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Table 5: Measured RK⇤0 ratios in the two q2 regions. The first uncertainties are statistical and
the second are systematic. About 50% of the systematic uncertainty is correlated between the
two q2 bins. The 95.4% and 99.7% confidence level (CL) intervals include both the statistical
and systematic uncertainties.

low-q2 central-q2

RK⇤0 0.66 + 0.11
� 0.07 ± 0.03 0.69 + 0.11

� 0.07 ± 0.05

95.4% CL [0.52, 0.89] [0.53, 0.94]

99.7% CL [0.45, 1.04] [0.46, 1.10]
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Figure 10: (left) Comparison of the LHCb RK⇤0 measurements with the SM theoretical predic-
tions: BIP [26] CDHMV [27–29], EOS [30, 31], flav.io [32–34] and JC [35]. The predictions are
displaced horizontally for presentation. (right) Comparison of the LHCb RK⇤0 measurements
with previous experimental results from the B factories [4, 5]. In the case of the B factories the
specific vetoes for charmonium resonances are not represented.

of 3 fb�1 of pp collisions, recorded by the LHCb experiment during 2011 and 2012, are
used. The RK⇤0 ratio is measured in two regions of the dilepton invariant mass squared
to be

RK⇤0 =

(
0.66 + 0.11

� 0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 ,

0.69 + 0.11
� 0.07 (stat) ± 0.05 (syst) for 1.1 < q2 < 6.0 GeV2/c4 .

The corresponding 95.4% confidence level intervals are [0.52, 0.89] and [0.53, 0.94]. The
results, which represent the most precise measurements of RK⇤0 to date, are compatible
with the SM expectations [26–35] at 2.1–2.3 standard deviations for the low-q2 region
and 2.4–2.5 standard deviations for the central-q2 region, depending on the theoretical
prediction used.

Model-independent fits to the ensemble of FCNC data that allow for NP contribu-
tions [27–35] lead to predictions for RK⇤0 in the central-q2 region that are similar to the
value observed; smaller deviations are expected at low-q2. The larger data set currently
being accumulated by the LHCb collaboration will allow for more precise tests of these
predictions.
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the corresponding high-statistics J/ mode. The ratio RH is then measured as

RH =
B(B! Hµ+µ�)

B(B! HJ/ (! µ+µ�))

�
B(B! He+e�)

B(B! HJ/ (! e+e�))
.

A few comments are in order to explain this experimental strategy: firstly, this method tests for
LFU violations in the FCNC decays, it relies on the conservation of LFU in the corresponding
resonant decay modes. To test this assumption, the ratio of the resonant channels

r(J/ ) =
B! K(⇤)J/ (! µ+µ�)

B! K(⇤)J/ (! e+e�)
,

is confirmed to agree with LFU conservation. It has to be stressed that this test is a more
stringent test than necessary, because it tests the absolute ratio of muon to electron reconstruc-
tion, identification and selection e�ciencies while in the analyses of RH , only relative e�ciencies
between non-resonant and resonant channels are required. If the ratio r(J/ ) is tested in bins
of the daughter particle momenta, it can directly test the range of q2 covered in the analysis.

The most precise test of r(J/ ) has been performed in LHCb’s analysis of RK⇤ , it was found
to be in agreement with unity with a precision of 4.5%. Compared to the statistical uncertainties
of the LFU tests of the order of 10%, this uncertainty is subdominant. For further tests with
enlarged datasets, the precision in the determination of e�ciencies as cross-checked in r(J/ )
needs to be studied in more detail.

The experimentally best accessible mode of all b ! s`+`� decays is B+ ! K+`+`�. The
LHCb collaboration published a measurement using 3 fb�1 of data.3 The uncertainty of the
measurement is dominated by the statistical uncertainty of the electron channel, with a signal
yield of 172+20

�19 events, i.e. the statistical uncertainty is of the order of 12%. Dominant systematic
uncertainties are the modelling of the mass shape and the determination of the trigger e�ciencies,
both accounting for about 3%. The value of RK is found to be

RK = 0.745+0.090
�0.074(stat) ± 0.036(syst) , (1)

which is in tension with the SM prediction5 of 1.0 with a significance of 2.6 standard deviations
(�). The BaBar and Belle experiments have also published6,7 tests of LFU, but their analysed
dataset is much smaller than the LHCb dataset and hence the measurement has significantly
larger uncertainties. The status of all measurements is summarised in Fig. 1 (left).

The next accessible b! s`+`� channel is B0 ! K⇤0`+`�, which has been published by the
LHCb collaboration with 3 fb�1 with a signal yield of 89 and 111 events in the low and central
bin of q2, respectively. Similarly to RK , the measurement is implemented as double ratio with
the resonant decay mode. Both q2 bins are found below the SM prediction,

RK⇤ =

(
0.66 + 0.11

� 0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 ,

0.69 + 0.11
� 0.07 (stat) ± 0.05 (syst) for 1.1 < q2 < 6.0 GeV2/c4 .

The measurement of RK⇤ is shown in Fig. 1 (right). The significances of the deviation of the
SM expectation are 2.1 and 2.4 � for the low and middle q2 bin, respectively. The statistical
uncertainty is of the order of 15%, dominant systematic uncertainties are due to data/MC
corrections (up to 5%) and background modelling (up to 5%).

The LHCb experiment has already collected a factor three more beauty mesons with respect
to the 3 fb�1 that are used for the measurements described above. Therefore, the tensions seen
in the RK and RK⇤ measurements should get clarified in the foreseeable future. Then, the
Belle 2 experiment will start to take data and will be able to further test LFU.

Additionally to the channels discussed above, LFU can be tested in B0
s ! �`+`� decays,

where a first observation of the channel B0
s ! �e+e� should be possible already with 3 fb�1
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0.66 + 0.11

� 0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 ,

0.69 + 0.11
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The measurement of RK⇤ is shown in Fig. 1 (right). The significances of the deviation of the
SM expectation are 2.1 and 2.4 � for the low and middle q2 bin, respectively. The statistical
uncertainty is of the order of 15%, dominant systematic uncertainties are due to data/MC
corrections (up to 5%) and background modelling (up to 5%).

The LHCb experiment has already collected a factor three more beauty mesons with respect
to the 3 fb�1 that are used for the measurements described above. Therefore, the tensions seen
in the RK and RK⇤ measurements should get clarified in the foreseeable future. Then, the
Belle 2 experiment will start to take data and will be able to further test LFU.

Additionally to the channels discussed above, LFU can be tested in B0
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where a first observation of the channel B0
s ! �e+e� should be possible already with 3 fb�1

✤ Lepton universality tensions at ~2-3 σ also observed in b -> c transitions (RD(*)).

✤ Lepton non-universal signatures hinted at from clean B-decay ratio observables: 

Lepton Flavour Universality tests with B decays at LHCb

Johannes Albrecht
Fakultät Physik, TU Dortmund, Germany

This article discusses tests of lepton flavour universality that are carried out with the LHCb
experiment. The experimental situation of b! s`+`� and b ! c`⌫ decays is summarised.

1 Introduction

In the Standard Model of particle physics (SM), the electroweak gauge bosons Z0 and W±

have identical couplings to all three lepton flavours. This prediction is called lepton flavour
universality (LFU) and is well tested in tree level decays, e.g. of tau leptons, light mesons or
the gauge bosons themselves.1

Recent measurements of loop level beauty decays of the type b! s`+`� and semileptonic
beauty decays of the type b ! c`⌫ have shown tensions with the SM prediction of LFU. The most
precise measurements of these quantities, performed by the LHCb collaboration, are summarised
in these proceedings. All measurements are based on 3 fb�1 of data collected at

p
s = 7TeV and

8TeV.

2 Lepton Flavour Universality in b! s`+`� decays

A very clean test for new physics can be performed by taking ratios of b ! s`+`� decays to
di↵erent lepton species. At the current experiments, b ! s`+`� decays with electrons and
muons in the final state are accessible. If the momentum transfer of the dilepton system is
su�ciently above the dilepton mass, uncertainties in the hadronic form factors cancel to a very
good approximation, leaving a SM prediction with uncertainties below 1%.2 In the recent years,
the interest in lepton flavour universality tests has increased, mainly driven by two measurements
from the LHCb collaboration: the ratio of B+! K+µ+µ� to B+! K+e+e�, called RK ,3 and
the ratio of B0 ! K⇤0µ+µ� to B0 ! K⇤0e+e�, called RK⇤ .4 The LHCb collaboration uses
basically the same strategy for both analyses, that is discussed here for general b ! s`+`�

decays with the corresponding hadron named H. The LFU testing ratio RH is then defined as

RH =

R
d�(B!Hµ+µ�)

dq2
dq2

R
d�(B!He+e�)

dq2
dq2

,

where the di↵erential decay rate is measured in certain q2 ranges. The q2 ranges corresponding
to the J/ and  (2S) is always excluded from the LFU analysis and is used as control channel.
To cancel experimental uncertainties in the absolute e�ciencies of the measurements, the ratio
RH is not measured directly, but as double ratio, normalising the non-resonant signal mode to
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the corresponding high-statistics J/ mode. The ratio RH is then measured as

RH =
B(B! Hµ+µ�)

B(B! HJ/ (! µ+µ�))

�
B(B! He+e�)

B(B! HJ/ (! e+e�))
.

A few comments are in order to explain this experimental strategy: firstly, this method tests for
LFU violations in the FCNC decays, it relies on the conservation of LFU in the corresponding
resonant decay modes. To test this assumption, the ratio of the resonant channels

r(J/ ) =
B! K(⇤)J/ (! µ+µ�)

B! K(⇤)J/ (! e+e�)
,

is confirmed to agree with LFU conservation. It has to be stressed that this test is a more
stringent test than necessary, because it tests the absolute ratio of muon to electron reconstruc-
tion, identification and selection e�ciencies while in the analyses of RH , only relative e�ciencies
between non-resonant and resonant channels are required. If the ratio r(J/ ) is tested in bins
of the daughter particle momenta, it can directly test the range of q2 covered in the analysis.

The most precise test of r(J/ ) has been performed in LHCb’s analysis of RK⇤ , it was found
to be in agreement with unity with a precision of 4.5%. Compared to the statistical uncertainties
of the LFU tests of the order of 10%, this uncertainty is subdominant. For further tests with
enlarged datasets, the precision in the determination of e�ciencies as cross-checked in r(J/ )
needs to be studied in more detail.

The experimentally best accessible mode of all b ! s`+`� decays is B+ ! K+`+`�. The
LHCb collaboration published a measurement using 3 fb�1 of data.3 The uncertainty of the
measurement is dominated by the statistical uncertainty of the electron channel, with a signal
yield of 172+20

�19 events, i.e. the statistical uncertainty is of the order of 12%. Dominant systematic
uncertainties are the modelling of the mass shape and the determination of the trigger e�ciencies,
both accounting for about 3%. The value of RK is found to be

RK = 0.745+0.090
�0.074(stat) ± 0.036(syst) , (1)

which is in tension with the SM prediction5 of 1.0 with a significance of 2.6 standard deviations
(�). The BaBar and Belle experiments have also published6,7 tests of LFU, but their analysed
dataset is much smaller than the LHCb dataset and hence the measurement has significantly
larger uncertainties. The status of all measurements is summarised in Fig. 1 (left).

The next accessible b! s`+`� channel is B0 ! K⇤0`+`�, which has been published by the
LHCb collaboration with 3 fb�1 with a signal yield of 89 and 111 events in the low and central
bin of q2, respectively. Similarly to RK , the measurement is implemented as double ratio with
the resonant decay mode. Both q2 bins are found below the SM prediction,

RK⇤ =

(
0.66 + 0.11

� 0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 ,

0.69 + 0.11
� 0.07 (stat) ± 0.05 (syst) for 1.1 < q2 < 6.0 GeV2/c4 .

The measurement of RK⇤ is shown in Fig. 1 (right). The significances of the deviation of the
SM expectation are 2.1 and 2.4 � for the low and middle q2 bin, respectively. The statistical
uncertainty is of the order of 15%, dominant systematic uncertainties are due to data/MC
corrections (up to 5%) and background modelling (up to 5%).

The LHCb experiment has already collected a factor three more beauty mesons with respect
to the 3 fb�1 that are used for the measurements described above. Therefore, the tensions seen
in the RK and RK⇤ measurements should get clarified in the foreseeable future. Then, the
Belle 2 experiment will start to take data and will be able to further test LFU.

Additionally to the channels discussed above, LFU can be tested in B0
s ! �`+`� decays,

where a first observation of the channel B0
s ! �e+e� should be possible already with 3 fb�1

✤ Combined global fits yield even higher (~4 σ) degrees of tension…
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Measurements of the ratio of B ! K⇤µµ to B ! K⇤ee branching fractions, RK⇤ , by the LHCb
collaboration strengthen the hints from previous studies with pseudoscalar kaons, RK , for the break-
down of lepton universality, and therefore the Standard Model (SM), to ⇠ 3.5�. Complementarity
between RK and RK⇤ allows to pin down the Dirac structure of the new contributions to be predomi-
nantly SM-like chiral, with possible admixture of chirality-flipped contributions of up to O(few10%).
Scalar and vector leptoquark representations (S3, V1, V3) plus possible (S̃2, V2) admixture can explain
RK,K⇤ via tree level exchange. Flavor models naturally predict leptoquark masses not exceeding a
few TeV, with couplings to third generation quarks at O(0.1), implying that this scenario can be
directly tested at the LHC.

Introduction. Gauge interactions of the leptons
within the Standard Model (SM) exhibit exact univer-
sality. The only known source of lepton non-universality
(LNU) are the Yukawa couplings of the leptons to the
Higgs. Tests of lepton universality are provided by rare
(semi)leptonic |�B| = |�S| = 1 transitions, which are
induced in the SM at one loop and additionally sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism,
therefore allowing to probe physics from scales signifi-
cantly higher than the weak scale. Useful observables are
the ratios of branching fractions of B meson decays into
strange hadrons H and muon pairs over electron pairs [1]

RH =
B(B ! Hµ+µ�)

B(B ! He+e�)
, H = K,K⇤, Xs, . . . (1)

in which (lepton universal) hadronic e↵ects cancel. The
ratios are therefore predicted within the SM to be very
close to one and provide a clean test of the SM [1].

The LHCb collaboration measured RK in the dilepton
invariant mass squared (q2) bin 1GeV2  q2  6GeV2

using the 1 fb�1 data set [2]

RLHCb
K = 0.745+0.090

�0.074 ± 0.036 , (2)

and, very recently, RK⇤ within 1.1GeV2  q2 
6GeV2 [3]

RLHCb
K⇤ = 0.69+0.11

�0.07 ± 0.05 , (3)

with deviation fromR = 1 by 2.6� each. (Here and in the
following we add statistical and systematic uncertainties
in quadrature.) Corrections to R = 1 + O(m2

µ/m
2
B) [1]

arise from electromagnetic interactions [4–7]. This af-
fects the SM prediction at low q2 at percent level [8], not
qualitatively altering the fact that the data, (2) and (3)
constitute a challenge to universality, and the SM.

Moreover, the importance of the measurement of RK⇤

in addition to RK is in its diagnosing power regard-
ing di↵erent beyond the SM (BSM) contributions [9].
Left-handed and right-handed b ! s currents enter
B ! K`` and B ! K⇤`` in almost orthogonal com-
binations in both regions of q2 sensitive to LNU. Com-
parison of RK with RK⇤ , for instance through a double

ratio XK⇤ = RK⇤/RK [9], probes directly right-handed
LNU currents. The aim of this paper is to exploit this
model-independently and pursue interpretations within
leptoquark extensions of the SM.
Model-independent interpretation. We employ

the usual e↵ective Hamiltonian for b ! s``, ` = e, µ, ⌧
transitions

He↵ = �4GF�tp
2

↵

4⇡

X

i

C`
iO`

i + h.c., (4)

where C`
i ,O`

i denote lepton-specific Wilson coe�cients
and dimension-six operators, respectively, renormalized
at the scale µ ⇠ mb. Furthermore, GF , ↵, and �t =
VtbV ⇤

ts stand for Fermi’s constant, the finestructure con-
stant and the product of relevant Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, respectively. The
semileptonic operators read

O`
9 = (s̄�µPLb)(¯̀�µ`), O0`

9 = (s̄�µPRb)(¯̀�µ`),

O`
10 = (s̄�µPLb)(¯̀�µ�5`), O0`

10 = (s̄�µPRb)(¯̀�µ�5`),
(5)

with chiral projectors PL,R = 1/2(1⌥�5). The operators
with chiral lepton currents,

O`
AB = (s̄�µPAb)(¯̀�µPB`) , A,B = L,R , (6)

are related to the O(0)`
9,10 as

C`
9 =

1

2
(C`

LL + C`
LR), C`

10 =
1

2
(C`

LR � C`
LL) ,

C 0`
9 =

1

2
(C`

RL + C`
RR), C 0`

10 =
1

2
(C`

RR � C`
RL) .

(7)

Within the SM the (lepton universal) Wilson coe�-
cients are CSM

9 = 4.07, CSM
10 ' �4.31 [10], thus CSM

LL =
CSM

9 � CSM
10 ' 8.4, while scalar or tensor Wilson coe�-

cients are negligible. We define C`
LL = CSM

LL + CNP`
LL [9]

and drop the label ”NP” (new physics) for Wilson coef-
ficients negligible within the SM.
In the B ! K(⇤)`` branching fractions contributions

from photon exchange enter, notably from charm loops
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1

2
(C`

RR � C`
RL) .

(7)

Within the SM the (lepton universal) Wilson coe�-
cients are CSM

9 = 4.07, CSM
10 ' �4.31 [10], thus CSM

LL =
CSM

9 � CSM
10 ' 8.4, while scalar or tensor Wilson coe�-

cients are negligible. We define C`
LL = CSM

LL + CNP`
LL [9]

and drop the label ”NP” (new physics) for Wilson coef-
ficients negligible within the SM.
In the B ! K(⇤)`` branching fractions contributions

from photon exchange enter, notably from charm loops
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✤ NP effects can be parameterized within the Weak Effective Hamiltonian:
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Measurements of the ratio of B ! K⇤µµ to B ! K⇤ee branching fractions, RK⇤ , by the LHCb
collaboration strengthen the hints from previous studies with pseudoscalar kaons, RK , for the break-
down of lepton universality, and therefore the Standard Model (SM), to ⇠ 3.5�. Complementarity
between RK and RK⇤ allows to pin down the Dirac structure of the new contributions to be predomi-
nantly SM-like chiral, with possible admixture of chirality-flipped contributions of up to O(few10%).
Scalar and vector leptoquark representations (S3, V1, V3) plus possible (S̃2, V2) admixture can explain
RK,K⇤ via tree level exchange. Flavor models naturally predict leptoquark masses not exceeding a
few TeV, with couplings to third generation quarks at O(0.1), implying that this scenario can be
directly tested at the LHC.

Introduction. Gauge interactions of the leptons
within the Standard Model (SM) exhibit exact univer-
sality. The only known source of lepton non-universality
(LNU) are the Yukawa couplings of the leptons to the
Higgs. Tests of lepton universality are provided by rare
(semi)leptonic |�B| = |�S| = 1 transitions, which are
induced in the SM at one loop and additionally sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism,
therefore allowing to probe physics from scales signifi-
cantly higher than the weak scale. Useful observables are
the ratios of branching fractions of B meson decays into
strange hadrons H and muon pairs over electron pairs [1]

RH =
B(B ! Hµ+µ�)

B(B ! He+e�)
, H = K,K⇤, Xs, . . . (1)

in which (lepton universal) hadronic e↵ects cancel. The
ratios are therefore predicted within the SM to be very
close to one and provide a clean test of the SM [1].

The LHCb collaboration measured RK in the dilepton
invariant mass squared (q2) bin 1GeV2  q2  6GeV2

using the 1 fb�1 data set [2]

RLHCb
K = 0.745+0.090

�0.074 ± 0.036 , (2)

and, very recently, RK⇤ within 1.1GeV2  q2 
6GeV2 [3]

RLHCb
K⇤ = 0.69+0.11

�0.07 ± 0.05 , (3)

with deviation fromR = 1 by 2.6� each. (Here and in the
following we add statistical and systematic uncertainties
in quadrature.) Corrections to R = 1 + O(m2

µ/m
2
B) [1]

arise from electromagnetic interactions [4–7]. This af-
fects the SM prediction at low q2 at percent level [8], not
qualitatively altering the fact that the data, (2) and (3)
constitute a challenge to universality, and the SM.

Moreover, the importance of the measurement of RK⇤

in addition to RK is in its diagnosing power regard-
ing di↵erent beyond the SM (BSM) contributions [9].
Left-handed and right-handed b ! s currents enter
B ! K`` and B ! K⇤`` in almost orthogonal com-
binations in both regions of q2 sensitive to LNU. Com-
parison of RK with RK⇤ , for instance through a double

ratio XK⇤ = RK⇤/RK [9], probes directly right-handed
LNU currents. The aim of this paper is to exploit this
model-independently and pursue interpretations within
leptoquark extensions of the SM.
Model-independent interpretation. We employ

the usual e↵ective Hamiltonian for b ! s``, ` = e, µ, ⌧
transitions

He↵ = �4GF�tp
2

↵

4⇡

X

i

C`
iO`

i + h.c., (4)

where C`
i ,O`

i denote lepton-specific Wilson coe�cients
and dimension-six operators, respectively, renormalized
at the scale µ ⇠ mb. Furthermore, GF , ↵, and �t =
VtbV ⇤

ts stand for Fermi’s constant, the finestructure con-
stant and the product of relevant Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, respectively. The
semileptonic operators read

O`
9 = (s̄�µPLb)(¯̀�µ`), O0`

9 = (s̄�µPRb)(¯̀�µ`),

O`
10 = (s̄�µPLb)(¯̀�µ�5`), O0`

10 = (s̄�µPRb)(¯̀�µ�5`),
(5)

with chiral projectors PL,R = 1/2(1⌥�5). The operators
with chiral lepton currents,

O`
AB = (s̄�µPAb)(¯̀�µPB`) , A,B = L,R , (6)

are related to the O(0)`
9,10 as

C`
9 =

1

2
(C`

LL + C`
LR), C`

10 =
1

2
(C`

LR � C`
LL) ,

C 0`
9 =

1

2
(C`

RL + C`
RR), C 0`

10 =
1

2
(C`

RR � C`
RL) .

(7)

Within the SM the (lepton universal) Wilson coe�-
cients are CSM

9 = 4.07, CSM
10 ' �4.31 [10], thus CSM

LL =
CSM

9 � CSM
10 ' 8.4, while scalar or tensor Wilson coe�-

cients are negligible. We define C`
LL = CSM

LL + CNP`
LL [9]

and drop the label ”NP” (new physics) for Wilson coef-
ficients negligible within the SM.
In the B ! K(⇤)`` branching fractions contributions

from photon exchange enter, notably from charm loops
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✤ Note that MANY other models also explored (Z’, sterile neutrinos, gauged flavour, B-L, … )…see e.g. 
Crivellin, Fuentes-Martin, Greljo, Isidori: 1611.02703 and later talks as well…

 GH, Nisandzic: 1704.05444 + …✤ Leptoquarks offer concrete and obvious model opportunities satisfying EFT fits:

We explore the scalar triplet (see solid red 
line in figure) today.  Also note that vector 

LQs still viable…

See global fits from D’Amico et al: 1704.05438, 
Altmannshofer et al.: 1704.05435, …

3

representation CAB Relation RK(⇤)

V1 (3, 1, 2/3) CNP
LL C9 = �C10 RK ' RK⇤ < 1

CRR C0
9 = +C0

10 RK ' RK⇤ ' 1

V2 (3, 2,�5/6) CRL C0
9 = �C0

10 RK < 1, RK⇤ > 1

CLR C9 = +C10 RK ' RK⇤ ' 1

V3 (3, 3,�2/3) CNP
LL C9 = �C10 RK ' RK⇤ < 1

Table II: Vector leptoquarks and implications for RK⇤ assum-
ing RK < 1, as suggested by data (2), see Table I.
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Figure 2: RK versus RK⇤ in BSM scenarios. Solid red curve:
CNP

LL (CNP
9 = �CNP

10 ) corresponding to S3, V1 or V3, blue dot-
ted curve: CRL (S̃2 or V2), gray dashed curve: CRL = �CNP

LL

(no single leptoquark), and red dashed curve: CNP
LL and

CRL = �1/10CNP
LL (for instance, S3 plus 10% admixture of

S̃2). The colored bands correspond to the LHCb measure-
ments of RK (2) and RK⇤ (3).

In these models [12, 13]

CNP`
LL =

kLQ⇡
p
2

GF�t↵

Y Y ⇤

M2
, kLQ = 1,�1,�1 forS3, V1, V3,

(14)

C`
RL =

kLQ⇡
p
2

GF�t↵

Y Y ⇤

M2
, kLQ = �1/2,+1 for S̃2, V2. (15)

Here, M (Y ) denotes the leptoquark mass (coupling).
Model-independent and leptoquark specific predictions

for RK versus RK⇤ are shown in Fig. 2. The green and
blue band denote the 1� band of RK (2) and RK⇤ (3),
respectively. Also shown are BSM scenarios which can
(red solid and dashed lines) or cannot (blue dotted and
gray dashed lines) simultaneously explain the data. Con-
cretely, leptoquark S̃2, corresponding to the blue dotted
curve, and which has been considered in the context of
RK [14, 22–24], is disfavoured as the sole source of LNU
by the measurement of RK⇤ . The numerics are based on
the full expressions for the decay rates, for ` = µ. Recall,
however, to linear approximation only non-universality
matters.

We find for the dominant, SM-like chiral contribution

S3

YbµY ⇤
sµ � YbeY ⇤

se

M2
' 1.1

(35TeV)2
, (S3) (16)

and similarly for V1 or V3. To accommodate an admix-
ure of right-handed currents we need contributions from
another leptoquark, such as S̃2

YbµY ⇤
sµ � YbeY ⇤

se

M2
' �0.1

(24TeV)2
. (S̃2) (17)

Understanding the mass range is linked to flavor. The
leptoquark coupling matrix Y is a 3 ⇥ 3 matrix in gen-
eration space, with rows corresponding to quark flavor
and columns corresponding to lepton flavor. The pres-
ence of both kinds of fermions in one vertex is benefi-
cial; it allows to probe flavor in new ways beyond SM
fermion masses and mixings. Viable models are those
employing a Froggatt-Nielsen U(1)FN to generate mass
hierarchies for quarks and charged leptons together with
a discrete, non-abelian group such as A4, which allows
to accommodate neutrino properties [25, 26]. Applied to
leptoquark models this allows to select lepton species –
for instance having only couplings to one lepton species,
muons, or electrons [16]. Corrections to lepton isolation
arise from rotations to the mass basis and at higher or-
der in the spurion expansion, and induce lepton flavor
violation [12, 16, 27–30] such as B ! Kµ⌧ , which can
be probed with B-physics experiments but also µ � e-
converison, rare K and ` ! `0 decays. Together with
B ! K(⇤)⌫⌫̄ modes the latter constitute the leading
constraints on flavor models and LNU anomalies, and
improved experimental study is promising.
A generic prediction for S3, V1, V3 – all of them couple

quark doublets to lepton doublets– is obtained from sim-
ple flavor patterns such as `-isolation, ` = e, µ, [12, 16]

Yq3` ⇠ cl , Yq2` ⇠ cl�
2 , q3 = b, t, q2 = s, c , (18)

where cl ⇠ � ⇠ 0.2. Note that the FN-mechanism is only
able to explain parametric suppressions in specific powers
of the parameter � up to numbers of order one. Irrespec-
tive of the concrete flavor symmetry, each coupling Y to
lepton doublets brings in a non-abelian spurion insertion
suppression, the factor cl, which is unavoidable as lepon
doublets are necessarily charged under the non-abelian
group to obtain a viable PMNS-matrix. The suppres-
sion of the additional couplings to right-handed leptons
in V1,2 can be achieved using flavor symmetries [12, 20].

Putting lepton and neutrino properties aside, a mini-
mal prediction is Ys`/Yb` ⇠ ms/mb, hence Yb`Y ⇤

s` ⇠ �2 '
few⇥ 0.01. Eq. (16) implies M ⇠ 5� 10 TeV, accessible
at the LHC at least partly with single production.

Eq. (18) points to lower values of leptoquark masses,
see Fig. 3. Also shown are constraints from Bs � B̄s

mixing, induced at one loop through box diagrams and

2

and dipole operators. These contributions are numer-
ically small at high and low q2, su�ciently away from
the photon pole, and lepton universal. Within current
accuracy of RK,K⇤ these contributions can be safely ne-
glected. In this limit [9]

RK = 1 +�+ + ⌃+,

RK⇤ = 1 +�+ + ⌃+ + p(⌃� � ⌃+ +�� ��+),
(8)

where

�± = 2<
✓
CNPµ

LL ± Cµ
RL

CSM
LL

� (µ ! e)

◆
,

⌃± =
|CNPµ

LL ± Cµ
RL|2 + |Cµ

LR ± Cµ
RR|2

|CSM
LL |2 � (µ ! e).

(9)

Since BSM contributions in |�B| = |�S| = 1 transitions
are smaller than the SM ones [10] the dominant BSM
e↵ect is captured by the linear (interference) terms �±.

The coe�cient p in Eq. (8) denotes the fraction of
transverse parallel and longitudinal contributions to the
B ! K⇤`` branching ratio [9]. Due to helicity arguments
p ⇠ 1 both at low recoil (high q2) and at low q2. Con-
sequently, B(B ! K⇤``) is dominated by contributions
proportional to |C�C 0|2. Since B(B ! K``) / |C+C 0|2
due to parity invariance of the strong interaction both
modes are complementary and deviations of RK from
RK⇤ probe primed operators [9].

Using (2),(3) one obtains

XK⇤ = RK⇤/RK = 0.94± 0.18 , (10)

RK⇤ +RK � 2 = �0.54± 0.14 , (11)

which gives, at 1�

Re[CNPµ
9 � CNPµ

10 � (µ ! e)] ⇠ �1.1± 0.3 , (12)

Re[C 0µ
9 � C 0µ

10 � (µ ! e)] ⇠ 0.1± 0.4 . (13)

As anticipated, |CNP| ⌧ |CSM|. Therefore, the linear ap-
proximation, that is, neglecting the ⌃±-terms, is mean-
ingful within the current experimental precision. Drop-
ping quadratic terms greatly simplifies the interpretation
of the data: Only BSM in O`

LL or O`
RL is able to explain

RK,K⇤ .
In Fig. 1 a �2 fit for the left- and right-handed Wil-

son coe�cients is shown. The discrepancy with the SM
is about ⇠ 3.5�, where we allowed for a few percent de-
viations from R = 1 [8]. Interestingly, solutions with
CNPµ

9 ⇠ �1 are also favored by a global fit [10] to
b ! sµµ observables. Taking this into account suggests
an explanation of RK,K⇤ anomalies with BSM predomi-
nantly residing in the muons.
Leptoquark explanations. We consider lepto-

quark extensions of the SM with tree level couplings to
down-type quarks and leptons. Representations under

-2.0 -1.5 -1.0 -0.5 0.0 0.5
-1.0
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0.0

0.5

1.0

Re@C9NPm-C10NPm-HmÆeLD

Re
@C' 9

m
-
C'
10
m
-
HmÆ

eLD

Figure 1: Fit of left- and light-handed BSM coe�cients in
|�B| = |�S| = 1 transitions to RK and RK⇤ data (2), (3).
Darker and lighter shaded regions correspond to 68 and 95 %
CL intervals, respectively.

representation CAB Relation RK(⇤)

S̃2 (3, 2, 1/6) CRL C0
9 = �C0

10 RK < 1, RK⇤ > 1

S3 (3̄, 3, 1/3) CNP
LL C9 = �C10 RK ' RK⇤ < 1.

S2 (3, 2, 7/6) CLR C9 = C10 RK ' RK⇤ ' 1

S̃1 (3̄, 1, 4/3) CRR C0
9 = C0

10 RK ' RK⇤ ' 1

Table I: Scalar leptoquarks and relations between Wilson co-
e�cients, assuming a single leptoquark at the time. The last
column shows implications for RK⇤ assuming RK < 1, as
suggested by data (2).

SU(3)C ⇥ SU(2)L ⇥ U(1)Y with relevant Wilson coef-
ficients are given in Table I for scalar Si

1 and in Ta-
ble II for vector leptoquarks Vi, respectively. The index
i = 1, 2, 3 refers to the dimension of the SU(2)L multi-
plet, see e.g. [11–13] for overviews.

The scalar leptoquarks S2 and S̃1 generate only CLR

and CRR, respectively, which do not interfere with the
SM contribution, see Eq. (9), and lead to RK , RK⇤ near
1. We therefore discard these two possibilities as expla-
nations of the RK,K⇤ anomalies.

In view of the experimental constraints shown in Fig. 1
we focus on leptoquarks that can give a sizable CNP`

LL =
2CNP`

9 = �2CNP`
10 . This singles out the scalar triplet

S3, the vector singlet V1 and the vector triplet V3. This
scalar and the vectors have been considered as a possible
explanation of RK (2) in [12, 14–17] and in [12, 17–
21], respectively. Subdominant contributions from right-
handed currents can be provided by additional lepto-
quarks S̃2 or V2, which induce C`

RL = 2C 0`
9 = �2C 0`

10.

1
In the literature the scalar leptoquarks S2 and

˜S2 are also de-

noted by R2 and

˜R2, respectively.

where it is clear that m is the order of the generator T
l

. Assuming that Z
m

is a subgroup of SU(3), one
can restrict the arbitrary integer parameters a, b, c such that a+ b+ c = 0,m, 2m.

We now perform a standard basis change on the fermion fields in (2):

U

⌫

⌫

L

= ⌫

0
L

, U

l

l

L

= l

0
L

, U

E

E

R

= E

0
R

(6)

which forces the mass matrices into a new basis:

m

⌫U

= U

?

⌫

m

⌫

U

†
⌫

, m

lU

= U

E

m

l

U

†
l

(7)

such that they are now invariant under residual symmetry generators which are themselves in the new
basis:

T

⌫iU

= U

⌫

T

⌫i

U

†
⌫

, T

EU

= U

E

T

l

U

†
E

, T

lU

= U

l

T

l

U

†
l

, (8)

where it’s clear that the charged-leptons are invariant under a typical ‘bi-unitary’ style transformation,

m

lU

= T

†
EU

m

lU

T

lU

(9)

One now sees how the mixing of particle species can be connected directly to the parent group structure.
In (8), the generators are written explicitly as functions of the physical mixing matrices. Assuming
that our flavour symmetry G

F

breaks down to the residual symmetries present in (2) 2, then we can
‘reconstruct’ the G

F

as the group generated by {T
⌫iU

, T

lU

, ...}. Similar studies have been performed in
the quark sector [], where the residual symmetry analysis proceeds analogously to the charged-leptons

This approach to studying non-Abelian discrete symmetries has become very popular over the last ⇠
five years, with multiple studies performed at the analytic [] and computational level []. Our approach
is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.

3 Leptoquark Yukawa Couplings

There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R

K

(?) anomalies. They are categorized, including their
e↵ective vertices, in [5, 6].

Unlike in the SM, there are potentially physical Yukawa couplings with right-handed field rotations,
and hence we initially assume that all fermion fields undergo some sort of transformation, similar to [6]:

u

L

! U

u

u

L

, d

L

! U

d

d

L

l

L

! U

l

l

L

, ⌫

L

! U

⌫

⌫

L

(10)

u

R

! U

U

u

R

, d

R

! U

D

d

R

E

R

! U

E

E

R

⌫

R

! U

R

⌫

R

(11)

such that leptoquark Yukawas transform under a basis rotation as:

Y

AB

! U

T

A

Y

AB

U

B

Y

ĀB

! U

†
A

Y

ĀB

U

B

(12)

with A,B arbitrary quarks and leptons, respectively. For now we look at one of the Yukawas examined
in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
SU(2):

�3 ⇠ (3̄, 3, 1/3) (13)

where I have used the normalization of [5]. Written explicitly in SU(2) space, the Yukawas go as

L � y

LL

3,ijQ̄
C i,a

L

✏

ab(⌧k�k

3)
bc

L

j,c

L

+ z

LL

3,ijQ̄
C i,a

✏

ab((⌧k�k

3)
†)bcQj,c

L

+ h.c. (14)

Here {i, j} are flavour indices, {a, b} are SU(2) indices, and k = 1, 2, 3 for the Pauli matrices. The z

LL

clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We

2This means we are limiting ourselves to certain classes of models, namely ‘direct’ and ‘semi-direct’ models in the taxonomy
of [2].

2
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where it is clear that m is the order of the generator T
l

. Assuming that Z
m

is a subgroup of SU(3), one
can restrict the arbitrary integer parameters a, b, c such that a+ b+ c = 0,m, 2m.
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that our flavour symmetry G
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as the group generated by {T
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, ...}. Similar studies have been performed in
the quark sector [], where the residual symmetry analysis proceeds analogously to the charged-leptons

This approach to studying non-Abelian discrete symmetries has become very popular over the last ⇠
five years, with multiple studies performed at the analytic [] and computational level []. Our approach
is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.

3 Leptoquark Yukawa Couplings

There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R

K

(?) anomalies. They are categorized, including their
e↵ective vertices, in [5, 6].

Unlike in the SM, there are potentially physical Yukawa couplings with right-handed field rotations,
and hence we initially assume that all fermion fields undergo some sort of transformation, similar to [6]:
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ĀB

! U

†
A

Y

ĀB
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with A,B arbitrary quarks and leptons, respectively. For now we look at one of the Yukawas examined
in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
SU(2):
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where I have used the normalization of [5]. Written explicitly in SU(2) space, the Yukawas go as
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Here {i, j} are flavour indices, {a, b} are SU(2) indices, and k = 1, 2, 3 for the Pauli matrices. The z
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clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We

2This means we are limiting ourselves to certain classes of models, namely ‘direct’ and ‘semi-direct’ models in the taxonomy
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where it is clear that m is the order of the generator T
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where it’s clear that the charged-leptons are invariant under a typical ‘bi-unitary’ style transformation,
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One now sees how the mixing of particle species can be connected directly to the parent group structure.
In (8), the generators are written explicitly as functions of the physical mixing matrices. Assuming
that our flavour symmetry G

F

breaks down to the residual symmetries present in (2) 2, then we can
‘reconstruct’ the G

F

as the group generated by {T
⌫iU
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, ...}. Similar studies have been performed in
the quark sector [], where the residual symmetry analysis proceeds analogously to the charged-leptons

This approach to studying non-Abelian discrete symmetries has become very popular over the last ⇠
five years, with multiple studies performed at the analytic [] and computational level []. Our approach
is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.

3 Leptoquark Yukawa Couplings

There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R

K

(?) anomalies. They are categorized, including their
e↵ective vertices, in [5, 6].

Unlike in the SM, there are potentially physical Yukawa couplings with right-handed field rotations,
and hence we initially assume that all fermion fields undergo some sort of transformation, similar to [6]:
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now contract the SU(2) indices of (14), and after defining new combinations of the components of �3

(see the review for details....the superscripts denote the electric charges of the individual fields of the
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where we have assumed that the ‘diquark’ operators are not present insert comment here and have
changed bases via (10)-(11).

also add the explicit equations for other leptoquarks

3.1 Residual Symmetries in the Leptoquark Sector

We now see that we have a host of structures similar to the terms in (2). If we assume that the LQ
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check normalizations on terms where we have chosen to work in the mass basis of the down quarks and
charged leptons, such that m

l,d

are diagonal. As a result, the leptoquark Yukawa coupling is generically
non-diagonal, and we identify its rows and columns in a generation specific way, such that [7]
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with �0 an overall scale setting parameter. We now apply residual discrete transforms on the Lagrangian:
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where the residual generators T
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are generically represented by diagonal matrices of arbitrary phases,
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3

✤ A phenomenologically viable option is a (Lorentz) scalar (SU(2)) triplet leptoquark:

✤ Decomposing the SU(2) indices and performing the standard basis transformation, one obtains:
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Figure 2: Leading order diagrams for single leptoquark production and decay: Diagrams a), b) correspond

to resonant amplitudes. Diagram c) corresponds to a non-resonant contribution, the effects of which are

suppressed through kinematic cuts, see section III B for details.

single production cross section from valence quark-gluon fusion. Also shown in the two additional

plots are predictions for future proton-proton machines, a 33 TeV HE-LHC and a 100 TeV collider.

The corresponding numerical calculations are performed using Madgraph v.2.6 [36] at leading

order in QCD. We find that the largest uncertainties originate from the PDFs (we use LHAPDF [43]).

For the single production (red band) linked to RK(⇤)-data (8) they grow from order ten percent for

M ⇠ 1 TeV to ⇠ 35 � 40 percent for smaller cross sections of few ⇥ 10�7 pb. The scale uncertainty –

in our estimate both the factorization and the renormalization scale are equal to half of the sum of

the transverse masses of the final state particles – reaches ⇠ 25 percent.

In figure 3 the cross section for pair production �(pp ! S
�4/3
3 S

+4/3
3 ) is shown by the solid green

curve. We find, using Madgraph at leading order, that both PDF and scale uncertainties can reach

O(40) percent towards � ⇠ few ⇥ 10�7 pb. While the scale uncertainty is essentially flat the PDF

uncertainty drops to order 10 percent for lighter leptoquarks near a TeV. In the simplified benchmark

(7) the S
±4/3
3 decays into bµ, see (10), producing a pp ! bbµµ signature. Pair production of another

component of the S3 can give ttµµ, bbEmiss, btµEmiss or ttEmiss final states.

For low masses, pair production has a larger cross section than single production (red band) linked

to RK(⇤)-data (8), while the single production cross section is larger for higher masses. Naively, about

a factor ⇠ 2 (5) in mass reach can be gained in pair production at a 33 (100) TeV collider relative

to 13 TeV and for comparable luminosity of 3000 fb�1. The potential gain for single production

is somewhat larger: about a factor ⇠ 2.5 (7) in the target parameter space - the red band - for

33 (100) TeV. While this gives an idea about the accessible ranges dedicated simulations are needed

to estimate the reach more reliably.

We simulate events for a 1.5 TeV leptoquark and different couplings at the
p

s = 13 TeV LHC.

In figure 4 we present the corresponding distributions for signal and background as a function of
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One now sees how the mixing of particle species can be connected directly to the parent group structure.
In (8), the generators are written explicitly as functions of the physical mixing matrices. Assuming
that our flavour symmetry G
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breaks down to the residual symmetries present in (2) 2, then we can
‘reconstruct’ the G

F

as the group generated by {T
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, T
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, ...}. Similar studies have been performed in
the quark sector [], where the residual symmetry analysis proceeds analogously to the charged-leptons

This approach to studying non-Abelian discrete symmetries has become very popular over the last ⇠
five years, with multiple studies performed at the analytic [] and computational level []. Our approach
is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.

3 Leptoquark Yukawa Couplings

There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R

K

(?) anomalies. They are categorized, including their
e↵ective vertices, in [5, 6].

Unlike in the SM, there are potentially physical Yukawa couplings with right-handed field rotations,
and hence we initially assume that all fermion fields undergo some sort of transformation, similar to [6]:
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with A,B arbitrary quarks and leptons, respectively. For now we look at one of the Yukawas examined
in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
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Here {i, j} are flavour indices, {a, b} are SU(2) indices, and k = 1, 2, 3 for the Pauli matrices. The z
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clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We

2This means we are limiting ourselves to certain classes of models, namely ‘direct’ and ‘semi-direct’ models in the taxonomy
of [2].
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This approach to studying non-Abelian discrete symmetries has become very popular over the last ⇠
five years, with multiple studies performed at the analytic [] and computational level []. Our approach
is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.
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There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R
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with A,B arbitrary quarks and leptons, respectively. For now we look at one of the Yukawas examined
in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
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in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
SU(2):

�3 ⇠ (3̄, 3, 1/3) (13)

where I have used the normalization of [5]. Written explicitly in SU(2) space, the Yukawas go as
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Here {i, j} are flavour indices, {a, b} are SU(2) indices, and k = 1, 2, 3 for the Pauli matrices. The z

LL

clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We

2This means we are limiting ourselves to certain classes of models, namely ‘direct’ and ‘semi-direct’ models in the taxonomy
of [2].

2

where it is clear that m is the order of the generator T
l

. Assuming that Z
m

is a subgroup of SU(3), one
can restrict the arbitrary integer parameters a, b, c such that a+ b+ c = 0,m, 2m.
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such that they are now invariant under residual symmetry generators which are themselves in the new
basis:
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where it’s clear that the charged-leptons are invariant under a typical ‘bi-unitary’ style transformation,
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One now sees how the mixing of particle species can be connected directly to the parent group structure.
In (8), the generators are written explicitly as functions of the physical mixing matrices. Assuming
that our flavour symmetry G

F

breaks down to the residual symmetries present in (2) 2, then we can
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as the group generated by {T
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, ...}. Similar studies have been performed in
the quark sector [], where the residual symmetry analysis proceeds analogously to the charged-leptons
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five years, with multiple studies performed at the analytic [] and computational level []. Our approach
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in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
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clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We
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✤ Given a particular coupling structure, the dominant decay modes for the different charge states 
are given by:
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[ Experimental constraints and signatures]

now contract the SU(2) indices of (14), and after defining new combinations of the components of �3

(see the review for details....the superscripts denote the electric charges of the individual fields of the
�3), one obtains [5]

L �� (UT

d

y

LL

3 U

⌫

)
ij

d̄

C i

L

�1/3
3 ⌫

j

L

�
p
2(UT

d

y

LL

3 U

l

)
ij

d̄

C i

L

�4/3
3 l

j

L

+ (15)

+
p
2(UT

u

y

LL

3 U

⌫

)
ij

ū
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where we have assumed that the ‘diquark’ operators are not present insert comment here and have
changed bases via (10)-(11).

also add the explicit equations for other leptoquarks

3.1 Residual Symmetries in the Leptoquark Sector

We now see that we have a host of structures similar to the terms in (2). If we assume that the LQ
Yukawas (and by proxy mass terms) are invariant under a residual discrete symmetry transformation
generated byX, then up to constant prefactors the (...)

ij

⌘ �

QL

terms are analogous to basis-transformed
mass matrices which must be invariant under transformations of the form:
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where V1 and V2 represent arbitrary rotations depending on the terms in (15), and X

V1,2 are the basis-
rotated generators:

X

V1,2 = V1,2 X V

†
1,2 (19)

However, what is special about the new couplings in (15) is that they connect Standard Model leptons to
Standard Model quarks! We must take care then to understand exactly how a parent flavour symmetry
can break to some or all of these sectors simultaneously. In other words,

• What is the relationship between X

V1,2 and the generators in (8) (and similarly for the quarks)?

• What additional transformations must we make in order to extract information about the parent
non-Abelian symmetry from phenomenologically acceptable �

QL

?

Let us focus for the moment on the scalar leptoquark Yukawa term coupling down quarks to charged
leptons, as it is relevant for our study of the R anomalies. Removing flavour indices for simplicity, the
Yukawa sector includes the following terms
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check normalizations on terms where we have chosen to work in the mass basis of the down quarks and
charged leptons, such that m

l,d

are diagonal. As a result, the leptoquark Yukawa coupling is generically
non-diagonal, and we identify its rows and columns in a generation specific way, such that [7]
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with �0 an overall scale setting parameter. We now apply residual discrete transforms on the Lagrangian:
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where the residual generators T
l,d

are generically represented by diagonal matrices of arbitrary phases,
T

j2l,d

= diag
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, e
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, e
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�
, as in (5).

We now make two important observations:

1. The corresponding residual symmetry constraint on the leptoquark term of 20 is given by:
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✤ Consider the d-l coupling relevant to B decay phenomenology, in the mass basis:

✤ One can constrain the new leptoquark Yukawa couplings with the available B decay data. From RK(*) 

one finds e.g.:

3

leptons and quarks and assume the existence of a mechanism that forbids the second term that is

potentially dangerous with regards to proton decay. Our interest is therefore focused on the Yukawa

coupling matrix �, a 3 ⇥ 3 matrix in flavor space with rows (columns) carrying a quark (lepton)

flavor index, that we suppress for the moment to avoid clutter. The S3 can be represented in terms

of its isospin components as

S3 =

0

@ S
1/3
3

p
2S

4/3
3p

2S
�2/3
3 �S

1/3
3

1

A , (2)

where the superscripts denote the electric charge in units of e. The normalization is fixed to yield

canonically normalized kinetic terms for the complex scalar components.

Expanding the Lagrangian (1) in terms of the isospin components we obtain

LQL = �
p

2� d̄CL`L S
4/3
3 � � d̄CL ⌫L S

1/3
3 +

p
2� ūC

L ⌫L S
�2/3
3 � � ūC

L `L S
1/3
3 + h.c. (3)

The kinetic term for the leptoquark multiplet is written as

Lkin =
1

2
Tr

h
(DµS3)

† DµS3

i
. (4)

We assume the approximate mass degeneracy of the components within the multiplet. For the

collider study in section III we implement the model (3), (4) in Feynrules [34] to obtain the

corresponding Universal Feynrules Output (UFO) [35]. The latter is used as input to the MadGraph

event generator code [36].

To successfully accommodate present RK(⇤) data with the S3 one requires [21]

�bµ�⇤
sµ � �be�

⇤
se ' 1.1

M2
S3

(35 TeV)2
. (5)

Here, we label the element of the leptoquark Yukawa matrix � = �q` by the quark and lepton

flavors it couples to. By SU(2)L, �Ui` = V ⇤
ji�Dj`, where V denotes the CKM matrix, and U = u, c, t,

D = d, s, b and i, j = 1, 2, 3. Assuming i) that the SM hierarchies for the quark Yukawas are intact

in the leptoquark ones, couplings to third generation quarks are dominant [7, 37],

�d` ⇠ (✏3 . . . ✏4) �b` , �s` ⇠ ✏2 �b` , ` = e, µ, ⌧ . (6)

This can, for instance, be realized with a Froggatt-Nielsen-Mechanism [38], where ✏ ⇠ 0.2 denotes

a flavor parameter of the size of the sine of the Cabibbo angle. The ⇠ symbol indicates that a

relation holds up to factors of order one. Charged lepton mass hierarchies are taken care of by the

SU(2)L-singlet leptons, i.e., the lepton doublets are neutral under the Froggatt-Nielsen symmetry

✤ Which then points to a rich collider phenomenology:

✤ However, no theoretical origin for flavour structure of LQ Yukawa couplings!  Can this be 
constrained/modeled? (see e.g. IdMV, GH: 1503.01084 | GH, Loose, Schonwald: 1609.08895 | GH, Loose, Nisandzic: 1801.09399)

 GH, Loose, Nisandzic: hep-ph/1801.09399

  λdμ=1
  λsμ=1
  λbμ=1

4

and no further suppressions in �q` appear. Taking in addition into account that ii) the BSM effects

in RK,K⇤ are predominantly from muons as opposed to electrons as corresponding contributions

are consistent with those from global fits to the b ! sµ+µ� observables [39], a viable "simplified"

benchmark �s is obtained as

�s ⇠ �0

0

BBB@

0 0 0

⇤ ✏2 ⇤
⇤ 1 ⇤

1

CCCA
. (7)

Here the entries denoted by "0" are of higher order in ✏; they are constrained by µ-e conversion and

rare kaon decays and of no concern to the present analysis. The entries labeled with an asterisk are

not needed to explain |�b| = |�s| = 1 data. Eq. (5) implies �0 ' MS3/6.7 TeV. Allowing for order

one factors in �sµ, taken here to be between 1/3 and 3, one obtains the range

MS3/11.6 TeV . �0 . MS3/3.9 TeV . (8)

The parameter space (8) is well within the LHC-limits on Drell-Yan production, to which t-channel

leptoquarks contribute at tree level. Specifically, the Wilson coefficient CbLL = v2�2
0/(2M2

S3
) satisfies

in our case CbLL . 2 · 10�3, where v = 246 GeV denotes the vacuum expectation value (vev) of the

Higgs, while experimentally it is constrained only at the level of 10�2 for both electrons and muons

[40]. Note that the effective theory is constructed to hold for leptoquark masses greater than the

dilepton invariant mass, presently up to a few TeV. However, also for smaller masses effective theory

bounds provide a useful approximation [41].

III. COLLIDER SIGNATURES

We discuss leptoquark decays and single leptoquark production at proton-proton colliders in

section III A and III B, respectively. In section III C we consider signatures with tops and jets. We

occasionally use the symbol � for a generic leptoquark.

A. Decay and width

Neglecting the masses of the decay products, the partial decay width of a scalar leptoquark S3

with mass M decaying to a lepton ` and a quark q reads

�(S3 ! q`) = c
|�q`|2
16⇡

M , (9)
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Figure 3: The single leptoquark production cross section �(pp ! S
�4/3
3 µ+ + S

+4/3
3 µ�) as a function of the

mass MS3 for
p

s = 13, 33 and 100 TeV. The red band corresponds to the flavor pattern (7) with �0 in accord

with the B-anomalies (8). The triplet of (thin) curves illustrates the single production cross section with one

coupling switched on at a time (from top to bottom: dashed pink, dashed-dotted orange and dotted blue for

�dµ,sµ,bµ set to one, respectively). The pair production cross section �(pp ! S
�4/3
3 S

+4/3
3 ) is shown by the

green (thick, solid) curve. The black (dashed) line corresponds to the absolute lower limit of the cross section
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both signal and background. The corresponding calculations are performed at leading order in
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and hadronization and DELPHES 3 [45] for the fast detector simulation. For the muon isolation

we follow [28], while all the other criteria are taken from the default Delphes card for the CMS
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One now sees how the mixing of particle species can be connected directly to the parent group structure.
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as the group generated by {T
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, ...}. Similar studies have been performed in
the quark sector [], where the residual symmetry analysis proceeds analogously to the charged-leptons

This approach to studying non-Abelian discrete symmetries has become very popular over the last ⇠
five years, with multiple studies performed at the analytic [] and computational level []. Our approach
is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.

3 Leptoquark Yukawa Couplings

There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R
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(?) anomalies. They are categorized, including their
e↵ective vertices, in [5, 6].

Unlike in the SM, there are potentially physical Yukawa couplings with right-handed field rotations,
and hence we initially assume that all fermion fields undergo some sort of transformation, similar to [6]:
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clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We

2This means we are limiting ourselves to certain classes of models, namely ‘direct’ and ‘semi-direct’ models in the taxonomy
of [2].
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3 ) is shown by the

green (thick, solid) curve. The black (dashed) line corresponds to the absolute lower limit of the cross section

below which one cannot produce a single event with integrated luminosity 3000 fb�1. See text for details.
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ĀB

! U

†
A

Y

ĀB
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Figure 3: The single leptoquark production cross section �(pp ! S
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3 µ�) as a function of the

mass MS3 for
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s = 13, 33 and 100 TeV. The red band corresponds to the flavor pattern (7) with �0 in accord

with the B-anomalies (8). The triplet of (thin) curves illustrates the single production cross section with one

coupling switched on at a time (from top to bottom: dashed pink, dashed-dotted orange and dotted blue for

�dµ,sµ,bµ set to one, respectively). The pair production cross section �(pp ! S
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3 ) is shown by the

green (thick, solid) curve. The black (dashed) line corresponds to the absolute lower limit of the cross section

below which one cannot produce a single event with integrated luminosity 3000 fb�1. See text for details.
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QCD using Madgraph v.2.6 [36] for the event generation, PYTHIA 8 [44] for the parton showering

and hadronization and DELPHES 3 [45] for the fast detector simulation. For the muon isolation

we follow [28], while all the other criteria are taken from the default Delphes card for the CMS
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is to e↵ectively automate the above procedure from the bottom-up, by assuming a particular form for
the mixing matrices in question, discretizing the free parameters in those matrices, and scanning over
experimentally allowed ranges. This is a simple but powerful way to quickly gain information about
phenomenologically relevant flavour symmetries, and has been applied to matrices in both the lepton
[3] and quark [4] sector. In what follows we will extend these analyses to the new (physical) mixing
matrices that get introduced when leptoquarks couple to the Standard Model.

3 Leptoquark Yukawa Couplings

There are 12 potential Yukawa couplings for leptoquarks (LQ) charged under the SM gauge symmetries,
not all of which are relevant for addressing the R

K

(?) anomalies. They are categorized, including their
e↵ective vertices, in [5, 6].

Unlike in the SM, there are potentially physical Yukawa couplings with right-handed field rotations,
and hence we initially assume that all fermion fields undergo some sort of transformation, similar to [6]:
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such that leptoquark Yukawas transform under a basis rotation as:
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Y

ĀB

U

B

(12)

with A,B arbitrary quarks and leptons, respectively. For now we look at one of the Yukawas examined
in [7] generalize, in particular that of a scalar leptoquark transforming as as a triplet of both SU(3) and
SU(2):

�3 ⇠ (3̄, 3, 1/3) (13)

where I have used the normalization of [5]. Written explicitly in SU(2) space, the Yukawas go as

L � y

LL

3,ijQ̄
C i,a

L

✏

ab(⌧k�k

3)
bc

L

j,c

L

+ z

LL

3,ijQ̄
C i,a

✏

ab((⌧k�k

3)
†)bcQj,c

L

+ h.c. (14)

Here {i, j} are flavour indices, {a, b} are SU(2) indices, and k = 1, 2, 3 for the Pauli matrices. The z

LL

clearly couples quarks to quarks, and so we focus on the the first term relevant to the R anomalies. We

2This means we are limiting ourselves to certain classes of models, namely ‘direct’ and ‘semi-direct’ models in the taxonomy
of [2].

2
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2 Reconstructing Finite Flavour Groups

The basic principle is that one can search for predictive non-Abelian finite flavour groups by analyzing
the invariance of SM (or BSM) Yukawa structures under residual symmetries assumed to originate from
a breakdown of the parent flavour symmetry. For example, following the discussion of Hernandez and
Smirnov [1], we consider the SM leptonic mass sector assuming Majorana neutrinos:
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+ ... + h.c. (2)

where l and ⌫ are charged lepton and neutrino triplets, and m

l,⌫

are the corresponding diagonal matrices
of their masses. By examining (2), one notes that the Majorana neutrino mass term is naturally invariant
under a Klein Z2 ⇥ Z2 transformation of the neutrino triplets:1

⌫ ! T

⌫i

⌫, m

⌫

! T

T

⌫i

m

⌫

T

⌫i

= m

⌫

(3)

where the Z2 generators T
⌫i

can be generically written as:

T

⌫1 = diag (1,�1,�1) , T

⌫2 = diag (�1, 1,�1) (4)

On the other hand, the charged leptons exhibit the standard U(1)3 residual symmetry of the SM flavour
sector. Assuming that the symmetry of interest is discrete (as we want to build up a non-Abelian finite
group), we can assume this to be a cyclic symmetry Z

m

generated by a matrix representation T

l

, such
that the transformation on the triplets goes as:

l
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l

l

L

, E
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! T

l

E

R

, T

l

= diag

⇣
e

2⇡i a
m
, e

2⇡i b
m
, e

2⇡i c
m

⌘
(5)

1These generators are often labeled Si in the literature.
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✤ In broken phase, consider the Yukawa sector for SM leptons with Majorana neutrinos:

✤ Neutrino mass term is still invariant under a Z2 x Z2 Klein symmetry (Lam):

✤ While the charged leptons (and quarks) are still subject to the standard U(1)3: 

✤ The SM (absent Yukawas) is invariant under a global U(3)5 flavour symmetry (Chivukula/Georgi):

✤ We interpret these residual flavour symmetries generated by Ti as remnant signatures of the parent 
flavour group.  They are present regardless of the dynamics of the flavour model!

metry of Quantum Chromodynamics (QCD) [3–6], which describes the interactions of

quarks {u, d}i (i = 1...3) and (vector) gluons gj (j = 1...8) constituting the ‘strong’ force

binding hadrons together. SU(2)L ◊ U(1)Y describes the electroweak theory unifying the

electromagnetic and weak interactions of all fermions. It is mediated by three bosons of

weak isospin, W i, and an additional boson from weak hypercharge, B, all of which are

massless as required by gauge invariance. Furthermore, the matter content of the SM

is given by three chiral families i of fermions living in five gauge representations of the

combined symmetries in (1.1), of the form RSM ≥ (R(SU(3)c), R(SU(2)L))R(U(1)Y )

:

SM ≥ qi
L (3, 2)

+1/3

, ui
L (3, 1)≠4/3

, d
i
L (3, 1)

+2/3

, li
L (1, 2)≠1

, ei
L (1, 1)

+2

(1.2)

where q are either (up) u or (down) d-type quarks, e are charged leptons, and l is a lepton

doublet including neutrinos (‹, e)T . The subscript L denotes the fermion’s transformation

properties under SU(2)L, and these are all Weyl spinor fields. When a scalar ‘Higgs’ field

h (1, 2)
+1

(1.3)

is also included, the Lagrangian consisting of the particle content in (1.2) and (1.3) can

exhibit ‘spontaneous symmetry breaking’ associated to the Electroweak Phase Transition

(EWPT) [10–13]. This is the epoch of fermion mass generation, the production of massive

vector bosons W ±, Z0 and the (massless) photon “, and ultimately the onset of the

familiar physics of bound nuclei and electromagnetic interactions, SU(3)c ◊ U(1)EM . For

a nice review of the mathematics describing this transition, see [14]. Indeed, to connect

this story to that of ‘organizing symmetries’ above, we observe that the low-energy charge

assignments Q of electrodynamics are actually related by the (higher-energy, O(102) GeV)

electroweak symmetry structure:

SU(3)c ◊ U(1)EM ≠æ SU(3)c ◊ SU(2)L ◊ U(1)Y (1.4)

Qassigned ≠æ Q = Y/2 + I
3

(1.5)

where Y is the generator of the U(1)Y and I
3

is one of the (three) SU(2)L generators.

That is, at higher energies more symmetry is present, and the parameters of the theory

become less arbitrary.

The SM has been experimentally verified piece by piece for over 40 years at various

2

U(3)q U(3)u U(3)d U(3)l U(3)ex x x xU(3)5 ~
✤ This symmetry can be preserved by promoting Yukawa couplings to spurions (cf. MFV), or by 

introducing new flavons…
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✤ There are very few interesting solutions to this equation!

✤ These symmetries are well understood for the SM fermions.  What happens when we include the  
d-l leptoquark coupling?

now contract the SU(2) indices of (14), and after defining new combinations of the components of �3

(see the review for details....the superscripts denote the electric charges of the individual fields of the
�3), one obtains [5]

L �� (UT

d

y

LL
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⌫
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L

�1/3
3 ⌫
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l
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ij
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�4/3
3 l

j

L

+ (15)

+
p
2(UT
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y

LL

3 U
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ij

ū

C i

L

��2/3
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j

L

� (UT

u

y

LL

3 U

l

)
ij

ū

C i

L

�1/3
3 l

j

L

+ (16)

+ h.c. (17)

where we have assumed that the ‘diquark’ operators are not present insert comment here and have
changed bases via (10)-(11).

also add the explicit equations for other leptoquarks

3.1 Residual Symmetries in the Leptoquark Sector

We now see that we have a host of structures similar to the terms in (2). If we assume that the LQ
Yukawas (and by proxy mass terms) are invariant under a residual discrete symmetry transformation
generated byX, then up to constant prefactors the (...)

ij

⌘ �

QL

terms are analogous to basis-transformed
mass matrices which must be invariant under transformations of the form:

�

QL

! X

T

V1
�

QL

X

V2 = �

QL

(18)

where V1 and V2 represent arbitrary rotations depending on the terms in (15), and X

V1,2 are the basis-
rotated generators:

X

V1,2 = V1,2 X V

†
1,2 (19)

However, what is special about the new couplings in (15) is that they connect Standard Model leptons to
Standard Model quarks! We must take care then to understand exactly how a parent flavour symmetry
can break to some or all of these sectors simultaneously. In other words,

• What is the relationship between X

V1,2 and the generators in (8) (and similarly for the quarks)?

• What additional transformations must we make in order to extract information about the parent
non-Abelian symmetry from phenomenologically acceptable �

QL

?

Let us focus for the moment on the scalar leptoquark Yukawa term coupling down quarks to charged
leptons, as it is relevant for our study of the R anomalies. Removing flavour indices for simplicity, the
Yukawa sector includes the following terms

LY

LQ

� Ē

R

m

l

l

L

+ d̄

R

m

d

d

L

+ d̄

C

L

�

dl

l

L

�4/3
3 + h.c. (20)

check normalizations on terms where we have chosen to work in the mass basis of the down quarks and
charged leptons, such that m

l,d

are diagonal. As a result, the leptoquark Yukawa coupling is generically
non-diagonal, and we identify its rows and columns in a generation specific way, such that [7]
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A (21)

with �0 an overall scale setting parameter. We now apply residual discrete transforms on the Lagrangian:
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, E
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(22)

where the residual generators T
l,d

are generically represented by diagonal matrices of arbitrary phases,
T

j2l,d

= diag
�
e

i↵j
, e

i�j
, e

i�j
�
, as in (5).

We now make two important observations:

1. The corresponding residual symmetry constraint on the leptoquark term of 20 is given by:
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We now make two important observations:

1. The corresponding residual symmetry constraint on the leptoquark term of 20 is given by:
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now contract the SU(2) indices of (14), and after defining new combinations of the components of �3

(see the review for details....the superscripts denote the electric charges of the individual fields of the
�3), one obtains [5]
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ū

C i

L

�1/3
3 l

j

L

+ (16)
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where we have assumed that the ‘diquark’ operators are not present insert comment here and have
changed bases via (10)-(11).

also add the explicit equations for other leptoquarks

3.1 Residual Symmetries in the Leptoquark Sector

We now see that we have a host of structures similar to the terms in (2). If we assume that the LQ
Yukawas (and by proxy mass terms) are invariant under a residual discrete symmetry transformation
generated byX, then up to constant prefactors the (...)
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mass matrices which must be invariant under transformations of the form:
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where V1 and V2 represent arbitrary rotations depending on the terms in (15), and X
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rotated generators:
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However, what is special about the new couplings in (15) is that they connect Standard Model leptons to
Standard Model quarks! We must take care then to understand exactly how a parent flavour symmetry
can break to some or all of these sectors simultaneously. In other words,

• What is the relationship between X

V1,2 and the generators in (8) (and similarly for the quarks)?

• What additional transformations must we make in order to extract information about the parent
non-Abelian symmetry from phenomenologically acceptable �

QL

?

Let us focus for the moment on the scalar leptoquark Yukawa term coupling down quarks to charged
leptons, as it is relevant for our study of the R anomalies. Removing flavour indices for simplicity, the
Yukawa sector includes the following terms
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check normalizations on terms where we have chosen to work in the mass basis of the down quarks and
charged leptons, such that m

l,d

are diagonal. As a result, the leptoquark Yukawa coupling is generically
non-diagonal, and we identify its rows and columns in a generation specific way, such that [7]
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with �0 an overall scale setting parameter. We now apply residual discrete transforms on the Lagrangian:
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where the residual generators T
l,d

are generically represented by diagonal matrices of arbitrary phases,
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masses to be degenerate. This is easier to see by changing the would-be diagonal residual generators
into the mass basis, where they are no longer diagonal, and enforcing the symmetry
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I rewrote without MM

† combinations, as this is what we have developed above...but we may need
to rewrite with that convention with X

d,l

not diagonal, forces M

dU,lU

to be proportional to the unit
matrix Is this true? What if we have trivial flavour symmetries? The remaining option is to consider
that the residual generators are diagonal in the mass basis as we have sketched above, and thus the
above equation holds for non-degenerate masses, with arbitrary phases in the residual symmetries as
usual. The consequences are that the leptoquark Yuawas are extremely constrained, as seen explicitly
in eq.(23).

Interesting solutions to eq.(23) that are lepton non-universal are few in number. in order to be
completley conclusive, we have to decide on the fate of generators proportional to the identity. For
now I assume we do not allow them Phenomenologically relevant patterns can arise if the phases of T

d

are related. Under the assumption that our flavour symmetry distinguishes at least two generations
of fermions per sector, and accounting for B decay data, the most interesting only? viable option is
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, where two entries in the s and b row of the leptoquark Yukawa are allowed by the residual
symmetry. We now further elaborate on this constraint:
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Intriguingly, the first two of these patterns have been explored for flavoured leptoquark models
before [], simply due to their phenomenological relevance. We have derived them as a consequence
of a rather restrictive flavour symmetry constraint.
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further restricts the allowed leptoquark Yukawa, but we note it does so in the only way that allows
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to also be explained by the residual symmetry! but we are assuming mixing comes entirely
from the ups, so can we simultaneously make this claim?

2. If the lepton phases are also related, one can allow entries in more than one column of the leptoquark
Yukawa, at the cost of predictions for leptonic mixing coming from the residual symmetry you
mean in the sense that leptonic mixing can’t be approximated by the 12 sector, and hence all three
charges need to be turned on....but same comment as above, but for neutrinos.... This seems to be
a requirement to have more than one entry in the same row (which is necessary for LFV processes
such as µ ! e�). I think we can merge this point with 3 once we agree on these questions
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where we have again insisted that T
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not be proportional to the identity.
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Check that these the only solutions!!!!
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masses to be degenerate. This is easier to see by changing the would-be diagonal residual generators
into the mass basis, where they are no longer diagonal, and enforcing the symmetry
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d,l

not diagonal, forces M

dU,lU

to be proportional to the unit
matrix Is this true? What if we have trivial flavour symmetries? The remaining option is to consider
that the residual generators are diagonal in the mass basis as we have sketched above, and thus the
above equation holds for non-degenerate masses, with arbitrary phases in the residual symmetries as
usual. The consequences are that the leptoquark Yuawas are extremely constrained, as seen explicitly
in eq.(23).

Interesting solutions to eq.(23) that are lepton non-universal are few in number. in order to be
completley conclusive, we have to decide on the fate of generators proportional to the identity. For
now I assume we do not allow them Phenomenologically relevant patterns can arise if the phases of T

d

are related. Under the assumption that our flavour symmetry distinguishes at least two generations
of fermions per sector, and accounting for B decay data, the most interesting only? viable option is
�
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, where two entries in the s and b row of the leptoquark Yukawa are allowed by the residual
symmetry. We now further elaborate on this constraint:
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Intriguingly, the first two of these patterns have been explored for flavoured leptoquark models
before [], simply due to their phenomenological relevance. We have derived them as a consequence
of a rather restrictive flavour symmetry constraint.
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. In other words, obtaining Cabibbo mixing
further restricts the allowed leptoquark Yukawa, but we note it does so in the only way that allows
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to also be explained by the residual symmetry! but we are assuming mixing comes entirely
from the ups, so can we simultaneously make this claim?

2. If the lepton phases are also related, one can allow entries in more than one column of the leptoquark
Yukawa, at the cost of predictions for leptonic mixing coming from the residual symmetry you
mean in the sense that leptonic mixing can’t be approximated by the 12 sector, and hence all three
charges need to be turned on....but same comment as above, but for neutrinos.... This seems to be
a requirement to have more than one entry in the same row (which is necessary for LFV processes
such as µ ! e�). I think we can merge this point with 3 once we agree on these questions
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where we have again insisted that T
d

not be proportional to the identity.
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masses to be degenerate. This is easier to see by changing the would-be diagonal residual generators
into the mass basis, where they are no longer diagonal, and enforcing the symmetry
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† combinations, as this is what we have developed above...but we may need
to rewrite with that convention with X
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matrix Is this true? What if we have trivial flavour symmetries? The remaining option is to consider
that the residual generators are diagonal in the mass basis as we have sketched above, and thus the
above equation holds for non-degenerate masses, with arbitrary phases in the residual symmetries as
usual. The consequences are that the leptoquark Yuawas are extremely constrained, as seen explicitly
in eq.(23).

Interesting solutions to eq.(23) that are lepton non-universal are few in number. in order to be
completley conclusive, we have to decide on the fate of generators proportional to the identity. For
now I assume we do not allow them Phenomenologically relevant patterns can arise if the phases of T

d

are related. Under the assumption that our flavour symmetry distinguishes at least two generations
of fermions per sector, and accounting for B decay data, the most interesting only? viable option is
�

d
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, where two entries in the s and b row of the leptoquark Yukawa are allowed by the residual
symmetry. We now further elaborate on this constraint:
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Intriguingly, the first two of these patterns have been explored for flavoured leptoquark models
before [], simply due to their phenomenological relevance. We have derived them as a consequence
of a rather restrictive flavour symmetry constraint.
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which must be the case if the flavour symmetry
is to distinguish between (at least two) generations of down quarks. Cabibbo mixing can only be
predicted by the residual symmetry if ↵
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. In other words, obtaining Cabibbo mixing
further restricts the allowed leptoquark Yukawa, but we note it does so in the only way that allows
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to also be explained by the residual symmetry! but we are assuming mixing comes entirely
from the ups, so can we simultaneously make this claim?

2. If the lepton phases are also related, one can allow entries in more than one column of the leptoquark
Yukawa, at the cost of predictions for leptonic mixing coming from the residual symmetry you
mean in the sense that leptonic mixing can’t be approximated by the 12 sector, and hence all three
charges need to be turned on....but same comment as above, but for neutrinos.... This seems to be
a requirement to have more than one entry in the same row (which is necessary for LFV processes
such as µ ! e�). I think we can merge this point with 3 once we agree on these questions
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where we have again insisted that T
d

not be proportional to the identity.
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‘Isolation patterns’

‘Two column patterns’

‘Three column patterns’
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[ Including the additional q-l couplings ]3.2 Including the Additional Charged Leptoquark States

Of course, upon SU(2) decomposition, we must also include the additional couplings in (15) coming
from leptoquarks with di↵erent electric charge, such that the full Yukawa sector Lagrangian, in the mass
basis of the SM fermions, reads
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where m

a

, with a 2 {u, d, l, ⌫}, are all diagonal matrices of mass eigenvalues, and the �
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matrices are
analogous to (21). Because we are in the mass basis of all of the fermions, equivalent constraints to
those in (23) arise for each leptoquark Yukawa term if there are residual symmetries in each SM fermion
sector,
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where the T matrices are again diagonal residual symmetry generators with three phases. Hence, we
are restricted to the same patterns discussed in Section 3.1.1 for each coupling matrix, which we discuss
pattern by pattern below. However, we are further constrained by the fact that the four �
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are
not independent, as they are sourced from the same original coupling y
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3 . They can therefore all be
normalized to �
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, the term for which we have some phenomenological insight given the anomalies in
the B-decay data. We find, using that
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the following relationships between the di↵erent charged leptoquark couplings:
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We will see below that (39) has severe implications given the viable forms of �
dl

.
Before doing so, let us first see what our residual symmetry operations look like in the basis where

we can simultaneously extract information relevant to R
K

(?)
,D

(?) and the SM fermionic mixing matrices.
Accounting for (39) and going to the basis in (24), where �
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is diagonal, (36) becomes
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Impressively, (40) suggests that we further move to a primed basis for the ups and neutrinos, defined by
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Finally, then, the Yukawa sector of our Lagrangian is given by
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which is now invariant under residual symmetry transformations given by
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⌫
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(43)
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3.2 Including the Additional Charged Leptoquark States

Of course, upon SU(2) decomposition, we must also include the additional couplings in (15) coming
from leptoquarks with di↵erent electric charge, such that the full Yukawa sector Lagrangian, in the mass
basis of the SM fermions, reads
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where m

a

, with a 2 {u, d, l, ⌫}, are all diagonal matrices of mass eigenvalues, and the �

QL

matrices are
analogous to (21). Because we are in the mass basis of all of the fermions, equivalent constraints to
those in (23) arise for each leptoquark Yukawa term if there are residual symmetries in each SM fermion
sector,
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8 {Q,L} (37)

where the T matrices are again diagonal residual symmetry generators with three phases. Hence, we
are restricted to the same patterns discussed in Section 3.1.1 for each coupling matrix, which we discuss
pattern by pattern below. However, we are further constrained by the fact that the four �

QL

are
not independent, as they are sourced from the same original coupling y

LL

3 . They can therefore all be
normalized to �

dl

, the term for which we have some phenomenological insight given the anomalies in
the B-decay data. We find, using that
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the following relationships between the di↵erent charged leptoquark couplings:
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We will see below that (39) has severe implications given the viable forms of �
dl

.
Before doing so, let us first see what our residual symmetry operations look like in the basis where

we can simultaneously extract information relevant to R
K

(?)
,D

(?) and the SM fermionic mixing matrices.
Accounting for (39) and going to the basis in (24), where �
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is diagonal, (36) becomes
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0
R

U

R

�

†
�

m

l

U

†
�

†
�

l

0
L

+ d̄

0
R

U

R

��

† m
d

U

†
��

† d
0
L

+ ū
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Impressively, (40) suggests that we further move to a primed basis for the ups and neutrinos, defined by
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Finally, then, the Yukawa sector of our Lagrangian is given by
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which is now invariant under residual symmetry transformations given by
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✤ But we must consider the Yukawa sector appended by all of the scalar states:

✤ Other charged states are related to the d-l coupling via SU(2) transformations:

✤ All of these terms are *simultaneously* subject to the residual symmetry constraints:

3.2 Including the Additional Charged Leptoquark States

Of course, upon SU(2) decomposition, we must also include the additional couplings in (15) coming
from leptoquarks with di↵erent electric charge, such that the full Yukawa sector Lagrangian, in the mass
basis of the SM fermions, reads
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where m
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, with a 2 {u, d, l, ⌫}, are all diagonal matrices of mass eigenvalues, and the �
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matrices are
analogous to (21). Because we are in the mass basis of all of the fermions, equivalent constraints to
those in (23) arise for each leptoquark Yukawa term if there are residual symmetries in each SM fermion
sector,
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where the T matrices are again diagonal residual symmetry generators with three phases. Hence, we
are restricted to the same patterns discussed in Section 3.1.1 for each coupling matrix, which we discuss
pattern by pattern below. However, we are further constrained by the fact that the four �
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We will see below that (39) has severe implications given the viable forms of �
dl

.
Before doing so, let us first see what our residual symmetry operations look like in the basis where

we can simultaneously extract information relevant to R
K

(?)
,D

(?) and the SM fermionic mixing matrices.
Accounting for (39) and going to the basis in (24), where �
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is diagonal, (36) becomes
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Impressively, (40) suggests that we further move to a primed basis for the ups and neutrinos, defined by
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Finally, then, the Yukawa sector of our Lagrangian is given by
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which is now invariant under residual symmetry transformations given by

u

0
L,R

! T�u

u

0
L,R

, d

0
L,R

! T�d

d

0
L,R

, l

0
L

! T�l

l

0
L

, E

0
R

! T�l

E

0
R

, ⌫

0
L

! T�⌫

⌫

0
L

(43)

6

with the basis-transformed symmetry generators given by:
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and as always there are additional (unphysical) generators that are functions of the right-handed matrices
U

R. Note that because we assume a Majorana form for the neutrino mass sector, the generator T

⌫

is
given by equation (4), as the maximal residual symmetry for the sector is a Klein Z2⇥Z2 [], and indeed
in principle there are two independent generators T

⌫1,⌫2 that leave the term invariant, one associated to
each Z2. Repeating the above analysis in the presence of a Dirac neutrino mass is straightforward and
follows analogously to the charged fermions. As a final point, we observe that in this basis our flavour
symmetry G

F

only ‘knows’ about SM fermionic mixing via the residual symmetries in the up (CKM)
and neutrino (PMNS) sectors. Not including these in our final generating set (cf. Section 4.3) amounts
to only quantizing the Yukawa sector of the leptoquarks.

We now analyze the implications of (37) for permissible �
dl

. As before, the solutions for each equation
implied by (37) give matrices analogous to those in Section 3.1.1:

�

QL

2 {
0

@
�

Q1L1 0 0
�

Q2L1 0 0
�

Q3L1 0 0

1

A
,

0

@
�

Q1L1 �

Q1L2 0
�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A
,

0

@
�

Q1L1 �

Q1L2 �

Q1L3

�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A} (46)

for Q 2 {u, d} and L 2 {l, ⌫}. Again, if we do not allow ↵

Q

= �

Q

= �

Q

, one element per column check
in each matrix of (46) is forced to be zero, and of course the solutions {�

L

, �

L
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Q

, with �

Q

equal
to two phases in the quark generator, permute the columns of �

QL

(in (46) we have only shown the
↵

L

= ��

Q

solution for brevity). It is important to note that, so long as T

Q,L

are symmetries of the
Lagrangian, (46) holds regardless of the relationships implied by (39) — it is true simply by virtue of
the phase constraints in T

Q

and T

L

. We now treat each acceptable pattern of �
dl

case by case.
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where here and below we use the shorthand U
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PMNS

= U
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and (U ij
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)? = V
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, and we have only
presented the matrix corresponding to electron isolation, and correspondingly set �

de

= 0. Muon or tau
isolation simply implies e ! {µ, ⌧} and U1i ! {U2i, U3i} in (47), respectively.

We first notice that this coupling is not allowed to take an isolation pattern, as this would force
all entries (in all couplings) to zero, since only one matrix element of U

PMNS

is measured to be small.
This then leaves us with the multi column options, where we further read o↵ that the �
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row is zero (a
consequence of �
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= �
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). Next, we need to set two matrix elements in one column to zero in (47). This
constraint is particularly powerful because, regardless of whether �
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U13 = 0, which is still a reasonable approximation to data and the starting point of many flavour models
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We see that �

ul

is naturally of an isolation pattern form, with the following constraint on one of its
matrix elements:
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(49)
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[ Model-independent conclusions ]

with the basis-transformed symmetry generators given by:
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follows analogously to the charged fermions. As a final point, we observe that in this basis our flavour
symmetry G
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only ‘knows’ about SM fermionic mixing via the residual symmetries in the up (CKM)
and neutrino (PMNS) sectors. Not including these in our final generating set (cf. Section 4.3) amounts
to only quantizing the Yukawa sector of the leptoquarks.
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presented the matrix corresponding to electron isolation, and correspondingly set �
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We first notice that this coupling is not allowed to take an isolation pattern, as this would force
all entries (in all couplings) to zero, since only one matrix element of U

PMNS

is measured to be small.
This then leaves us with the multi column options, where we further read o↵ that the �

1i
d⌫

row is zero (a
consequence of �

d

= �

d

). Next, we need to set two matrix elements in one column to zero in (47). This
constraint is particularly powerful because, regardless of whether �

dl

isolates electrons, muons, or tauons
this requires either �

sl

= �

bl

= 0 or a single matrix element of U
PMNS

to zero. The former option sets
all leptoquark Yukawa couplings to zero, so is not interesting. Hence, our residual flavour symmetry is
forcing us to a limit where U

PMNS

has a null matrix element, and the only viable option is to allow
U13 = 0, which is still a reasonable approximation to data and the starting point of many flavour models

[]. We then find that �
dl

= �

[e]
dl

, as all other isolation patterns would require some other mixing element

to be zero! We conclude that �[I]
d⌫

sets �
dl

= �

[e]
dl

, U13
PMNS

= 0, and ↵

⌫

= �

⌫

= ��

d

= ��

d

. Now consider
the �

ul

coupling:

�

ul

=
�0p
2

0

@
V13�be

+ V12�se

0 0
V23�be

+ V22�se

0 0
V33�be

+ V32�se

0 0

1

A (48)

We see that �

ul

is naturally of an isolation pattern form, with the following constraint on one of its
matrix elements:

�

se

�

be

= �V

i3

V

i2
(49)
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with the basis-transformed symmetry generators given by:

T�d

= U

��

† T
d

U

†
��

† , T�l

= U

�

†
�

T

l

U

†
�

†
�

(44)

T�u

= U

?

CKM

T

u

U

T

CKM

, T�⌫

= U

PMNS

T

⌫

U

†
PMNS

(45)

and as always there are additional (unphysical) generators that are functions of the right-handed matrices
U

R. Note that because we assume a Majorana form for the neutrino mass sector, the generator T

⌫

is
given by equation (4), as the maximal residual symmetry for the sector is a Klein Z2⇥Z2 [], and indeed
in principle there are two independent generators T

⌫1,⌫2 that leave the term invariant, one associated to
each Z2. Repeating the above analysis in the presence of a Dirac neutrino mass is straightforward and
follows analogously to the charged fermions. As a final point, we observe that in this basis our flavour
symmetry G

F

only ‘knows’ about SM fermionic mixing via the residual symmetries in the up (CKM)
and neutrino (PMNS) sectors. Not including these in our final generating set (cf. Section 4.3) amounts
to only quantizing the Yukawa sector of the leptoquarks.

We now analyze the implications of (37) for permissible �
dl

. As before, the solutions for each equation
implied by (37) give matrices analogous to those in Section 3.1.1:

�

QL

2 {
0

@
�

Q1L1 0 0
�

Q2L1 0 0
�

Q3L1 0 0

1

A
,

0

@
�

Q1L1 �

Q1L2 0
�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A
,

0

@
�

Q1L1 �

Q1L2 �

Q1L3

�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A} (46)

for Q 2 {u, d} and L 2 {l, ⌫}. Again, if we do not allow ↵

Q

= �

Q

= �

Q

, one element per column check
in each matrix of (46) is forced to be zero, and of course the solutions {�

L

, �

L

} = ��

Q

, with �

Q

equal
to two phases in the quark generator, permute the columns of �

QL

(in (46) we have only shown the
↵

L

= ��

Q

solution for brevity). It is important to note that, so long as T

Q,L

are symmetries of the
Lagrangian, (46) holds regardless of the relationships implied by (39) — it is true simply by virtue of
the phase constraints in T

Q

and T

L

. We now treat each acceptable pattern of �
dl

case by case.

3.2.1 �dl = �

[e,µ,⌧ ]
dl

We first treat the case where �

dl

is in an isolation pattern, for which the explicit matrix for �
d⌫

is given
by

�

[I]
d⌫

=
�0p
2

0

@
0 0 0

U11�se

U12�se

U13�se

U11�be

U12�be

U13�be

1

A (47)

where here and below we use the shorthand U

ij

PMNS

= U

ij

and (U ij

CKM

)? = V

ij

, and we have only
presented the matrix corresponding to electron isolation, and correspondingly set �

de

= 0. Muon or tau
isolation simply implies e ! {µ, ⌧} and U1i ! {U2i, U3i} in (47), respectively.

We first notice that this coupling is not allowed to take an isolation pattern, as this would force
all entries (in all couplings) to zero, since only one matrix element of U

PMNS

is measured to be small.
This then leaves us with the multi column options, where we further read o↵ that the �

1i
d⌫

row is zero (a
consequence of �

d

= �

d

). Next, we need to set two matrix elements in one column to zero in (47). This
constraint is particularly powerful because, regardless of whether �

dl

isolates electrons, muons, or tauons
this requires either �

sl

= �

bl

= 0 or a single matrix element of U
PMNS

to zero. The former option sets
all leptoquark Yukawa couplings to zero, so is not interesting. Hence, our residual flavour symmetry is
forcing us to a limit where U

PMNS

has a null matrix element, and the only viable option is to allow
U13 = 0, which is still a reasonable approximation to data and the starting point of many flavour models

[]. We then find that �
dl

= �

[e]
dl

, as all other isolation patterns would require some other mixing element

to be zero! We conclude that �[I]
d⌫

sets �
dl

= �

[e]
dl

, U13
PMNS

= 0, and ↵

⌫

= �

⌫

= ��

d

= ��

d

. Now consider
the �

ul

coupling:

�

ul

=
�0p
2

0

@
V13�be

+ V12�se

0 0
V23�be

+ V22�se

0 0
V33�be

+ V32�se

0 0

1

A (48)

We see that �

ul

is naturally of an isolation pattern form, with the following constraint on one of its
matrix elements:

�

se

�

be

= �V

i3

V

i2
(49)
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where i 2 {1, 2, 3} and its specific value determined by the phases of T
u

. Taking the absolute value of
(49), we see immediately from (68) that i = 3 is not a viable solution, and therefore �

u

= �

u

= �↵

l

(i = 1) or ↵
u

= �

u

= �↵

l

(i = 2). We label these two couplings �[I1]
ul

and �

[I2]
ul

, respectively. Finally, we
write down �

u⌫

:

�

[I1]
u⌫

= �0

0

BB@

0 0 0

U11

⇣
V13V22
V12

� V23

⌘
�

be

U12

⇣
V13V22
V12

� V23

⌘
�

be

0

U11

⇣
V13V32
V12

� V33

⌘
�

be

U12

⇣
V13V32
V12

� V33

⌘
�

be

0

1

CCA (50)

�

[I2]
u⌫

= �0

0

BB@

U11

⇣
V12V23
V22

� V13

⌘
�

be

U12

⇣
V12V23
V22

� V13

⌘
�

be

0

0 0 0

U11

⇣
V23V32
V22

� V33

⌘
�

be

U12

⇣
V23V32
V22

� V33

⌘
�

be

0

1

CCA (51)

with U13 already set to zero, and the two di↵erent matrices corresponding to the two viable solutions
of (49). These couplings are allowed by T

u,⌫

when ↵

⌫

= �

⌫

= ��

u

= ��

u

or ↵

⌫

= �

⌫

= �↵

u

= ��

u

,
respectively. Observe that (50)-(51) do not permit isolation patterns for �

u⌫

, as this would force either
�

be

, U1i, or the special combinations of V

ij

seen in (50)-(51) to be zero check this bit within PDG
CKM uncertainties...I’ve only done it for central values at the moment, and none of these options are
phenomenologically acceptable.

We therefore conclude that, when �

dl

is of isolation pattern form and experimental data are consid-
ered, there are only two sets of viable couplings allowed by weak SU(2) and flavour T

u,d,l,⌫

symmetries:

{�
dl

,�

d⌫

,�

ul

,�

u⌫

} =

8
><

>:

{�[e]
dl

,�

[I]
d⌫

,�

[I1]
ul

,�

[I1]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= �

u

= �

u

{�[e]
dl

,�

[I]
d⌫

,�

[I2]
ul

,�

[I2]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= ↵

u

= �

u

(52)

and all other phases free, so long as T
a

has at least two distinct phases, as per our original assumption
(see below for a comment on relaxing this). This result is remarkably restrictive (and predictive). Note
also that, since in both the up and down sectors we can only resolve two generations, we should not
expect to be able to predict the full three-generation CKM mixing within the confines of our strict
residual symmetry approach. On the other hand, three generation leptonic mixing is still viable (up to
the experimental caveat regarding U

13
PMNS

mentioned above), because the restriction ↵

⌫

= �

⌫

is still
consistent with the residual Klein symmetry of the Majorana neutrino mass term!

3.2.2 �dl = �[eµ,µ⌧,e⌧ ]

3.2.3 �dl = �[eµ1,1µ⌧,e1⌧ ]

3.2.4 A Comment on Reducing the Symmetry of the Lagrangian

4 Closing Finite Groups for Fermionic Mixing and R
K

(?)
,D

(?)

We now have all relevant information required to close non-Abelian parent flavour symmetries G
F

that
are capable of addressing fermionic mixing in the Standard Model and leptoquark Yukawa couplings that
saturate anomalous signals for lepton non-universality. In particular, our bottom up approach tracks
the symmetry breaking backwards in (1), using the generators of the Abelian residual subgroups G

a

with
a 2 {u, d, l, ⌫} to close the larger G

F

. The method of reconstruction we use to perform these closures is
documented in [3] and [4], although we detail the basic steps below for completeness:

4.1 Residual Symmetry Assignment, Generator Formation, and Discretiza-

tion:

We assign the simplest possible (discrete) residual symmetry to each family sector, namely that mediated
by a single cyclic group:3

G

a

⇠ Z

na
a

(53)

3Hence we do not consider the full Klein symmetry of the Majorana neutrino mass matrix.
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where i 2 {1, 2, 3} and its specific value determined by the phases of T
u

. Taking the absolute value of
(49), we see immediately from (68) that i = 3 is not a viable solution, and therefore �

u

= �

u

= �↵

l

(i = 1) or ↵
u

= �

u

= �↵

l

(i = 2). We label these two couplings �[I1]
ul

and �

[I2]
ul

, respectively. Finally, we
write down �

u⌫

:

�

[I1]
u⌫

= �0

0

BB@

0 0 0

U11

⇣
V13V22
V12

� V23

⌘
�

be

U12

⇣
V13V22
V12

� V23

⌘
�

be

0

U11

⇣
V13V32
V12

� V33

⌘
�

be

U12

⇣
V13V32
V12

� V33

⌘
�

be

0

1

CCA (50)

�

[I2]
u⌫

= �0

0

BB@

U11

⇣
V12V23
V22

� V13

⌘
�

be

U12

⇣
V12V23
V22

� V13

⌘
�

be

0

0 0 0

U11

⇣
V23V32
V22

� V33

⌘
�

be

U12

⇣
V23V32
V22

� V33

⌘
�

be

0

1

CCA (51)

with U13 already set to zero, and the two di↵erent matrices corresponding to the two viable solutions
of (49). These couplings are allowed by T

u,⌫

when ↵

⌫

= �

⌫

= ��

u

= ��

u

or ↵

⌫

= �

⌫

= �↵

u

= ��

u

,
respectively. Observe that (50)-(51) do not permit isolation patterns for �

u⌫

, as this would force either
�

be

, U1i, or the special combinations of V

ij

seen in (50)-(51) to be zero check this bit within PDG
CKM uncertainties...I’ve only done it for central values at the moment, and none of these options are
phenomenologically acceptable.

We therefore conclude that, when �

dl

is of isolation pattern form and experimental data are consid-
ered, there are only two sets of viable couplings allowed by weak SU(2) and flavour T

u,d,l,⌫

symmetries:

{�
dl

,�

d⌫

,�

ul

,�

u⌫

} =

8
><

>:

{�[e]
dl

,�

[I]
d⌫

,�

[I1]
ul

,�

[I1]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= �

u

= �

u

{�[e]
dl

,�

[I]
d⌫

,�

[I2]
ul

,�

[I2]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= ↵

u

= �

u

(52)

and all other phases free, so long as T
a

has at least two distinct phases, as per our original assumption
(see below for a comment on relaxing this). This result is remarkably restrictive (and predictive). Note
also that, since in both the up and down sectors we can only resolve two generations, we should not
expect to be able to predict the full three-generation CKM mixing within the confines of our strict
residual symmetry approach. On the other hand, three generation leptonic mixing is still viable (up to
the experimental caveat regarding U

13
PMNS

mentioned above), because the restriction ↵

⌫

= �

⌫

is still
consistent with the residual Klein symmetry of the Majorana neutrino mass term!

3.2.2 �dl = �[eµ,µ⌧,e⌧ ]

3.2.3 �dl = �[eµ1,1µ⌧,e1⌧ ]

3.2.4 A Comment on Reducing the Symmetry of the Lagrangian

4 Closing Finite Groups for Fermionic Mixing and R
K

(?)
,D

(?)

We now have all relevant information required to close non-Abelian parent flavour symmetries G
F

that
are capable of addressing fermionic mixing in the Standard Model and leptoquark Yukawa couplings that
saturate anomalous signals for lepton non-universality. In particular, our bottom up approach tracks
the symmetry breaking backwards in (1), using the generators of the Abelian residual subgroups G

a

with
a 2 {u, d, l, ⌫} to close the larger G

F

. The method of reconstruction we use to perform these closures is
documented in [3] and [4], although we detail the basic steps below for completeness:

4.1 Residual Symmetry Assignment, Generator Formation, and Discretiza-

tion:

We assign the simplest possible (discrete) residual symmetry to each family sector, namely that mediated
by a single cyclic group:3

G

a

⇠ Z

na
a

(53)

3Hence we do not consider the full Klein symmetry of the Majorana neutrino mass matrix.

8

where i 2 {1, 2, 3} and its specific value determined by the phases of T
u

. Taking the absolute value of
(49), we see immediately from (68) that i = 3 is not a viable solution, and therefore �

u

= �

u

= �↵

l

(i = 1) or ↵
u

= �

u

= �↵

l

(i = 2). We label these two couplings �[I1]
ul

and �

[I2]
ul

, respectively. Finally, we
write down �

u⌫

:

�

[I1]
u⌫

= �0

0

BB@

0 0 0

U11

⇣
V13V22
V12

� V23

⌘
�

be

U12

⇣
V13V22
V12

� V23

⌘
�

be

0

U11

⇣
V13V32
V12

� V33

⌘
�

be

U12

⇣
V13V32
V12

� V33

⌘
�

be

0

1

CCA (50)

�

[I2]
u⌫

= �0

0

BB@

U11

⇣
V12V23
V22

� V13

⌘
�

be

U12

⇣
V12V23
V22

� V13

⌘
�

be

0

0 0 0

U11

⇣
V23V32
V22

� V33

⌘
�

be

U12

⇣
V23V32
V22

� V33

⌘
�

be

0

1

CCA (51)

with U13 already set to zero, and the two di↵erent matrices corresponding to the two viable solutions
of (49). These couplings are allowed by T

u,⌫

when ↵

⌫

= �

⌫

= ��

u

= ��

u

or ↵

⌫

= �

⌫

= �↵

u

= ��

u

,
respectively. Observe that (50)-(51) do not permit isolation patterns for �

u⌫

, as this would force either
�

be

, U1i, or the special combinations of V

ij

seen in (50)-(51) to be zero check this bit within PDG
CKM uncertainties...I’ve only done it for central values at the moment, and none of these options are
phenomenologically acceptable.

We therefore conclude that, when �

dl

is of isolation pattern form and experimental data are consid-
ered, there are only two sets of viable couplings allowed by weak SU(2) and flavour T

u,d,l,⌫

symmetries:

{�
dl

,�

d⌫

,�

ul

,�

u⌫

} =

8
><

>:

{�[e]
dl

,�

[I]
d⌫

,�

[I1]
ul

,�

[I1]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= �

u

= �

u

{�[e]
dl

,�

[I]
d⌫

,�

[I2]
ul

,�

[I2]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= ↵

u

= �

u

(52)

and all other phases free, so long as T
a

has at least two distinct phases, as per our original assumption
(see below for a comment on relaxing this). This result is remarkably restrictive (and predictive). Note
also that, since in both the up and down sectors we can only resolve two generations, we should not
expect to be able to predict the full three-generation CKM mixing within the confines of our strict
residual symmetry approach. On the other hand, three generation leptonic mixing is still viable (up to
the experimental caveat regarding U

13
PMNS

mentioned above), because the restriction ↵

⌫

= �

⌫

is still
consistent with the residual Klein symmetry of the Majorana neutrino mass term!

3.2.2 �dl = �[eµ,µ⌧,e⌧ ]

3.2.3 �dl = �[eµ1,1µ⌧,e1⌧ ]

3.2.4 A Comment on Reducing the Symmetry of the Lagrangian

4 Closing Finite Groups for Fermionic Mixing and R
K

(?)
,D

(?)

We now have all relevant information required to close non-Abelian parent flavour symmetries G
F

that
are capable of addressing fermionic mixing in the Standard Model and leptoquark Yukawa couplings that
saturate anomalous signals for lepton non-universality. In particular, our bottom up approach tracks
the symmetry breaking backwards in (1), using the generators of the Abelian residual subgroups G

a

with
a 2 {u, d, l, ⌫} to close the larger G

F

. The method of reconstruction we use to perform these closures is
documented in [3] and [4], although we detail the basic steps below for completeness:

4.1 Residual Symmetry Assignment, Generator Formation, and Discretiza-

tion:

We assign the simplest possible (discrete) residual symmetry to each family sector, namely that mediated
by a single cyclic group:3

G

a

⇠ Z

na
a

(53)

3Hence we do not consider the full Klein symmetry of the Majorana neutrino mass matrix.

8

with the basis-transformed symmetry generators given by:

T�d

= U

��

† T
d

U

†
��

† , T�l

= U

�

†
�

T

l

U

†
�

†
�

(44)

T�u

= U

?

CKM

T

u

U

T

CKM

, T�⌫

= U

PMNS

T

⌫

U

†
PMNS

(45)

and as always there are additional (unphysical) generators that are functions of the right-handed matrices
U

R. Note that because we assume a Majorana form for the neutrino mass sector, the generator T

⌫

is
given by equation (4), as the maximal residual symmetry for the sector is a Klein Z2⇥Z2 [], and indeed
in principle there are two independent generators T

⌫1,⌫2 that leave the term invariant, one associated to
each Z2. Repeating the above analysis in the presence of a Dirac neutrino mass is straightforward and
follows analogously to the charged fermions. As a final point, we observe that in this basis our flavour
symmetry G

F

only ‘knows’ about SM fermionic mixing via the residual symmetries in the up (CKM)
and neutrino (PMNS) sectors. Not including these in our final generating set (cf. Section 4.3) amounts
to only quantizing the Yukawa sector of the leptoquarks.

We now analyze the implications of (37) for permissible �
dl

. As before, the solutions for each equation
implied by (37) give matrices analogous to those in Section 3.1.1:

�

QL

2 {
0

@
�

Q1L1 0 0
�

Q2L1 0 0
�

Q3L1 0 0

1

A
,

0

@
�

Q1L1 �

Q1L2 0
�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A
,

0

@
�

Q1L1 �

Q1L2 �

Q1L3

�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A} (46)

for Q 2 {u, d} and L 2 {l, ⌫}. Again, if we do not allow ↵

Q

= �

Q

= �

Q

, one element per column check
in each matrix of (46) is forced to be zero, and of course the solutions {�

L

, �

L

} = ��

Q

, with �

Q

equal
to two phases in the quark generator, permute the columns of �

QL

(in (46) we have only shown the
↵

L

= ��

Q

solution for brevity). It is important to note that, so long as T

Q,L

are symmetries of the
Lagrangian, (46) holds regardless of the relationships implied by (39) — it is true simply by virtue of
the phase constraints in T

Q

and T

L

. We now treat each acceptable pattern of �
dl

case by case.

3.2.1 �dl = �

[e,µ,⌧ ]
dl

We first treat the case where �

dl

is in an isolation pattern, for which the explicit matrix for �
d⌫

is given
by

�

[I]
d⌫

=
�0p
2

0

@
0 0 0

U11�se

U12�se

U13�se

U11�be

U12�be

U13�be

1

A (47)

where here and below we use the shorthand U

ij

PMNS

= U

ij

and (U ij

CKM

)? = V

ij

, and we have only
presented the matrix corresponding to electron isolation, and correspondingly set �

de

= 0. Muon or tau
isolation simply implies e ! {µ, ⌧} and U1i ! {U2i, U3i} in (47), respectively.

We first notice that this coupling is not allowed to take an isolation pattern, as this would force
all entries (in all couplings) to zero, since only one matrix element of U

PMNS

is measured to be small.
This then leaves us with the multi column options, where we further read o↵ that the �

1i
d⌫

row is zero (a
consequence of �

d

= �

d

). Next, we need to set two matrix elements in one column to zero in (47). This
constraint is particularly powerful because, regardless of whether �

dl

isolates electrons, muons, or tauons
this requires either �

sl

= �

bl

= 0 or a single matrix element of U
PMNS

to zero. The former option sets
all leptoquark Yukawa couplings to zero, so is not interesting. Hence, our residual flavour symmetry is
forcing us to a limit where U

PMNS

has a null matrix element, and the only viable option is to allow
U13 = 0, which is still a reasonable approximation to data and the starting point of many flavour models

[]. We then find that �
dl

= �

[e]
dl

, as all other isolation patterns would require some other mixing element

to be zero! We conclude that �[I]
d⌫

sets �
dl

= �

[e]
dl

, U13
PMNS

= 0, and ↵

⌫

= �

⌫

= ��

d

= ��

d

. Now consider
the �

ul

coupling:

�

ul

=
�0p
2

0

@
V13�be

+ V12�se

0 0
V23�be

+ V22�se

0 0
V33�be

+ V32�se

0 0

1

A (48)

We see that �

ul

is naturally of an isolation pattern form, with the following constraint on one of its
matrix elements:

�

se

�

be

= �V

i3

V

i2
(49)
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✤ Similar analyses can be performed for the other permissible down-lepton patterns…

✤ That is, the residual flavour symmetries of the SM restrict us to two possible patterns!

✤ Experimental constraints on one of the up-lepton elements permit two up-neutrino couplings

✤ SU(2)L simultaneously constrains couplings between other quark and lepton species:



[ Guided model building ][ 3 ]
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PSL2(7) SO(3)∆(96)

∆(27)

SU(3)

A4

S4 A5T7

Figure 7: Examples of subgroups of SU(3) with triplet representations discussed in this review.
A line connecting two groups indicates that the smaller is a subgroup of the bigger one.

from these groups in a direct or semi-direct way, see Subsection 6.3. Yet, from the model

building point of view it can still be useful to change to a basis in which the order three

generator becomes diagonal [96], analogously to the case of S4. In Appendix C we list the

generators and Clebsch-Gordan coefficients of the groups S4, A4 and T7 in the T diago-

nal basis. Their relation to SU(3) and some of its subgroups is schematically illustrated

in Fig. 7.

6. Discrete family symmetries and model building approaches

6.1 Family symmetries and flavons

The masses and mixings of the three families of quarks and leptons result from the form

of the respective Yukawa matrices formulated in the flavour basis. Is there an organising

principle which dictates the family structure of these Yukawa couplings? While this review

takes the view that the observed mass and mixing patterns can be traced back to a family

symmetry, we remark that some authors answer this question negatively, referring to a

landscape of parameter choices out of which Nature has picked one that is compatible with

the experimental measurements. In particular, the observation of a large reactor angle

has been interpreted as a sign for an anarchical neutrino mass matrix [97]. Following

the symmetry approach, it is clear that the family symmetry must be broken in order

to generate the observed non-trivial structures. This is achieved by means of Higgs-type

fields. These so-called flavon fields φ are neutral under the SM gauge group and break

the family symmetry spontaneously by acquiring a VEV. This VEV in turn introduces an

expansion parameter

ϵ =
⟨φ⟩
Λ

, (6.1)

– 39 –

Reviews: King, Luhn:  hep-ph/1301.1340, 
Grimus, Ludl:  hep-ph/1110.6376, Altarelli, 

Feruglio: hep-ph/1002.0211
Encyclopedia: Ishimori et al.:  hep-ph/1003.3552

All of these 
symmetries 
have been 
explored in 
models…

✤ Huge literature:  Pakvasa, Sugawara (1977) use S3 for Cabibbo angle.  Deshpande uses S4 for full 
CKM and Pakvasa applies S4 to neutrino mass and mixing (1984).  Early 90s discussion (Kaplan, 
Schmaltz; Frampton, Kephart), TBM and GUT models established early-mid 00s (Ma, Rajasekaran; 
Altarelli, Feruglio, de M. Varzielas, King, Ross +), new flood in 2012/13 after reactor angle…

✤ U(1)FN symmetries difficult to reconcile with large neutrino mixing -> non-Abelian groups
✤ Discrete symmetries avoid Goldstone modes that could spoil phenomenology, easily embedded in 

SUSY GUTs, extra dimensional theories — naturally pumped out of orbifold compactifications!
✤ Easier facilitation of vacuum alignment than with continuous symmetries

Figure from King/Luhn



[ Building up non-Abelian discrete groups ]
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✤ How does the parent symmetry break to different families? 

Figure 4.3: The field content and symmetry assignments from a specific see-saw realization of
the A

4

model of Altarelli and Feruglio [246].

4.4 A Bottom-Up Approach to Scanning NADS

We have now seen that NADS are powerful tools in the e�ort to explain the observed

structure of fermionic masses and mixings. In particular, they allow for precise predictions

of mixing matrices and, when coupled with other auxiliary symmetries, can also help

organize mass patterns. Flavour models employing discrete symmetries are generically

classified as ‘direct,’ ‘semi-direct,’5 and ‘indirect’ (see [223] for a review). In the context

of direct or semi-direct models, one might assume that, at very high energies normally at

or above the GUT scale, a parent flavour symmetry GF breaks to subgroups in the quark

GQ and lepton GL sectors, which then subsequently break to subgroups in the charged

lepton G
e

, neutrino G‹ , up G
u

and down G
d

sectors:

GF æ

Y
_____________]

_____________[

GL æ

Y
___]

___[

G‹

G
e

GQ æ

Y
___]

___[

G
u

G
d

(4.27)

This schematic simplifies if GF = GL = GQ, in which case the first arrow disappears and

one only considers a single reduction to the final residual symmetries. If GL and GQ have

separate origins GF can be constructed from the direct product of the groups that give

rise to GL and GQ. Regardless of the breaking patterns, the parent symmetries must

be non-abelian (NA) in order for generations to be arranged in irreducible multiplets
5The A

4

model we presented in the previous section actually represents a semi-direct model, as the
full Klein symmetry of the neutrino mass matrix was not employed to realize TBM mixing, but instead
only a single Z

2

.
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c
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i
3 ✓

j
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c
j H ) M /h✓3i2

0

@
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0 0 0

0 0 1

1

A

(14)

LY ( , c, H, ✓i) , M ( , c, hH, ✓ii) (15)

⌫L = (⌫e, ⌫µ, ⌫⌧) (16)

GBSM = Z2 (17)

G⌫ = Z2 ⇥ Z2 (18)

2

G⌫ = Z2 ⇥ Z2 (18)

Ge =? (19)

3

Imposing (4.18) on Mµ·
‹U tells us that it is also the most general matrix invariant under

the action of an additional operator ST BM (
Ë
ST BM , Sµ·

È
= 0):

Mµ·
T BM = ST BMMµ·

T BMST BM (4.21)

where

ST BM = 1
3

Q

cccccca

≠1 2 2

2 ≠1 2

2 2 ≠1

R

ddddddb
(4.22)

As mentioned at the end of the last section, we can interpret this as the generator of yet

another cyclic symmetry Z
2

. Hence we have identified two potential ‘residual’ symmetries

of the Majorana mass term, both of which commute with one another and hence form

(when both are present) a single abelian Klein group: G‹ ≥ Z
2

◊ Z
2

.

Are there any other residual symmetries we can identify? Let us look to the charged

lepton mass term which, up until now, we have neglected because it had no impact on

the observable mixing (since we took it to be in a diagonal basis):

Ll,mass

≥ ERmllL + h.c. (4.23)

where ER and lL are triplets of right and left-handed charged leptons respectively, and

ml is the diagonal mass matrix of charged leptons. If we work with the combination

m2

l = m†
l ml, which transforms with a single unitary rotation matrix as m2Õ = U †

e m2Ue,

then this matrix will also be invariant under the action of an additional diagonal phase

matrix (with three phases) T :

m†
l ml = T †m†

l mlT

In principle T represents the action of a continuous symmetry, as (4.23) is invariant under

U(1)3 (see Section 4.4 below for more details). However, if we insist that T generate a

cyclic symmetry Zm such that T m = I, then, in the simplest case for three generations,

m = 3 and T is given by:

T T BM =

Q

cccccca

1 0 0

0 Ê 0

0 0 Ê2

R

ddddddb
(4.24)
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Invariant under U(1)3 rotations
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(when both are present) a single abelian Klein group: G‹ ≥ Z
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.
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lepton mass term which, up until now, we have neglected because it had no impact on

the observable mixing (since we took it to be in a diagonal basis):

Ll,mass
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where ER and lL are triplets of right and left-handed charged leptons respectively, and

ml is the diagonal mass matrix of charged leptons. If we work with the combination

m2

l = m†
l ml, which transforms with a single unitary rotation matrix as m2Õ = U †

e m2Ue,

then this matrix will also be invariant under the action of an additional diagonal phase

matrix (with three phases) T :

m†
l ml = T †m†

l mlT

In principle T represents the action of a continuous symmetry, as (4.23) is invariant under

U(1)3 (see Section 4.4 below for more details). However, if we insist that T generate a

cyclic symmetry Zm such that T m = I, then, in the simplest case for three generations,
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ddddddb
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We did just this when analyzing the symmetry structure of TBM mixing in Section 4.3,

albeit in an ad-hoc way. From the neutrino mass term one actually notes that a generic

Z
2

◊ Z
2

Klein transformation of the neutrino triplets leaves the mass matrix invariant:

‹ æ SiU‹ , (i = 1, 2, 3) and SiU = UP MNSSiU
†
P MNS (4.29)

We work in the following diagonalized Klein basis:

S
1

= diag (1, ≠1, ≠1) , S
2

= diag (≠1, 1, ≠1) , S
3

= diag (≠1, ≠1, 1)

Thus we can identify G‹ with the Klein group formed by SiU and SjU , or a single Z
2

formed by SiU , regardless of the mixing pattern realized. It can actually be shown that

the Klein symmetry is the maximal possible symmetry for a Majorana mass term, given

three massive neutrinos [223].

From the charged lepton mass term, we see that there is a U(1) invariance for each

active generation. Given that neutrinos and charged leptons belong to the same SU(2)L

doublet, the natural residual symmetry of this mass term is U(1)3. We assume that

G
e

= Zl, so that it is finite. An explicit matrix representation of the G
e

is given by:

T = diag
1
ei„e , ei„µ , ei„·

2
where „i = 2fi

ki

l
and i = e, µ, · (4.30)

It is clear that the order of the generator T is given by l. If we assume further that G
e

is

a subgroup of SU(3) then we can reduce the number of free charges in T by 1 according

to „e + „µ + „· = 0, such that:

„· = ≠2fi
ke + kµ

l
(4.31)

Remember that, as we have put the charged leptons in a diagonal basis, T is also already

diagonal. This basis is preferable because it is particularly amenable to theorists wishing

to, e.g., introduce charged lepton corrections [235–237] that may arise at a higher order,

as may be motivated in analogy to the quark sector (and thus approaches related to

Grand Unified Theories [265–270]).

Having identified the residual symmetries and written down explicit forms for their

generators, one is now in a position to ‘reconstruct’ the parent symmetry GL, as it is

merely the group of all product matrices of SiU and T .

100

✤ Hence the parent group can be understood as the closure of the residual 
generators:

Finally, having created the unique generators SiU and Tj in a specified interval of

(n, m, ki, l) and also a specified experimental ‡-range, we are in a position to form the

parent groups GF closed by them. GAP is capable of constructing groups directly from the

matrix representations of generators. It does so quickly using the GroupWithGenerators

command. The idea is to form all groups closed by

GF = {SiU , SjU , Tk} (4.44a)

GF = {SiU , Tk} (4.44b)

(4.44a) treats the case where UP MNS is fully constrained by G‹ = Z
2

◊ Z
2

and GL has

such G‹ as a subgroup. (4.44b) treats the case where UP MNS has unquantized degrees of

freedom or where the model in consideration treats one Z
2

invariance of the mass matrix

as accidental (both cases correspond to only a single equality in (4.37)). This latter

situation is the case, for example, in the A
4

model of Feruglio and Altarelli [243,244].

Before closing the viable parent groups, though, we do some filtering. First, we test

whether or not the order of Wi © (SiUTk) is finite (and also Wj © SjUTk for the case

of (4.44a)), as is true whenever the parent group formed by the residuals is finite. For

those sets of generators that pass, we then test whether or not the GL closed by them

is 1) of order 5 1000 and 2) NA. The former constraint can easily be tuned to the

model builder’s preference. We also cut those groups of order 512, as GAP’s SmallGroup

library does not assign a unique ID for them. Whenever a group is formed, we collect the

associated parameters (b, c) and the explicit form of T (for generator and mixing matrix

reconstruction).

Finally, then, we have created/found the NA groups of order 5 1000 (excluding groups

of order 512) closed by the ‘phenomenologically viable’ generators in (4.62), within a pre-

selected iteration range for the variables (n, m, ki, l) and an experimentally determined

‡-range. Having done so, we identify the GroupID and StructureDescription 11 of the

group and couple this information to the associated group parameters.
11Note that StructureDescription is not an isomorphism invariant command — two non-isomorphic

groups can return the same group structure string while isomorphic groups in di�erent representations
can return di�erent strings. On the other hand, the GroupID is unique.
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✤ The same is true for the up and down quark mass matrices.

G⌫ = Z2 ⇥ Z2 (18)

Ge =? (19)

�i = 2⇡
ki
m

) Ge = Zm m � 2, 3 (20)

3

Discrete phases yield discrete symmetries:

✤ Multiple scans have been performed searching for symmetries capable of 
predicting SM quark and lepton mixing. 
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[ Symmetry scans with GAP ]
Lam: hep-ph/1208.5527

Holthausen, Lim, Linder:  hep-ph/1212.2411
Holthausen, Lim:  hep-ph/1306.4356

General Approach and Conclusions
✤ Assume a structure for residual subgroups and/or mixing 
✤ Use Lagrange’s Theorem to sift through finite groups up to a specified order 
✤ Assume parent group a subgroup of SU(3), SU(2), etc. 
✤ Assume certain types of irreducible representations

✤ For quarks, no group has been found to reproduce full CKM mixing exactly. 
✤ For quarks, Cabibbo mixing can be (somewhat) realized with simple groups. 
✤ For leptons, no group up to order (~103) can fully quantize within 1 sigma 
✤ For leptons, groups order (~102) can quantize 1 column or full matrix within 3 sigma

Lavoura, Ludl:  hep-ph/1401.5036
JT:  hep-ph/1409.7310

Yao, Ding:  hep-ph/1505.03798
d.M.Varzielas, Rasmussen, JT:  hep-ph/1605.03581

…

✤ What happens if an additional coupling is present, subject to the above flavour symmetries?

Moving Forward
✤ See talks by Gui-Jun Ding later in the week!
✤ HOWEVER, note that these scans assume a very specific type of symmetry breaking pattern…
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[ Bottom-up scans:  basic algorithm ]
JT:  hep-ph/1409.7310

with the basis-transformed symmetry generators given by:

T�d

= U

��

† T
d

U

†
��

† , T�l

= U

�

†
�

T

l

U

†
�

†
�

(44)

T�u

= U

?

CKM

T

u

U

T

CKM

, T�⌫

= U

PMNS

T

⌫

U

†
PMNS

(45)

and as always there are additional (unphysical) generators that are functions of the right-handed matrices
U

R. Note that because we assume a Majorana form for the neutrino mass sector, the generator T

⌫

is
given by equation (4), as the maximal residual symmetry for the sector is a Klein Z2⇥Z2 [], and indeed
in principle there are two independent generators T

⌫1,⌫2 that leave the term invariant, one associated to
each Z2. Repeating the above analysis in the presence of a Dirac neutrino mass is straightforward and
follows analogously to the charged fermions. As a final point, we observe that in this basis our flavour
symmetry G

F

only ‘knows’ about SM fermionic mixing via the residual symmetries in the up (CKM)
and neutrino (PMNS) sectors. Not including these in our final generating set (cf. Section 4.3) amounts
to only quantizing the Yukawa sector of the leptoquarks.

We now analyze the implications of (37) for permissible �
dl

. As before, the solutions for each equation
implied by (37) give matrices analogous to those in Section 3.1.1:

�

QL

2 {
0

@
�

Q1L1 0 0
�

Q2L1 0 0
�

Q3L1 0 0

1

A
,

0

@
�

Q1L1 �

Q1L2 0
�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A
,

0

@
�

Q1L1 �

Q1L2 �

Q1L3

�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A} (46)

for Q 2 {u, d} and L 2 {l, ⌫}. Again, if we do not allow ↵

Q

= �

Q

= �

Q

, one element per column check
in each matrix of (46) is forced to be zero, and of course the solutions {�

L

, �

L

} = ��

Q

, with �

Q

equal
to two phases in the quark generator, permute the columns of �

QL

(in (46) we have only shown the
↵

L

= ��

Q

solution for brevity). It is important to note that, so long as T

Q,L

are symmetries of the
Lagrangian, (46) holds regardless of the relationships implied by (39) — it is true simply by virtue of
the phase constraints in T

Q

and T

L

. We now treat each acceptable pattern of �
dl

case by case.

3.2.1 �dl = �

[e,µ,⌧ ]
dl

We first treat the case where �

dl

is in an isolation pattern, for which the explicit matrix for �
d⌫

is given
by

�

[I]
d⌫

=
�0p
2

0

@
0 0 0

U11�se

U12�se

U13�se

U11�be

U12�be

U13�be

1

A (47)

where here and below we use the shorthand U

ij

PMNS

= U

ij

and (U ij

CKM

)? = V

ij

, and we have only
presented the matrix corresponding to electron isolation, and correspondingly set �

de

= 0. Muon or tau
isolation simply implies e ! {µ, ⌧} and U1i ! {U2i, U3i} in (47), respectively.

We first notice that this coupling is not allowed to take an isolation pattern, as this would force
all entries (in all couplings) to zero, since only one matrix element of U

PMNS

is measured to be small.
This then leaves us with the multi column options, where we further read o↵ that the �

1i
d⌫

row is zero (a
consequence of �

d

= �

d

). Next, we need to set two matrix elements in one column to zero in (47). This
constraint is particularly powerful because, regardless of whether �

dl

isolates electrons, muons, or tauons
this requires either �

sl

= �

bl

= 0 or a single matrix element of U
PMNS

to zero. The former option sets
all leptoquark Yukawa couplings to zero, so is not interesting. Hence, our residual flavour symmetry is
forcing us to a limit where U

PMNS

has a null matrix element, and the only viable option is to allow
U13 = 0, which is still a reasonable approximation to data and the starting point of many flavour models

[]. We then find that �
dl

= �

[e]
dl

, as all other isolation patterns would require some other mixing element

to be zero! We conclude that �[I]
d⌫

sets �
dl

= �

[e]
dl

, U13
PMNS

= 0, and ↵

⌫

= �

⌫

= ��

d

= ��

d

. Now consider
the �

ul

coupling:

�

ul

=
�0p
2

0

@
V13�be

+ V12�se

0 0
V23�be

+ V22�se

0 0
V33�be

+ V32�se

0 0

1

A (48)

We see that �

ul

is naturally of an isolation pattern form, with the following constraint on one of its
matrix elements:

�

se

�

be

= �V

i3

V

i2
(49)

7

✤ Apply experimental constraints to discretized parameters:

✤ Form residual symmetry generators:

✤ Close groups with GAP and apply user-defined preferences:

✤ Discretize free parameters in mixing matrices:

where i 2 {1, 2, 3} and its specific value determined by the phases of T
u

. Taking the absolute value of
(49), we see immediately from (68) that i = 3 is not a viable solution, and therefore �

u

= �

u

= �↵

l

(i = 1) or ↵
u

= �

u

= �↵

l

(i = 2). We label these two couplings �[I1]
ul

and �

[I2]
ul

, respectively. Finally, we
write down �

u⌫

:

�

[I1]
u⌫

= �0

0

BB@

0 0 0

U11

⇣
V13V22
V12

� V23

⌘
�

be

U12

⇣
V13V22
V12

� V23

⌘
�

be

0

U11

⇣
V13V32
V12

� V33

⌘
�

be

U12

⇣
V13V32
V12

� V33

⌘
�

be

0

1

CCA (50)

�

[I2]
u⌫

= �0

0

BB@

U11

⇣
V12V23
V22

� V13

⌘
�

be

U12

⇣
V12V23
V22

� V13

⌘
�

be

0

0 0 0

U11

⇣
V23V32
V22

� V33

⌘
�

be

U12

⇣
V23V32
V22

� V33

⌘
�

be

0

1

CCA (51)

with U13 already set to zero, and the two di↵erent matrices corresponding to the two viable solutions
of (49). These couplings are allowed by T

u,⌫

when ↵

⌫

= �

⌫

= ��

u

= ��

u

or ↵

⌫

= �

⌫

= �↵

u

= ��

u

,
respectively. Observe that (50)-(51) do not permit isolation patterns for �

u⌫

, as this would force either
�

be

, U1i, or the special combinations of V

ij

seen in (50)-(51) to be zero check this bit within PDG
CKM uncertainties...I’ve only done it for central values at the moment, and none of these options are
phenomenologically acceptable.

We therefore conclude that, when �

dl

is of isolation pattern form and experimental data are consid-
ered, there are only two sets of viable couplings allowed by weak SU(2) and flavour T

u,d,l,⌫

symmetries:

{�
dl

,�

d⌫

,�

ul

,�

u⌫

} =

8
><

>:

{�[e]
dl

,�

[I]
d⌫

,�

[I1]
ul

,�

[I1]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= �

u

= �

u

{�[e]
dl

,�

[I]
d⌫

,�

[I2]
ul

,�

[I2]
u⌫

} with �

d

= �

d

= �↵

⌫

= ��

⌫

= �↵

l

= ↵

u

= �

u

(52)

and all other phases free, so long as T
a

has at least two distinct phases, as per our original assumption
(see below for a comment on relaxing this). This result is remarkably restrictive (and predictive). Note
also that, since in both the up and down sectors we can only resolve two generations, we should not
expect to be able to predict the full three-generation CKM mixing within the confines of our strict
residual symmetry approach. On the other hand, three generation leptonic mixing is still viable (up to
the experimental caveat regarding U

13
PMNS

mentioned above), because the restriction ↵

⌫

= �

⌫

is still
consistent with the residual Klein symmetry of the Majorana neutrino mass term!

3.2.2 �dl = �[eµ,µ⌧,e⌧ ]

3.2.3 �dl = �[eµ1,1µ⌧,e1⌧ ]

3.2.4 A Comment on Reducing the Symmetry of the Lagrangian

4 Closing Finite Groups for Fermionic Mixing and R
K

(?)
,D

(?)

We now have all relevant information required to close non-Abelian parent flavour symmetries G
F

that
are capable of addressing fermionic mixing in the Standard Model and leptoquark Yukawa couplings that
saturate anomalous signals for lepton non-universality. In particular, our bottom up approach tracks
the symmetry breaking backwards in (1), using the generators of the Abelian residual subgroups G

a

with
a 2 {u, d, l, ⌫} to close the larger G

F

. The method of reconstruction we use to perform these closures is
documented in [3] and [4], although we detail the basic steps below for completeness:

4.1 Residual Symmetry Assignment, Generator Formation, and Discretiza-

tion:

We assign the simplest possible (discrete) residual symmetry to each family sector, namely that mediated
by a single cyclic group:3

G

a

⇠ Z

na
a

(53)

3Hence we do not consider the full Klein symmetry of the Majorana neutrino mass matrix.
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✤ Assign residual symmetries to each fermion sector:
with n

a

the order of the symmetry. Accordingly, the matrices represented by (??)-(??) and (26)-(27)
are the core group-theoretic and phenomenological engines of our study.

Continuing, we want to find non-Abelian flavour symmetries by closing structures generated by the
multiple Abelian subgroups of (53). We therefore construct the explicit representations found in (??)-
(??) and(26)-(27). We also intend to exploit the SmallGroup library of finite groups documented in the
GAP computational finite algebra package [], so we must choose a scheme where the free parameters ⇥

i

of
these matrices (e.g. ⇥

i

2 {↵l

j

,↵

d

j

, ...�

de

,�

bµ

, ...}) are explicitly quantized, otherwise we would not close
finite groups. Hence we must choose a ‘discretization scheme’ which can be scanned over. In previous
studies [] the generator representations depended on phases and trigonometric functions. For the special
case of �

dl

, however, we are not restricted to these sorts of parameterizations. We therefore choose the
following two naive schemes:

⇥
i

!
=

n

m

, with {n,m} 2 Integers (54)

⇥
i

!
=

r
n

m

(55)

which we refer to as ‘rational’ and ‘root rational’ discretizations. While these schemes may seem overly
naive, they are in fact extremely well motivated by the representation theory of finite groups, and indeed
in Section 5 we will show that they are su�cient to reconstruct of a diversity of non-Abelian groups.
Finally, our automation scripts must have a range of values for n,m to scan over. These domains will
not only determine the number of potentially relevant quantizations of �

dl

, but also even the order of the
cyclic groups in (53) that get distributed to each family sector. We will give details about the particular
domains we set for n,m for each special pattern of �

dl

we consider in Section 5. In most cases we will
see that a small window of quantizations generates a wealth of di↵erent group structures.

4.2 Experimental Constraints:

Upon forming the generator representations and choosing a discretization scheme, we must restrict the
values of our parameter scans to experimentally relevant intervals. In other words, a group that predicts
(e.g.) �

be

too large or small to address the observations is not interesting. For the study at hand we are
concerned with potential anomalies for the R

K

(?)
,D

(?) observables as well as the traditional observables
from the Standard Model Yukawa sector, i.e. fermionic masses and mixings.

Multiple papers have performed similar numerical scans to address CKM and/or PMNS mixing [].
The conclusions from those papers are, within the direct symmetry breaking approach embodied in (62)-
(65), that only large groups of O(102) are capable of predicting all three mixing angles of the PMNS
matrix while even larger groups are required to address CKM mixing (or even PMNS mixing alongside
of, say, the Cabibbo angle). Instead, it may be more natural to consider smaller groups that predict
these matrices to leading order, leaving other degrees of freedom unconstrained whose origins may be
found in other mechanisms, e.g. Renormalization Group running or next-to-leading order operators.4

Therefore, as our principle motivation in this paper is to search for groups predicting leptoquark Yukawa
matrices, we assume the following lowest order forms for the CKM and PMNS mixing matrices:

U

PMNS

' U

TBM

⌘

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CA+O �
✓

l

13

�
(56)

U

CKM

' U

C

⌘
0

@
cos ✓

c

sin ✓
c

0
� sin ✓

c

cos ✓
c

0
0 0 1

1

A+O �
✓

2
c

�
, sin ✓

c

!
= 0.225 (57)

if we don’t find anything, we can make di↵erent assumptions here The tri-bimaximal [] form of (56) still
provides an excellent description of leptonic mixing up to the small correction required by the reactor
angle ✓l13, and the exterior o↵ diagonal elements of the Cabibbo matrix in (57) are suppressed by one or
two orders of magnitude in comparison to the 1-2 sector, indicating a subleading origin for these matrix
elements. Accordingly, (56)-(57) dictate the form of T

⌫U

and T

uU

such that the only variation in their
sets is sourced from scanning over di↵erent charge assignments for the embedded T

⌫,u

.

4Insert comment about indirect models.
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3
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merge notation and make this important section flow better with paperYet we mainly consider
addressing both R

K

(?) and R
D

(?) anomalies with the V1(3, 1,+2/3) leptoquark as it is, unlike the scalar
and vector triplets S3, V3, not constrained by b ! s⌫⌫̄ processes. The V1 allows for two di↵erent types
of quark-lepton coupling matrices, Y

Q̄L

and Y

D̄E

. The first one, with SU(2)-doublet couplings can solve
the FCNC anomaly R

K

(?) if the matrix elements satisfy [8]

Y

⇤
bµ

Y

sµ

� Y

⇤
be

Y

se

M

2
' �1.1

(35TeV)2
. (58)

Therefore, at least two non-zero entries are required in Y

Q̄L

.
To address the charged current anomaly it su�ces to add a third coupling, Y

b⌧

. Taking into account
CKM-rotations to get the corresponding c⌫-vertex one finds [6]

|Y
b⌧

|
M

' 2

TeV
. (59)

Hence, three entries with all others vanishing explain the anomalies in a minimal way. Note, BSM
contributions from Y

Q̄L

only predict R

D

= R

D

⇤ , which is consistent with current data and subject
to further tests. Eq. (59) highlights the di�culty for perturbative models of flavor which explain the
PMNS-matrix by putting the lepton-doublets in a non-trivial representations of the flavor symmetry[6].
This, consequently leads to at least one spurion insertion in the Y

Q̄L

.-term in the Lagrangian, making
each of its entries < 1.

The other possibility, which escapes one spurion suppression is to use both Yukawas, Y
Q̄L

and Y

D̄E

.
This way, we need two entries from the former, which satisfy Eq. (58), and one entry in the latter for
b⌧ . This scenario predicts in general R

D

di↵erent from R

D

⇤ , so there are two constraints

(Y
sµ

+ V

cb

Y

bµ

)Y
b⌧

M

2
' �0.9 . . . 1.6

TeV2 , (R
D

⇤) (60)

(Y
sµ

+ V

cb

Y

bµ

)Y
b⌧

M

2
' �0.07 . . . 0.2

TeV2 , (R
D

) (61)

Here, we assumed for simplicity that R
K

(?) is due to muons. Both equations need to be satisfied to
account for the data, which is not possible at 1 �.

gh: with present data, the second option is even less appealing

4.3 Group Closure and Analysis:

The results of Points 1 - 3 are explicit representations for the generators of our flavour symmetries, a
range of possible quantizations that control their predictions, and limits from experiment that restrict
our results to those that are phenomenologically relevant. This leaves us with a set of 3 ⇥ 3 unitary
matrices, all of which are composed by finite entries. Our scripts then collect these generators and insist
that the parent symmetry G

F

is formed from their closure. To do so we call the GroupWithGenerators

command of the GAP language. Of course, we are free to assume a variety of di↵erent symmetry breaking
situations. For example, it is plausible that the mechanism or symmetry responsible for fermionic mixing
is independent of that controlling leptoquark couplings, and vice-versa. Similarly, PMNS mixing could
have origins independent of CKM mixing. For each special pattern of �

dl

considered, we therefore close
the groups generated by the following matrices:

G
F

⇠ {T�d

, T�l

, T�u

, T�⌫

} (62)

G
F

⇠ {T�d

, T�l

, T�u

} (63)

G
F

⇠ {T�d

, T�l

, T�⌫

} (64)

G
F

⇠ {T�d

, T�l

} (65)

These closures respectively treat the cases where a single flavour symmetry addresses fermionic mixing
and R anomalies, either CKM or PMNS mixing alongside of R anomalies, and R anomalies only.

Upon closing the groups generated from (62)-(65) we must still do some culling. For one, not all of
the groups will be finite, non-Abelian, of small-order, etc. The GAP software package includes a number
of internal commands that can be used to collect and filter results based on user-defined preferences.
We impose cuts such that we only reconstruct (relatively) small and non-Abelian finite groups. We
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3

leptons and quarks and assume the existence of a mechanism that forbids the second term that is

potentially dangerous with regards to proton decay. Our interest is therefore focused on the Yukawa

coupling matrix �, a 3 ⇥ 3 matrix in flavor space with rows (columns) carrying a quark (lepton)

flavor index, that we suppress for the moment to avoid clutter. The S3 can be represented in terms

of its isospin components as

S3 =

0

@ S
1/3
3

p
2S

4/3
3p

2S
�2/3
3 �S

1/3
3

1

A , (2)

where the superscripts denote the electric charge in units of e. The normalization is fixed to yield

canonically normalized kinetic terms for the complex scalar components.

Expanding the Lagrangian (1) in terms of the isospin components we obtain

LQL = �
p

2� d̄CL`L S
4/3
3 � � d̄CL ⌫L S

1/3
3 +

p
2� ūC

L ⌫L S
�2/3
3 � � ūC

L `L S
1/3
3 + h.c. (3)

The kinetic term for the leptoquark multiplet is written as

Lkin =
1

2
Tr

h
(DµS3)

† DµS3

i
. (4)

We assume the approximate mass degeneracy of the components within the multiplet. For the

collider study in section III we implement the model (3), (4) in Feynrules [34] to obtain the

corresponding Universal Feynrules Output (UFO) [35]. The latter is used as input to the MadGraph

event generator code [36].

To successfully accommodate present RK(⇤) data with the S3 one requires [21]

�bµ�⇤
sµ � �be�

⇤
se ' 1.1

M2
S3

(35 TeV)2
. (5)

Here, we label the element of the leptoquark Yukawa matrix � = �q` by the quark and lepton

flavors it couples to. By SU(2)L, �Ui` = V ⇤
ji�Dj`, where V denotes the CKM matrix, and U = u, c, t,

D = d, s, b and i, j = 1, 2, 3. Assuming i) that the SM hierarchies for the quark Yukawas are intact

in the leptoquark ones, couplings to third generation quarks are dominant [7, 37],

�d` ⇠ (✏3 . . . ✏4) �b` , �s` ⇠ ✏2 �b` , ` = e, µ, ⌧ . (6)

This can, for instance, be realized with a Froggatt-Nielsen-Mechanism [38], where ✏ ⇠ 0.2 denotes

a flavor parameter of the size of the sine of the Cabibbo angle. The ⇠ symbol indicates that a

relation holds up to factors of order one. Charged lepton mass hierarchies are taken care of by the

SU(2)L-singlet leptons, i.e., the lepton doublets are neutral under the Froggatt-Nielsen symmetry

Matrices necessary to go 
to diagonal LQ basis…

d.M.Varzielas, Rasmussen, JT:  hep-ph/1605.03581
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[ Isolation patterns for RK(*) ]

Electron Isolation and (Lowest Order) Fermionic Mixing

{y, x} T

ii
l T

ii
d T

ii
u T

ii
⌫ GAP-ID Group Structure

{0, 1} [-1, 1, -1] [-1, 1, -1] [8, 3] D8

{0, 1} [-1, 1, -1] [-i, 1, -i] [32, 11] ⌃(32)

{0, 1} [-1, 1, -1] [1, !2, !] [6, 1] S3

{0, 1} [1, -i, i] [1, i, -i] [8, 4] Q8

{1, 1} [!2, 1, !2] [!, 1, !] [24, 3] SL(2,3)

{1, 2} [-1, 1, -1] [!2, !, 1] [24, 12] S4

... ... ... ... ... ... ...

{p1/2,
p

3/2} [!, 1, !2] [-1, 1, -1] [12,3] A4

{p1/2,
p

3/2} [!, !2, 1] [!, 1, !] [81,7] (Z3 ⇥ Z3 ⇥ Z3)o Z3

{1, 1} [i, 1, -i] [!, !2, 1] [96, 64] � (96)

... ... ... ... ... ... ...

Table 4: Sample flavour symmetries predicting the electron isolation pattern, Cabibbo quark mixing, and
TBM lepton mixing . Table not complete by any means!

5.1 Electron/Muon Isolation Patterns

The simplest patterns considered by [7] as viable solutions to the R
K

(?) anomalies involve Yukawas that
isolate the electron or muon columns of (21):

�

[e]
dl

⇠
0

@
�

de

0 0
�

se

0 0
�

be

0 0

1

A
, �[µ] ⇠

0

@
0 �

dµ

0
0 �

sµ

0
0 �

bµ

0

1

A (66)

with the generation dependent couplings related to ⇢ and ⇢

d

parameters by

⇢

d

= �

dl

/�

bl

, ⇢ = �

sl

/�

bl

(67)

where l 2 {e, µ}. These parameters are constrained by (58), giving:

⇢

d

 0.02, 10�4  ⇢  1, ⇢

d

/⇢  1.6 (68)

We use (67) to reduce the free parameters in the mixing patters we derive, as �

bl

becomes an overall
multiplicative factor. We find

U

��

† =

0

BBBB@

� 1p
1+⇢

2
d

⇢dp
1+⇢

2+⇢

2
d

� ⇢ ⇢dp
1+⇢

2
d

p
1+⇢

2+⇢

2
d

0 ⇢p
1+⇢

2+⇢

2
d

p
1+⇢

2
dp

1+⇢

2+⇢

2
d

⇢dp
1+⇢

2
d

1p
1+⇢

2+⇢

2
d

� ⇢p
1+⇢

2
d

p
1+⇢

2+⇢

2
d

1

CCCCA
, U

�

†
�

=

0

BBB@

e

2⇡i/a 0 0

0 e

2⇡i/b 0

0 0 e

2⇡i/c

1

CCCA
(69)

where it is clear that the �

†
� matrix is already diagonal, such that T�l

= T

l

by virtue of (27). Also,
as expected, the model-independent flavour symmetry approach we utilize is incapable of di↵erentiating

5Observe that StructureDescription is not an isomorphism invariant command; two groups that are not isomorphic can
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{y, x} T

ii
l T

ii
d T

ii
u T

ii
⌫ GAP-ID Group Structure

{0, 1} [-1, 1, -1] [-1, 1, -1] [8, 3] D8

{0, 1} [-1, 1, -1] [-i, 1, -i] [32, 11] ⌃(32)

{0, 1} [-1, 1, -1] [1, !2, !] [6, 1] S3

{0, 1} [1, -i, i] [1, i, -i] [8, 4] Q8
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... ... ... ... ... ... ...

{p1/2,
p

3/2} [!, 1, !2] [-1, 1, -1] [12,3] A4

{p1/2,
p

3/2} [!, !2, 1] [!, 1, !] [81,7] (Z3 ⇥ Z3 ⇥ Z3)o Z3

{1, 1} [i, 1, -i] [!, !2, 1] [96, 64] � (96)

... ... ... ... ... ... ...

Table 4: Sample flavour symmetries predicting the electron isolation pattern, Cabibbo quark mixing, and
TBM lepton mixing . Table not complete by any means!

5.1 Electron/Muon Isolation Patterns

The simplest patterns considered by [7] as viable solutions to the R
K

(?) anomalies involve Yukawas that
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where l 2 {e, µ}. These parameters are constrained by (58), giving:
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with the basis-transformed symmetry generators given by:

T�d

= U

��

† T
d

U

†
��

† , T�l

= U

�

†
�

T

l

U

†
�

†
�

(44)

T�u

= U

?

CKM

T

u

U

T

CKM

, T�⌫

= U

PMNS

T

⌫

U

†
PMNS

(45)

and as always there are additional (unphysical) generators that are functions of the right-handed matrices
U

R. Note that because we assume a Majorana form for the neutrino mass sector, the generator T

⌫

is
given by equation (4), as the maximal residual symmetry for the sector is a Klein Z2⇥Z2 [], and indeed
in principle there are two independent generators T

⌫1,⌫2 that leave the term invariant, one associated to
each Z2. Repeating the above analysis in the presence of a Dirac neutrino mass is straightforward and
follows analogously to the charged fermions. As a final point, we observe that in this basis our flavour
symmetry G

F

only ‘knows’ about SM fermionic mixing via the residual symmetries in the up (CKM)
and neutrino (PMNS) sectors. Not including these in our final generating set (cf. Section 4.3) amounts
to only quantizing the Yukawa sector of the leptoquarks.

We now analyze the implications of (37) for permissible �
dl

. As before, the solutions for each equation
implied by (37) give matrices analogous to those in Section 3.1.1:

�

QL

2 {
0

@
�

Q1L1 0 0
�

Q2L1 0 0
�

Q3L1 0 0

1

A
,

0

@
�

Q1L1 �

Q1L2 0
�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A
,

0

@
�

Q1L1 �

Q1L2 �

Q1L3

�

Q2L1 �

Q1L2 0
�

Q3L1 �

Q1L2 0

1

A} (46)

for Q 2 {u, d} and L 2 {l, ⌫}. Again, if we do not allow ↵

Q

= �

Q

= �

Q

, one element per column check
in each matrix of (46) is forced to be zero, and of course the solutions {�

L

, �

L

} = ��

Q

, with �

Q

equal
to two phases in the quark generator, permute the columns of �

QL

(in (46) we have only shown the
↵

L

= ��

Q

solution for brevity). It is important to note that, so long as T

Q,L

are symmetries of the
Lagrangian, (46) holds regardless of the relationships implied by (39) — it is true simply by virtue of
the phase constraints in T

Q

and T

L

. We now treat each acceptable pattern of �
dl

case by case.

3.2.1 �dl = �

[e,µ,⌧ ]
dl

We first treat the case where �

dl

is in an isolation pattern, for which the explicit matrix for �
d⌫

is given
by

�

[I]
d⌫

=
�0p
2

0

@
0 0 0

U11�se

U12�se

U13�se

U11�be

U12�be

U13�be

1

A (47)

where here and below we use the shorthand U

ij

PMNS

= U

ij

and (U ij

CKM

)? = V

ij

, and we have only
presented the matrix corresponding to electron isolation, and correspondingly set �

de

= 0. Muon or tau
isolation simply implies e ! {µ, ⌧} and U1i ! {U2i, U3i} in (47), respectively.

We first notice that this coupling is not allowed to take an isolation pattern, as this would force
all entries (in all couplings) to zero, since only one matrix element of U

PMNS

is measured to be small.
This then leaves us with the multi column options, where we further read o↵ that the �

1i
d⌫

row is zero (a
consequence of �

d

= �

d

). Next, we need to set two matrix elements in one column to zero in (47). This
constraint is particularly powerful because, regardless of whether �

dl

isolates electrons, muons, or tauons
this requires either �

sl

= �

bl

= 0 or a single matrix element of U
PMNS

to zero. The former option sets
all leptoquark Yukawa couplings to zero, so is not interesting. Hence, our residual flavour symmetry is
forcing us to a limit where U

PMNS

has a null matrix element, and the only viable option is to allow
U13 = 0, which is still a reasonable approximation to data and the starting point of many flavour models

[]. We then find that �
dl

= �

[e]
dl

, as all other isolation patterns would require some other mixing element

to be zero! We conclude that �[I]
d⌫

sets �
dl

= �

[e]
dl

, U13
PMNS

= 0, and ↵
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= �

⌫

= ��

d

= ��

d

. Now consider
the �

ul

coupling:

�

ul

=
�0p
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@
V13�be

+ V12�se

0 0
V23�be

+ V22�se
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V33�be
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1

A (48)

We see that �

ul

is naturally of an isolation pattern form, with the following constraint on one of its
matrix elements:

�

se

�

be

= �V

i3

V

i2
(49)

7

✤ Let us first consider the lepton isolation pattern allowed by the symmetries:

✤ We can translate the experimental constraints from B physics to our parameterization:

✤ We can also find the matrices acting on down quark and charged lepton fields such that these 
couplings are diagonalized:

✤ These then feed directly into our residual symmetry generators:
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[ Non-Abelian finite groups for  RK(*)]

Preliminary!!

Electron Isolation and TBM Lepton Mixing

{y, x} T

ii
l T

ii
d T

ii
⌫ GAP-ID Group Structure

{1, 1} [-1, 1, -1] [1, -1, -1] [-1, -1, 1] [24, 12] S4

{1, 1} [-1, i, i] [1, -1, -1] [-1, -1, 1] [96, 64] �(96)

{0, 1} [-1, 1, -1] [1, -1, -1] [-1, -1, 1] [8, 3] D8

{0, 2} [-1, 1, i] [1, -1, -1] [-1, -1, 1] [32, 11] ⌃(32)

... ... ... ... ... ...

{p1/2,
p

3/2} [!, 1, !2] [-1, 1, -1] [12,3] A4

{p1/2,
p

3/2} [!, !2, 1] [!, 1, !] [81,7] (Z3 ⇥ Z3 ⇥ Z3)o Z3

{1, 1} [i, 1, -i] [!, !2, 1] [96, 64] � (96)

... ... ... ... ... ...

Table 2: Sample flavour symmetries predicting the electron isolation pattern and TBM leptonic mixing.
Table not complete by any means!

Electron Isolation and Cabibbo Mixing

{y, x} T

ii
l T

ii
d T

ii
u GAP-ID Group Structure

{0, 1} [-1, 1, -1] [-1, 1, -1] [8, 3] D8

{0, 1} [-1, 1, -1] [-i, 1, -i] [32, 11] ⌃(32)

{0, 1} [-1, 1, -1] [1, !2, !] [6, 1] S3

{0, 1} [1, -i, i] [1, i, -i] [8, 4] Q8

{1, 1} [!2, 1, !2] [!, 1, !] [24, 3] SL(2,3)

{1, 2} [-1, 1, -1] [!2, !, 1] [24, 12] S4

... ... ... ... ... ...

{p1/2,
p

3/2} [!, 1, !2] [-1, 1, -1] [12,3] A4

{p1/2,
p

3/2} [!, !2, 1] [!, 1, !] [81,7] (Z3 ⇥ Z3 ⇥ Z3)o Z3

{1, 1} [i, 1, -i] [!, !2, 1] [96, 64] � (96)

... ... ... ... ... ...

Table 3: Sample flavour symmetries predicting the electron isolation pattern and Cabibbo mixing. Table
not complete by any means!
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✤ For illustration, we close groups capable of quantizing LQ couplings and TBM leptonic mixing:

✤ Similar results for LQ couplings and Cabibbo mixing:

with n

a

the order of the symmetry. Accordingly, the matrices represented by (??)-(??) and (26)-(27)
are the core group-theoretic and phenomenological engines of our study.

Continuing, we want to find non-Abelian flavour symmetries by closing structures generated by the
multiple Abelian subgroups of (53). We therefore construct the explicit representations found in (??)-
(??) and(26)-(27). We also intend to exploit the SmallGroup library of finite groups documented in the
GAP computational finite algebra package [], so we must choose a scheme where the free parameters ⇥

i

of
these matrices (e.g. ⇥

i

2 {↵l

j

,↵

d

j

, ...�

de

,�

bµ

, ...}) are explicitly quantized, otherwise we would not close
finite groups. Hence we must choose a ‘discretization scheme’ which can be scanned over. In previous
studies [] the generator representations depended on phases and trigonometric functions. For the special
case of �

dl

, however, we are not restricted to these sorts of parameterizations. We therefore choose the
following two naive schemes:

⇥
i

!
=

n

m

, with {n,m} 2 Integers (54)

⇥
i

!
=

r
n

m

(55)

which we refer to as ‘rational’ and ‘root rational’ discretizations. While these schemes may seem overly
naive, they are in fact extremely well motivated by the representation theory of finite groups, and indeed
in Section 5 we will show that they are su�cient to reconstruct of a diversity of non-Abelian groups.
Finally, our automation scripts must have a range of values for n,m to scan over. These domains will
not only determine the number of potentially relevant quantizations of �

dl

, but also even the order of the
cyclic groups in (53) that get distributed to each family sector. We will give details about the particular
domains we set for n,m for each special pattern of �

dl

we consider in Section 5. In most cases we will
see that a small window of quantizations generates a wealth of di↵erent group structures.

4.2 Experimental Constraints:

Upon forming the generator representations and choosing a discretization scheme, we must restrict the
values of our parameter scans to experimentally relevant intervals. In other words, a group that predicts
(e.g.) �

be

too large or small to address the observations is not interesting. For the study at hand we are
concerned with potential anomalies for the R

K

(?)
,D

(?) observables as well as the traditional observables
from the Standard Model Yukawa sector, i.e. fermionic masses and mixings.

Multiple papers have performed similar numerical scans to address CKM and/or PMNS mixing [].
The conclusions from those papers are, within the direct symmetry breaking approach embodied in (62)-
(65), that only large groups of O(102) are capable of predicting all three mixing angles of the PMNS
matrix while even larger groups are required to address CKM mixing (or even PMNS mixing alongside
of, say, the Cabibbo angle). Instead, it may be more natural to consider smaller groups that predict
these matrices to leading order, leaving other degrees of freedom unconstrained whose origins may be
found in other mechanisms, e.g. Renormalization Group running or next-to-leading order operators.4

Therefore, as our principle motivation in this paper is to search for groups predicting leptoquark Yukawa
matrices, we assume the following lowest order forms for the CKM and PMNS mixing matrices:

U

PMNS

' U

TBM

⌘

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2
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CA+O �
✓

l

13

�
(56)

U

CKM

' U

C

⌘
0

@
cos ✓

c

sin ✓
c

0
� sin ✓

c

cos ✓
c

0
0 0 1

1

A+O �
✓

2
c

�
, sin ✓

c

!
= 0.225 (57)

if we don’t find anything, we can make di↵erent assumptions here The tri-bimaximal [] form of (56) still
provides an excellent description of leptonic mixing up to the small correction required by the reactor
angle ✓l13, and the exterior o↵ diagonal elements of the Cabibbo matrix in (57) are suppressed by one or
two orders of magnitude in comparison to the 1-2 sector, indicating a subleading origin for these matrix
elements. Accordingly, (56)-(57) dictate the form of T

⌫U

and T

uU

such that the only variation in their
sets is sourced from scanning over di↵erent charge assignments for the embedded T

⌫,u

.

4Insert comment about indirect models.
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in Section 5 we will show that they are su�cient to reconstruct of a diversity of non-Abelian groups.
Finally, our automation scripts must have a range of values for n,m to scan over. These domains will
not only determine the number of potentially relevant quantizations of �

dl

, but also even the order of the
cyclic groups in (53) that get distributed to each family sector. We will give details about the particular
domains we set for n,m for each special pattern of �

dl

we consider in Section 5. In most cases we will
see that a small window of quantizations generates a wealth of di↵erent group structures.

4.2 Experimental Constraints:

Upon forming the generator representations and choosing a discretization scheme, we must restrict the
values of our parameter scans to experimentally relevant intervals. In other words, a group that predicts
(e.g.) �

be

too large or small to address the observations is not interesting. For the study at hand we are
concerned with potential anomalies for the R

K

(?)
,D

(?) observables as well as the traditional observables
from the Standard Model Yukawa sector, i.e. fermionic masses and mixings.

Multiple papers have performed similar numerical scans to address CKM and/or PMNS mixing [].
The conclusions from those papers are, within the direct symmetry breaking approach embodied in (62)-
(65), that only large groups of O(102) are capable of predicting all three mixing angles of the PMNS
matrix while even larger groups are required to address CKM mixing (or even PMNS mixing alongside
of, say, the Cabibbo angle). Instead, it may be more natural to consider smaller groups that predict
these matrices to leading order, leaving other degrees of freedom unconstrained whose origins may be
found in other mechanisms, e.g. Renormalization Group running or next-to-leading order operators.4

Therefore, as our principle motivation in this paper is to search for groups predicting leptoquark Yukawa
matrices, we assume the following lowest order forms for the CKM and PMNS mixing matrices:

U

PMNS

' U

TBM

⌘

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CA+O �
✓

l

13

�
(56)

U

CKM

' U

C

⌘
0

@
cos ✓

c

sin ✓
c

0
� sin ✓

c

cos ✓
c

0
0 0 1

1

A+O �
✓

2
c

�
, sin ✓

c

!
= 0.225 (57)

if we don’t find anything, we can make di↵erent assumptions here The tri-bimaximal [] form of (56) still
provides an excellent description of leptonic mixing up to the small correction required by the reactor
angle ✓l13, and the exterior o↵ diagonal elements of the Cabibbo matrix in (57) are suppressed by one or
two orders of magnitude in comparison to the 1-2 sector, indicating a subleading origin for these matrix
elements. Accordingly, (56)-(57) dictate the form of T

⌫U

and T

uU

such that the only variation in their
sets is sourced from scanning over di↵erent charge assignments for the embedded T

⌫,u

.

4Insert comment about indirect models.
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✤ Scans for both quark and lepton mixing also possible (work in progress…)

Electron Isolation and TBM Lepton Mixing

{y, x} T

ii
l T

ii
d T

ii
⌫ GAP-ID Group Structure

{1, 1} [-1, 1, -1] [1, -1, -1] [-1, -1, 1] [24, 12] S4

{1, 1} [-1, i, i] [1, -1, -1] [-1, -1, 1] [96, 64] �(96)

{0, 1} [-1, 1, -1] [1, -1, -1] [-1, -1, 1] [8, 3] D8

{0, 2} [-1, 1, i] [1, -1, -1] [-1, -1, 1] [32, 11] ⌃(32)

... ... ... ... ... ...

{p1/2,
p
3/2} [!, 1, !2] [-1, 1, -1] [12,3] A4

{p1/2,
p
3/2} [!, !2, 1] [!, 1, !] [81,7] (Z3 ⇥ Z3 ⇥ Z3)o Z3

{1, 1} [i, 1, -i] [!, !2, 1] [96, 64] � (96)

... ... ... ... ... ...

Table 2: Sample flavour symmetries predicting the electron isolation pattern and TBM leptonic mixing.
Table not complete by any means!

Electron Isolation and Cabibbo Mixing

{y, x} T

ii
l T

ii
d T

ii
u GAP-ID Group Structure

{1, 1} [-1, 1, -1] [1, -1, -1] [1, -1, -1] [56, 5] D56

{0, 1} [-1, 1, -1] [1, -1, -1] [1, -1, -1] [56, 12] Z2 ⇥ Z2 ⇥D14

{0, 1} [-1, 1, -1] [1, -1, -1] [1, -1, -1] [28, 3] D28

{0, 1} [i, -i, i] [i, -i, -i] [i, -i, -i] [56, 6] Z2 ⇥ (Z7 o Z4)

... ... ... ... ... ...

{p1/2,
p
3/2} [!, 1, !2] [-1, 1, -1] [12,3] A4

{p1/2,
p
3/2} [!, !2, 1] [!, 1, !] [81,7] (Z3 ⇥ Z3 ⇥ Z3)o Z3

{1, 1} [i, 1, -i] [!, !2, 1] [96, 64] � (96)

... ... ... ... ... ...

Table 3: Sample flavour symmetries predicting the electron isolation pattern and Cabibbo mixing. Table
not complete by any means!
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[ Conclusions ]
✤ Representing the action of global SM flavour symmetries via residual group 

generators, one constrains Yukawa couplings and thereby predicts flavored 
relationships. 

[ Thanks! ]

✤ The presence of additional leptoquark couplings subject to these symmetries 
severely restricts the number of predictive patterns allowed.

✤ We have derived the allowed leptoquark Yukawa textures in a special case, 
which will have clear experimental signatures in other precision observables.

✤ Finally, we have shown how such residual symmetry constraints could 
originate from the breakdown of a non-Abelian discrete symmetry, and further 
discovered a host of predictive finite groups via a bottom-up numerical scan.

✤ Derive full set of allowed leptoquark Yukawa textures for each permissible d-l pattern.

Moving Forward

✤ Explore the phenomenological signatures of these constraints in other observables.

✤ Perform a more exhaustive numerical scan of predictive non-Abelian finite groups.


