
$$

Fit	ε_{ϕ}	ε_{χ}	$\min \left\|\lambda_{i j}^{u, d, \ell}\right\|$	$\max \left\|\lambda_{i j}^{u, d, \ell}\right\|$	χ^{2}	$\chi_{\mathcal{O}(1)}^{2}$
$\mathrm{QL} 1_{\mathbb{R}}$	0.019	0.008	$1 / 3.1$	2.7	1.7	7.8
$\mathrm{QL} 2_{\mathbb{R}}$	0.023	0.008	$1 / 2.7$	2.8	12	5.4

Neutrino Sector

Majorana neutrinos don't work because leading order I^{-2} entry in Weinberg operator
$\epsilon_{a b} L_{a} L_{b} H H=0$ vanishes due to $\mathrm{SU}(2)$ antisymmetrization

Do Dirac Neutrinos with $\quad N_{i}=N_{a}+N_{3} \quad \& \quad X_{a}^{N}=X_{3}^{N}$

$$
m_{\nu}^{D} \approx v \varepsilon_{\chi}^{X_{a}^{N}-1}\left(\begin{array}{ccc}
0 & \lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & 0 \\
-\lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & \lambda_{22}^{\nu} \varepsilon_{\phi}^{2} & \lambda_{23}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} \\
0 & \lambda_{32}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{\nu} \varepsilon_{\chi}^{2}
\end{array}\right)
$$

get anarchic structure; smallness from largish $\mathrm{U}(\mathrm{I})$ charges

Neutrino Fit \& Predictions

Good fit just for Normal Ordering

Fit	X_{a}^{N}	X_{3}^{N}	ε_{ϕ}	ε_{χ}	$\min \left\|\lambda_{i j}^{u, d, e, \nu}\right\|$	$\max \left\|\lambda_{i j}^{u, d, e, \nu}\right\|$	χ^{2}	$\chi_{\mathcal{O}(1)}^{2}$
$\mathrm{QL} \nu_{D^{-}}-1(\mathrm{NO})$	6	6	0.026	0.012	$1 / 2.9$	2.6	0.5	10
$\mathrm{QL} \nu_{D}-2$ (NO)	6	6	0.024	0.013	$1 / 2.6$	2.2	18	9
$\mathrm{QL} \nu_{D^{-3}}$ (NO)	5	5	0.022	0.006	$1 / 3.1$	3.8	1.0	13
$\mathrm{QL} \nu_{D^{-}}$(NO)	5	5	0.021	0.006	$1 / 2.5$	2.4	18	9

Predict overall mass scale from scanning over succesful fits

Quantity	Range $[\mathrm{meV}]$	Preferred values $[\mathrm{meV}]$
$\sum m_{i}$	$58-110$	$60-65$
m_{β}	$8-26$	$9-10$

No chance with KATRIN, automatically satisfy PLANCK bound

$$
m_{\beta}=\sqrt{\sum_{i} m_{i}^{2}\left|U_{e i}\right|^{2}}
$$

Majorana Neutrinos from $\mathrm{D}_{6} \times \mathrm{U}(\mathrm{I})$

Consider dihedral $\mathrm{D}_{6}=\mathrm{D}_{3} \times \mathrm{Z}_{2}$ instead of $\mathrm{SU}(2)$

	$\mathbf{1 0}_{a}$	$\overline{\mathbf{5}}_{a}$	$\mathbf{1 0}_{3}$	$\overline{\mathbf{5}}_{3}$	H	ϕ_{a}	χ
$D_{3} \times Z_{2}$	$\mathbf{2}_{-}$	$\mathbf{2}_{-}$	$\mathbf{1}_{+}$	$\mathbf{1}_{+}$	$\mathbf{1}_{+}$	$\mathbf{2}_{-}$	$\mathbf{1}_{+}$
$U(1)_{F}$	1	1	0	1	0	-1	-1

Mimics U(2) structure except for symmetric $1-2$: Weinberg operator fixed from charged lepton sector

$$
\begin{array}{ll}
m_{u} \approx v\left(\begin{array}{ccc}
0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\
\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\
0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u}
\end{array}\right), & m_{d} \approx v\left(\begin{array}{ccc}
0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & 0 \\
\lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi}^{2} & \lambda_{23}^{d} \varepsilon_{\phi} \varepsilon_{\chi} \\
0 & \lambda_{32}^{d} \varepsilon_{\phi} & \lambda_{33}^{d} \varepsilon_{\chi}
\end{array}\right) \\
m_{e} \approx v\left(\begin{array}{ccc}
0 & \lambda_{12}^{e} \varepsilon_{\chi}^{2} & 0 \\
\lambda_{12}^{e} \varepsilon_{\chi}^{2} & \lambda_{22}^{e} \varepsilon_{\phi}^{2} & \lambda_{23}^{e} \varepsilon_{\phi} \\
0 & \lambda_{32}^{e} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{e} \varepsilon_{\chi}
\end{array}\right), & m_{\nu} \approx \frac{v^{2}}{M}\left(\begin{array}{ccc}
0 & \lambda_{11}^{\nu} \varepsilon_{\chi}^{2} & 0 \\
\lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & \lambda_{22}^{\nu} \varepsilon_{\phi}^{2} & \lambda_{23}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} \\
0 & \lambda_{23}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{\nu} \varepsilon_{\chi}^{2}
\end{array}\right)
\end{array}
$$

Majorana Neutrino Fit

Neutrino mass matrix automatically anarchic: better fit with less parameters

Fit	ε_{ϕ}	ε_{χ}	$\min \left\|\lambda_{i j}^{\mathrm{u}, \mathrm{d}, \ell}\right\|$	$\max \left\|\lambda_{i j}^{\mathrm{u}, \mathrm{d}, \ell}\right\|$	χ^{2}	$\chi_{\mathcal{O}(1)}^{2}$	$M\left[10^{11} \mathrm{GeV}\right]$
$\mathrm{QL} \nu_{M}-1$	0.025	0.009	$1 / 2.8$	2.1	0.7	7.9	4.1
$\mathrm{QL} \nu_{M}-2$	0.024	0.009	$1 / 2.6$	1.9	18	6.3	3.3

Predict overall mass scale from scanning over succesful fits

Quantity	Range [meV]	Preferred values [meV]
$\sum m_{i}$	$59-78$	60,70
m_{β}	$8-15$	$9-10,11-12$
$m_{\beta \beta}^{\max }$	$3-16$	5,9

Similar to Dirac case, neutrinoless double beta decay hopeless

$$
m_{\beta \beta}=\left|\sum U_{e i}^{2} m_{i}\right|
$$

Testability

- Neutrino sector predictions
- Low-energy UV completion?
- Full-fledged $\operatorname{SU}(5)$ model?
- The U(2) Axiflavon
$\mathrm{U}(\mathrm{I})_{\mathrm{F}}$ spontaneously broken and has QCD anomaly: Goldstone is QCD axion solving Strong CP ["axiflavon"]

Wilczek '82; Ema, Hamaguchi, Moroi, Nakayama 'ı6; Calibbi, Goertz, Redigolo, RZ, Zupan 'ı6
Predict flavor-violating axion couplings, fix cutoff by Axion DM

The U(2) Axiflavon

\rightarrow see yesterday's talk by Chun

$$
\mathcal{L}_{a}=\frac{\partial_{\mu} a}{2 f_{a}} \bar{f}_{i} \gamma^{\mu}\left[C_{f_{i} f_{j}}^{V}+C_{f_{i} f_{j}}^{A} \gamma_{5}\right] f_{j}+\frac{E}{N} \frac{a(x)}{f_{a}} \frac{\alpha_{\mathrm{em}}}{8 \pi} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

$\mathrm{U}(\mathrm{I})_{\mathrm{F}}$ charges give $\quad N_{\mathrm{DW}}=2 N=9$ anomaly coefficients

$$
E / N=8 / 3 \quad[\mathrm{SU}(5)]
$$

Flavon breaking scale

$$
f_{a} \sim \sqrt{\epsilon_{\chi}^{2}+\epsilon_{\phi}^{2}} \Lambda
$$

(- cutoff) sets mass scale

$$
m_{a}=5.7 \mu \mathrm{eV}\left(\frac{10^{12} \mathrm{GeV}}{f_{a}}\right)
$$

Yukawa structure gives

$$
C_{f_{i} f_{j}}^{V}=\left(V_{f L}\right)_{k i} X_{f_{k}}\left(V_{f L}\right)_{k j}^{*}
$$ axion-fermion couplings $\quad C_{f_{i} f_{j}}^{A}=\left(V_{f R}\right)_{k i}^{*} X_{f_{k}^{c}}\left(V_{f R}\right)_{k j}$

The U(2) Axiflavon

$$
\begin{array}{rlrl}
C_{u_{i} u_{j}}^{V} & =\frac{\varepsilon_{L, i j}^{u}-\varepsilon_{R, i j}^{u}}{9}, & C_{u_{i} u_{j}}^{A} & =\frac{2 \delta_{i j}-\varepsilon_{L, i j}^{u}-\varepsilon_{R, i j}^{u}}{9} \\
C_{d_{i} d_{j}}^{V} & =\frac{\varepsilon_{L, i j}^{d}}{9}, & C_{d_{i} d_{j}}^{A}=\frac{2 \delta_{i j}-\varepsilon_{L, i j}^{d}}{9} \\
C_{e_{i} e_{j}}^{V}=-\frac{\varepsilon_{R, i j}^{e}}{9}, & C_{e_{i} e_{j}}^{A}=\frac{2 \delta_{i j}-\varepsilon_{R, i j}^{e}}{9}
\end{array}
$$

$$
\varepsilon_{L}^{u} \sim \varepsilon_{R}^{u} \sim \varepsilon_{L}^{d} \sim \varepsilon_{R}^{e} \sim\left(\begin{array}{ccc}
\lambda^{6} & \lambda^{5} & \lambda^{3} \\
\lambda^{5} & \lambda^{4} & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right)
$$

$\mathrm{SU}(2) / \mathrm{D}_{6}$ protects s-d transitions, strongest bound from SN

Coupling	$m_{a}^{\max } / C[\mathrm{eV}]$	$m_{a}^{\max , \mathrm{U}(2)}[\mathrm{eV}]$	$f_{a}^{\min , \mathrm{U}(2)}[\mathrm{GeV}]$	Constraint
$C_{b s}^{V}$	$9.1 \cdot 10^{-2}$	16	$3.6 \cdot 10^{5}$	$B^{+} \rightarrow K^{+} a[28]$
$C_{s d}^{V}$	$1.7 \cdot 10^{-5}$	0.58	$9.8 \cdot 10^{6}$	$K^{+} \rightarrow \pi^{+} a[29]$
$C_{e e}^{A}$	$3.1 \cdot 10^{-3}$	0.014	$4.1 \cdot 10^{8}$	WD Cooling $[30]$
C_{N}	$3.5 \cdot 10^{-3}$	0.0092	$6.2 \cdot 10^{8}$	SN1987A $[31]$

U(2) Axiflavon Phenomenology

$\mathrm{U}(\mathrm{I})_{\mathrm{F}}$ broken before inflation:
$\Omega_{\mathrm{DM}} h^{2} \approx 0.12\left(\frac{6 \mu \mathrm{eV}}{m_{a}}\right)^{1.165} \theta^{2}$ with misalignment angle

$$
\theta \in[-\pi, \pi]
$$

Axion DM gives preferred range for cutoff $\Lambda \sim\left(10^{13} \div 10^{15}\right) \mathrm{GeV}$
\rightarrow see talk by Ringwald

Summary

- Simple, realistic Flavor Model from U(2), works without SUSY, compatible with $\operatorname{SU}(5)$
- Dirac Neutrinos in U(2); Majorana Neutrinos in $\mathrm{D}_{6} \times \mathrm{U}(\mathrm{I})_{\mathrm{F}}$, which are automatically anarchic; can predict absolute neutrino mass scale
- Naturally get QCD Axion as DM from U(I) $)_{\text {F }}$; fixes breaking/cutoff scale; $\mathrm{SU}(2)$ strongly suppresses flavor violation

Backup

Fit Results

Parameter	$\mathrm{QL} \nu_{D^{-}} 1$	$\mathrm{QL} \nu_{D^{-}} 2$	$\mathrm{QL} \nu_{D^{-}} 3$	$\mathrm{QL} \nu_{D^{-}} 4$	$\mathrm{QL} \nu_{M^{-}}-1$	$\mathrm{QL} \nu_{M}-2$	
λ_{12}^{u}	0.902	0.843	3.831	1.162	-1.633	-1.176	
λ_{22}^{u}	1.187	-1.047	1.859	1.148	1.339	1.112	
λ_{23}^{u}	2.222	-2.175	-2.138	-1.799	2.127	1.925	
λ_{32}^{u}	-1.103	-1.419	1.511	2.422	1.196	1.615	
λ_{33}^{u}	0.787	0.779	-0.787	0.786	0.787	0.785	
δ_{33}	-0.640	-0.720	-3.948	-1.097	-3.837	-3.988	
λ_{12}^{d}	0.479	-0.479	2.165	2.173	-0.888	0.976	
λ_{22}^{d}	-1.000	-1.156	-1.075	-0.972	-0.973	0.976	
λ_{23}^{d}	0.913	-0.786	-1.304	-1.155	1.073	0.985	
λ_{32}^{d}	-0.355	0.401	0.414	0.423	0.365	-0.394	
λ_{33}^{d}	0.665	0.651	1.394	1.497	-0.902	-0.948	
λ_{12}^{ℓ}	0.402	-0.376	-1.752	-1.758	-0.801	0.856	
λ_{22}^{ℓ}	0.987	-1.134	1.821	2.052	1.306	1.497	
λ_{23}^{ℓ}	0.343	0.381	0.393	-0.414	-0.368	0.391	
λ_{32}^{ℓ}	-0.992	-1.132	1.175	1.193	-1.198	1.294	
λ_{33}^{ℓ}	0.432	-0.399	-0.945	0.992	-0.503	-0.536	
λ_{12}^{ℓ}	0.882	-1.416	0.938	1.006	2.130	-1.873	
λ_{22}^{ν}	-0.994	-1.303	0.325	0.398	-0.844	-0.760	
λ_{23}^{ν}	-2.588	-1.074	-1.505	1.681	1.137	-1.078	
λ_{32}^{ν}	1.065	-0.704	0.601	0.680	$\\|$	$1 /$	
λ_{33}^{ν}	0.952	-1.572	-0.890	0.891	-0.489	-0.655	
X_{a}^{N}	6	6	5	5			
X_{3}^{N}	6	6	5	5			
$v / M \times 10^{9}$					-0.421	-0.520	
ε_{ϕ}	0.026	0.024	0.022	0.021	0.025	0.024	
ε_{χ}	0.012	0.013	0.006	0.006	0.009	0.009	

Flavon Potential

$$
\phi=2_{-}[-1], \quad \chi=1_{+}[-1], \quad \psi=1_{-}[+1]
$$

$$
\begin{aligned}
& V_{\text {scal }}=m_{\chi}^{2}|\chi|^{2}+\left(m_{\phi}^{2}+\kappa_{\chi}|\chi|^{2}+\kappa_{\psi}|\psi|^{2}\right)(\tilde{\phi} \cdot \phi)+m_{\psi}^{2}|\psi|^{2} \\
&+\frac{\lambda_{1}}{4}(\tilde{\phi} \cdot \tilde{\phi})(\phi \cdot \phi)+\frac{\lambda_{2}}{2}(\tilde{\phi} \cdot \tilde{\phi} \cdot \phi \cdot \phi)+\lambda_{3}\left|\chi^{2}\right||\psi|^{2}+\frac{\lambda_{\chi}}{2}|\chi|^{4}+\lambda_{\psi}|\psi|^{4} \\
&+\left[\frac{\kappa_{1}}{2} \psi \psi(\phi \cdot \phi)+\frac{\kappa_{2}}{2} \chi^{*} \chi^{*}(\phi \cdot \phi)+\frac{1}{2} \lambda_{\chi \psi} \psi \psi \chi \chi+\rho \psi(\tilde{\phi} \cdot \phi \cdot \phi)+\text { h.c. }\right] \\
& m_{\phi}^{2}=-2 m^{2}, m_{\chi}^{2}=-3 / 10 m^{2}, m_{\psi}^{2}=2 m^{2}, \lambda_{1}=1, \lambda_{2}=1 / 9, \lambda_{\chi}=1, \kappa_{\chi}=-1 / 8 \\
& \lambda_{3}= 2 / 3, \lambda_{\chi \psi}=-1 / 20, \kappa_{1}=-1 / 3, \kappa_{\psi}=7 / 10, \rho=-1 / 20, \lambda_{\psi}=9 / 10, \kappa_{2}=1 / 2000 \\
& v_{1}=4.6 m, \quad v_{2}=-3.6 \cdot 10^{-4} m, \quad v_{\chi}=1.7 m, \quad v_{\psi}=-2.1 \cdot 10^{-5} m
\end{aligned}
$$

