A Realistic U(2) Model of Flavor

based on arXiv: 1805.07341 with M. Linster

$$m_{\{u,d,e,\nu\}} \sim \begin{pmatrix} 0 & \varepsilon^2 & 0 \\ \varepsilon^2 & \varepsilon^2 & \{\varepsilon,\varepsilon^2,\varepsilon,\varepsilon^2\} \\ 0 & \{\varepsilon,\varepsilon,\varepsilon^2,\varepsilon^2\} & \{1,\varepsilon,\varepsilon,\varepsilon^2\} \end{pmatrix}$$

Robert Ziegler (CERN)

Outline

Realistic extension of original U(2) models by Barbieri & al

R. Barbieri, G. Dvali, L. Hall '96, R. Barbieri, L. Hall, A. Romanino '97, ...

Differences:

- viable CKM
- does not need SUSY
- Neutrinos

Quarks & Charged Leptons

Dirac Neutrinos in U(2)

Majorana Neutrinos in $D_6 \times U(I)$

U(2) Axiflavon

Summary

The Model

Classic *FLASY* Model based on $U(2)_F \equiv SU(2)_F \times U(1)_F$

$$U(2)_F \equiv SU(2)_F \times U(1)_F$$

SM quantum numbers

compatible with SU(5) GUT

$$10 = Q, U, E \quad \overline{5} = L, E$$

generations transform as 2+1

$$10_i = 10_a + 10_3$$

need to specify 4 U(1)_F charges

$$X_{10_3} = 0$$
 $X_{10_a} = X_{\overline{5}_a} = X_{\overline{5}_3} = 1$

U(2) Breaking with Flavons

2 flavons in 2+1 with charge -1

$$\phi = \mathbf{2}_{-1}$$
 $\chi = \mathbf{1}_{-1}$

VEVs slightly below cutoff Λ

$$\langle \phi \rangle = \begin{pmatrix} \varepsilon_{\phi} \Lambda \\ 0 \end{pmatrix} \quad \langle \chi \rangle = \varepsilon_{\chi} \Lambda$$

$$\epsilon_{\phi} \sim 0.03 \qquad \epsilon_{\chi} \sim 0.01$$

$$\epsilon_{\phi} \sim 0.03$$
 $\epsilon_{\chi} \sim 0.01$

	10_a	$\overline{f 5}_a$	10 ₃	$\overline{5}_3$	Н	ϕ_a	χ
$SU(2)_F$	2	2	1	1	1	2	1
$U(1)_F$	1	1	0	1	0	-1	-1

Up-Quark Sector

Invariant Yukawa Lagrangian needs Flavon insertions

$$\mathcal{L}_{u} = \frac{\lambda_{11}^{u}}{\Lambda^{6}} \chi^{4}(\phi_{a}^{*}Q_{a})(\phi_{b}^{*}U_{b})H + \frac{\lambda_{12}^{u}}{\Lambda^{2}} \chi^{2} \epsilon_{ab}Q_{a}U_{b}H + \frac{\lambda_{13}^{u}}{\Lambda^{3}} \chi^{2}(\phi_{a}^{*}Q_{a})U_{3}H$$

$$+ \frac{\lambda_{22}^{u}}{\Lambda^{2}} (\epsilon_{ab}\phi_{a}Q_{b})(\epsilon_{cd}\phi_{c}U_{d})H + \frac{\lambda_{23}^{u}}{\Lambda} (\epsilon_{ab}\phi_{a}Q_{b})U_{3}H + \frac{\lambda_{31}^{u}}{\Lambda^{3}} \chi^{2}Q_{3}(\phi_{a}^{*}U_{a})H$$

$$+ \frac{\lambda_{32}^{u}}{\Lambda} Q_{3}(\epsilon_{ab}\phi_{a}U_{b})H + \lambda_{33}^{u}Q_{3}U_{3}H ,$$

Flavon vevs generate hierarchical Yukawa structure

$$Y_{u} \approx \begin{pmatrix} \lambda_{11}^{u} \varepsilon_{\phi}^{2} \varepsilon_{\chi}^{4} & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{13}^{u} \varepsilon_{\phi} \varepsilon_{\chi}^{2} \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \end{pmatrix} \approx \begin{pmatrix} 0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \end{pmatrix}$$

drop sub-leading corrections $\mathcal{O}(\epsilon_\phi^2) \sim 10^{-4}$

Quark and Charged Lepton Sector

Analogous structure in down- and charged lepton sector

$$Y_{u} \approx \begin{pmatrix} 0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix}, \quad Y_{d} \approx \begin{pmatrix} 0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi}^{2} & \lambda_{23}^{d} \varepsilon_{\phi} \varepsilon_{\chi} \\ 0 & \lambda_{32}^{d} \varepsilon_{\phi} & \lambda_{33}^{d} \varepsilon_{\chi} \end{pmatrix}$$

$$Y_{e} \approx \begin{pmatrix} 0 & \lambda_{12}^{e} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{e} \varepsilon_{\chi}^{2} & \lambda_{22}^{e} \varepsilon_{\phi}^{2} & \lambda_{23}^{e} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{e} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{e} \varepsilon_{\chi} \end{pmatrix}.$$

1-2 mixing
$$\sim \epsilon_\chi^2/\epsilon_\phi^2$$

2-3 mixing [d_R& e_L]
$$\sim \epsilon_{\phi}/\epsilon_{\chi}$$

2-3 mixing [u_L, u_R, d_L, e_R]
$$\sim \epsilon_{\phi} \sim V_{cb}$$

Analytics

Texture zeros accurately relate masses and mixing angles

$$|V_{us}| \approx \left| \sqrt{\frac{m_d}{m_s}} \sqrt{c_{23}^{Rd}} - e^{i(\phi_2 - \phi_1)} \sqrt{\frac{m_u}{m_c}} \right|$$
 free phase angle in RH down sector
$$|V_{td}| \approx \sqrt{\frac{m_d}{m_s}} \sqrt{c_{23}^{Rd}} \left| |V_{cb}| - e^{i\phi_2} \frac{s_{23}^{Rd}}{c_{23}^{Rd}} \frac{m_s}{m_b} \right|$$
 free phase parameters
$$|V_{ub}| \approx \left| \sqrt{\frac{m_u}{m_c}} |V_{cb}| - e^{i\phi_1} \sqrt{\frac{m_d}{m_s}} \sqrt{c_{23}^{Rd}} \frac{s_{23}^{Rd}}{c_{23}^{Rd}} \frac{m_s}{m_b} \right|$$

In original U(2) models
$$s_{23}^{Rd} \sim V_{cb}$$
 $|V_{ub}/V_{cb}| \approx \sqrt{m_u/m_c}$

Off by more than 3σ : need $s_{23}^{Rd} \sim 1$ to fix

(but get additional phase dependence)

Numerical Fit

Fit parameters $\{\lambda_{ij}^{u,d,e}, \varepsilon_{\phi}, \varepsilon_{\chi}\}$ with SM observables

Use quality measure for "O(1)-ness" of $\lambda_{ij}^{u,d,e}$

$$\chi_{\mathcal{O}(1)}^{2} = \sum_{\lambda_{ij}^{p}} \frac{\left(\log(|\lambda_{ij}^{p}|)\right)^{2}}{2 \cdot 0.55^{2}} \longrightarrow \lambda_{ij}^{u,d,e} \text{ with } 95\% \text{ prob. in } [1/3, 3]$$

e.g. for single parameter $\lambda = \{3, 5, 7, 10, 50, 100\}$ get contribution $\Delta \chi^2_{\mathcal{O}(1)} = \{2, 4, 6, 9, 25, 35\}$

Fit satisfactory if $\chi^2_{\mathcal{O}(1)} \leq \# \text{pars}$ $\chi^2 \leq \# \text{obs}$

Fit	$arepsilon_{\phi}$	$arepsilon_\chi$	$\min \lambda_{ij}^{u,d,\ell} $	$\max \lambda_{ij}^{u,d,\ell} $	χ^2	$\chi^2_{\mathcal{O}(1)}$
$\mathrm{QL}1_{\mathbb{R}}$			1/3.1	2.7	1.7	7.8
$\mathrm{QL}2_{\mathbb{R}}$	0.023	0.008	1/2.7	2.8	12	5.4

Neutrino Sector

Majorana neutrinos don't work because leading order 1-2 entry in Weinberg operator vanishes due to SU(2) antisymmetrization

Do Dirac Neutrinos with $N_i = N_a + N_3$ & $X_a^N = X_3^N$

$$m_{\nu}^{D} \approx v \, \varepsilon_{\chi}^{X_{a}^{N}-1} \begin{pmatrix} 0 & \lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & \lambda_{22}^{\nu} \varepsilon_{\phi}^{2} & \lambda_{23}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} \\ 0 & \lambda_{32}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{\nu} \varepsilon_{\chi}^{2} \end{pmatrix}$$

get anarchic structure; smallness from largish U(1) charges

Neutrino Fit & Predictions

Good fit just for Normal Ordering

Fit	X_a^N	X_3^N	$arepsilon_{\phi}$	$arepsilon_\chi$	$\min \lambda_{ij}^{u,d,e,\nu} $	$\max \lambda_{ij}^{u,d,e,\nu} $	χ^2	$\chi^2_{\mathcal{O}(1)}$
\square QL ν_D -1 (NO)	6	6	0.026	0.012	1/2.9	2.6	0.5	10
$\mid \text{QL}\nu_D\text{-}2 \text{ (NO)} \mid$	6	6	0.024	0.013	1/2.6	2.2	18	9
$\mid \text{QL}\nu_D3 \text{ (NO)} \mid$	5	5	0.022	0.006	1/3.1	3.8	1.0	13
$\mathbb{Q}L\nu_D$ -4 (NO)	5	5	0.021	0.006	1/2.5	2.4	18	9

Predict overall mass scale from scanning over successful fits

Quantity	Range [meV]	Preferred values [meV]
$\sum m_i$	58 - 110	60 - 65
$\mid m_{eta} \mid$	8-26	9-10

No chance with KATRIN, automatically satisfy PLANCK bound

$$m_{\beta} = \sqrt{\sum_{i} m_{i}^{2} |U_{ei}|^{2}}$$

Majorana Neutrinos from D₆ × U(1)

Consider dihedral $D_6 = D_3 \times Z_2$ instead of SU(2)

Mimics U(2) structure except for symmetric 1-2: Weinberg operator fixed from charged lepton sector

$$m_{u} \approx v \begin{pmatrix} 0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\ \lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix}, \qquad m_{d} \approx v \begin{pmatrix} 0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & 0 \\ \lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi}^{2} & \lambda_{23}^{d} \varepsilon_{\phi} \varepsilon_{\chi} \\ 0 & \lambda_{32}^{d} \varepsilon_{\phi} & \lambda_{33}^{d} \varepsilon_{\chi} \end{pmatrix}$$

$$m_{e} \approx v \begin{pmatrix} 0 & \lambda_{12}^{e} \varepsilon_{\chi}^{2} & 0 \\ \lambda_{12}^{e} \varepsilon_{\chi}^{2} & \lambda_{22}^{e} \varepsilon_{\phi}^{2} & \lambda_{23}^{e} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{e} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{e} \varepsilon_{\chi} \end{pmatrix}, \qquad m_{\nu} \approx \frac{v^{2}}{M} \begin{pmatrix} 0 & \lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & 0 \\ \lambda_{12}^{\nu} \varepsilon_{\chi}^{2} & \lambda_{22}^{\nu} \varepsilon_{\phi}^{2} & \lambda_{23}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} \\ 0 & \lambda_{23}^{\nu} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{\nu} \varepsilon_{\chi}^{2} \end{pmatrix}$$

Majorana Neutrino Fit

Neutrino mass matrix automatically anarchic: better fit with less parameters

Fit	$arepsilon_{\phi}$	$arepsilon_\chi$	$\min \lambda_{ij}^{\mathrm{u,d},\ell} $	$\max \lambda_{ij}^{\mathrm{u,d},\ell} $	χ^2	$\chi^2_{\mathcal{O}(1)}$	$M [10^{11} \mathrm{GeV}]$
$\mathbb{Q}L\nu_M$ -1	0.025	0.009	1/2.8	2.1	0.7	7.9	4.1
$\left \text{QL}\nu_M\text{-}2 \right $	0.024	0.009	1/2.6	1.9	18	6.3	3.3

Predict overall mass scale from scanning over successful fits

Quantity	Range [meV]	Preferred values [meV]
$\sum m_i$	59 - 78	60, 70
m_{eta}	8 - 15	$9-10, \ 11-12$
$m_{etaeta}^{ m max}$	3 - 16	5, 9

Similar to Dirac case, neutrinoless double beta decay hopeless

Testability

- Neutrino sector predictionsLow-energy UV completion?
- Full-fledged SU(5) model?

 The U(2) Axiflavon

U(1)_F spontaneously broken and has QCD anomaly: Goldstone is QCD axion solving Strong CP ["axiflavon"]

Ema, Hamaguchi, Moroi, Nakayama '16; Calibbi, Goertz, Redigolo, RZ, Zupan '16 Wilczek '82;

Predict flavor-violating axion couplings, fix cutoff by Axion DM

The U(2) Axiflavon

→ see yesterday's talk by Chun

$$\mathcal{L}_{a} = \frac{\partial_{\mu} a}{2f_{a}} \overline{f}_{i} \gamma^{\mu} \left[\frac{C_{f_{i}f_{j}}^{V}}{C_{f_{i}f_{j}}^{H}} + \frac{C_{f_{i}f_{j}}^{A}}{C_{f_{i}f_{j}}^{H}} \gamma_{5} \right] f_{j} + \frac{E}{N} \frac{a(x)}{f_{a}} \frac{\alpha_{\text{em}}}{8\pi} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

U(1)_F charges give anomaly coefficients

$$N_{
m DW}=2N=9$$
 $E/N=8/3$ [SU(5)]

Flavon breaking scale (-cutoff) sets mass scale

$$f_a \sim \sqrt{\epsilon_{\chi}^2 + \epsilon_{\phi}^2 \Lambda}$$

$$m_a = 5.7 \,\mu\text{eV} \left(\frac{10^{12} \,\text{GeV}}{f_a}\right)$$

Yukawa structure gives axion-fermion couplings

$$C_{f_i f_j}^V = (V_{fL})_{ki} X_{f_k} (V_{fL})_{kj}^*$$

$$C_{f_i f_j}^A = (V_{fR})_{ki}^* X_{f_k^c} (V_{fR})_{kj}$$

The U(2) Axiflavon

$$C_{u_{i}u_{j}}^{V} = \frac{\varepsilon_{L,ij}^{u} - \varepsilon_{R,ij}^{u}}{9}, \quad C_{u_{i}u_{j}}^{A} = \frac{2\delta_{ij} - \varepsilon_{L,ij}^{u} - \varepsilon_{R,ij}^{u}}{9},$$

$$C_{d_{i}d_{j}}^{V} = \frac{\varepsilon_{L,ij}^{d}}{9}, \quad C_{d_{i}d_{j}}^{A} = \frac{2\delta_{ij} - \varepsilon_{L,ij}^{d}}{9},$$

$$C_{e_{i}e_{j}}^{V} = -\frac{\varepsilon_{R,ij}^{e}}{9}, \quad C_{e_{i}e_{j}}^{A} = \frac{2\delta_{ij} - \varepsilon_{R,ij}^{e}}{9},$$

$$C_{e_{i}e_{j}}^{A} = \frac{2\delta_{ij} - \varepsilon_{R,ij}^{e}}{9},$$

$$C_{e_{i}e_{j}}^{A} = \frac{2\delta_{ij} - \varepsilon_{R,ij}^{e}}{9},$$

$$C_{e_{i}e_{j}}^{A} = \frac{2\delta_{ij} - \varepsilon_{R,ij}^{e}}{9},$$

$$\varepsilon_L^u \sim \varepsilon_R^u \sim \varepsilon_L^d \sim \varepsilon_R^e \sim \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

SU(2)/D₆ protects s-d transitions, strongest bound from SN

Coupling	$m_a^{\rm max}/C \; [{\rm eV}]$	$m_a^{\max,\mathrm{U}(2)}$ [eV]	$f_a^{\min,\mathrm{U}(2)}$ [GeV]	Constraint
C_{bs}^{V}	$9.1 \cdot 10^{-2}$	16	$3.6 \cdot 10^{5}$	$B^+ \to K^+ a \ [28]$
C_{sd}^{V}	$1.7 \cdot 10^{-5}$	0.58	$9.8 \cdot 10^{6}$	$K^{+} \to \pi^{+} a \ [29]$
$C_{bs}^{\prime} \ C_{sd}^{V} \ C_{ee}^{A}$	$3.1 \cdot 10^{-3}$	0.014	$4.1 \cdot 10^{8}$	WD Cooling [30]
C_N	$3.5 \cdot 10^{-3}$	0.0092	$6.2 \cdot 10^{8}$	SN1987A [31]

U(2) Axiflavon Phenomenology

U(1)_F broken before inflation:

$$\Omega_{\rm DM} h^2 \approx 0.12 \left(\frac{6 \,\mu {\rm eV}}{m_a}\right)^{1.165} \theta^2$$

with misalignment angle

$$\theta \in [-\pi, \pi]$$

Axion DM gives preferred range for cutoff

$$\Lambda \sim (10^{13} \div 10^{15}) \, \text{GeV}$$

→ see talk by Ringwald

Natural Axion DM window (misalignment)

Summary

- Simple, realistic Flavor Model from U(2), works without SUSY, compatible with SU(5)
- Dirac Neutrinos in U(2); Majorana Neutrinos in $D_6 \times U(1)_F$, which are automatically anarchic; can predict absolute neutrino mass scale
- Naturally get QCD Axion as DM from U(1)_F; fixes breaking /cutoff scale; SU(2) strongly suppresses flavor violation

Backup

Fit Results

Parameter	$\mathrm{QL}\nu_D$ -1	$QL\nu_D$ -2	$QL\nu_D$ -3	$\mathrm{QL}\nu_D$ -4	$\mathrm{QL}\nu_M$ -1	$QL\nu_M$ -2
λ^u_{12}	0.902	0.843	3.831	1.162	-1.633	-1.176
λ_{22}^u	1.187	-1.047	1.859	1.148	1.339	1.112
λ_{23}^u	2.222	-2.175	-2.138	-1.799	2.127	1.925
λ^u_{32}	-1.103	-1.419	1.511	2.422	1.196	1.615
λ^u_{33}	0.787	0.779	-0.787	0.786	0.787	0.785
δ_{33}	-0.640	-0.720	-3.948	-1.097	-3.837	-3.988
λ_{12}^d	0.479	-0.479	2.165	2.173	-0.888	0.976
$\lambda_{22}^{\overline{d}}$	-1.000	-1.156	-1.075	-0.972	-0.973	0.976
$\lambda_{23}^{\overline{d}}$	0.913	-0.786	-1.304	-1.155	1.073	0.985
$\lambda_{32}^{ar{d}}$	-0.355	0.401	0.414	0.423	0.365	-0.394
$\lambda^d_{22} \ \lambda^d_{23} \ \lambda^d_{32} \ \lambda^d_{33}$	0.665	0.651	1.394	1.497	-0.902	-0.948
λ_{12}^{ℓ}	0.402	-0.376	-1.752	-1.758	-0.801	0.856
$\lambda_{22}^{ar{\ell}^-}$	0.987	-1.134	1.821	2.052	1.306	1.497
$\lambda_{23}^{ar{\ell}^-}$	0.343	0.381	0.393	-0.414	-0.368	0.391
$\lambda_{32}^{ar{\ell}}$	-0.992	-1.132	1.175	1.193	-1.198	1.294
$egin{array}{c} \lambda_{22}^\ell \ \lambda_{23}^\ell \ \lambda_{32}^\ell \ \lambda_{33}^\ell \end{array}$	0.432	-0.399	-0.945	0.992	-0.503	-0.536
$\lambda_{12}^{ u}$	0.882	-1.416	0.938	1.006	2.130	-1.873
$\lambda_{22}^{ u}$	-0.994	-1.303	0.325	0.398	-0.844	-0.760
$\lambda_{23}^{\overline{ u}}$	-2.588	-1.074	-1.505	1.681	1.137	-1.078
$\lambda_{32}^{ u}$	1.065	-0.704	0.601	0.680	П	П
	0.952	-1.572	-0.890	0.891	-0.489	-0.655
$\frac{\lambda_{33}^{\nu}}{X_{a}^{\mathrm{N}}}$	6	6	5	5		
$X_3^{ m N}$	6	6	5	5		
$v/M \times 10^9$					-0.421	-0.520
$arepsilon_{\phi}$	0.026	0.024	0.022	0.021	0.025	0.024
$arepsilon_\chi$	0.012	0.013	0.006	0.006	0.009	0.009

Flavon Potential

$$\phi = 2_{-}[-1],$$

$$\chi = 1_{+}[-1],$$

$$\psi = 1_{-}[+1],$$

$$V_{\text{scal}} = m_{\chi}^{2} |\chi|^{2} + \left(m_{\phi}^{2} + \kappa_{\chi} |\chi|^{2} + \kappa_{\psi} |\psi|^{2}\right) (\tilde{\phi} \cdot \phi) + m_{\psi}^{2} |\psi|^{2}$$

$$+ \frac{\lambda_{1}}{4} (\tilde{\phi} \cdot \tilde{\phi}) (\phi \cdot \phi) + \frac{\lambda_{2}}{2} (\tilde{\phi} \cdot \tilde{\phi} \cdot \phi \cdot \phi) + \lambda_{3} |\chi^{2}| |\psi|^{2} + \frac{\lambda_{\chi}}{2} |\chi|^{4} + \lambda_{\psi} |\psi|^{4}$$

$$+ \left[\frac{\kappa_{1}}{2} \psi \psi (\phi \cdot \phi) + \frac{\kappa_{2}}{2} \chi^{*} \chi^{*} (\phi \cdot \phi) + \frac{1}{2} \lambda_{\chi \psi} \psi \psi \chi \chi + \rho \psi (\tilde{\phi} \cdot \phi \cdot \phi) + \text{h.c.} \right]$$

$$m_{\phi}^2 = -2m^2, m_{\chi}^2 = -3/10m^2, m_{\psi}^2 = 2m^2, \lambda_1 = 1, \lambda_2 = 1/9, \lambda_{\chi} = 1, \kappa_{\chi} = -1/8$$

$$\lambda_3 = 2/3, \lambda_{\chi\psi} = -1/20, \kappa_1 = -1/3, \kappa_{\psi} = 7/10, \rho = -1/20, \lambda_{\psi} = 9/10, \kappa_2 = 1/2000$$

$$v_1 = 4.6m$$
, $v_2 = -3.6 \cdot 10^{-4} m$, $v_{\chi} = 1.7m$, $v_{\psi} = -2.1 \cdot 10^{-5} m$