[Reconstructing flavoured leptoquark models for Bdecay anomalies]

Jim Talbert (DESY)
Ivo de Medeiros Varzielas (Lisboa) and Gudrun Hiller (Dortmund)
2 July 2018 || FLASY 2018, Basel

[Outline]

[1][Leptoquarks in B decays?]

[Hints of new physics from B decays?]

* Lepton non-universal signatures hinted at from clean B-decay ratio observables:

$$
R_{H}=\frac{\int \frac{d \Gamma\left(B \rightarrow H \mu^{+} \mu^{-}\right)}{d q^{2}} d q^{2}}{\int \frac{d \Gamma\left(B \rightarrow H e^{+} e^{-}\right)}{d q^{2}} d q^{2}}
$$

$$
R_{H}=\frac{\mathcal{B}\left(B \rightarrow H \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow H J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)} / \frac{\mathcal{B}\left(B \rightarrow H e^{+} e^{-}\right)}{\mathcal{B}\left(B \rightarrow H J / \psi\left(\rightarrow e^{+} e^{-}\right)\right)}
$$

$$
R_{K^{*}}=\left\{\begin{array}{lll}
0.666_{-0}^{+0.11}(\text { stat }) \pm 0.03 & \text { (syst) } & \text { for } 0.045<q^{2}<1.1 \mathrm{GeV}^{2} / c^{4} \\
0.69_{-0.07}^{+0.1} \text { (stat) } \pm 0.05 \text { (syst) } & \text { for } 1.1 & <q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}
\end{array}\right.
$$

* Lepton universality tensions at ~2-3 σ also observed in $b->c$ transitions $\left(R_{D(*)}\right)$.
* Combined global fits yield even higher ($\sim 4 \sigma$) degrees of tension...

[EFT pulls and leptoquark solutions]

* NP effects can be parameterized within the Weak Effective Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F} \lambda_{t}}{\sqrt{2}} \frac{\alpha}{4 \pi} \sum_{i} C_{i}^{\ell} \mathcal{O}_{i}^{\ell}+\text { h.c. }
$$

$$
\begin{aligned}
\mathcal{O}_{9}^{\ell} & =\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} \ell\right),
\end{aligned}, \quad \mathcal{O}_{9}^{\prime \ell}=\left(\bar{s} \gamma^{\mu} P_{R} b\right)\left(\bar{\ell} \gamma_{\mu} \ell\right), \quad, ~ \mathcal{O}_{10}^{\ell}=\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right), \quad\left(\bar{s} \gamma^{\mu} P_{R} b\right)\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right) .
$$

$$
\begin{aligned}
C_{9}^{\ell}=\frac{1}{2}\left(C_{L L}^{\ell}+C_{L R}^{\ell}\right), & C_{10}^{\ell}=\frac{1}{2}\left(C_{L R}^{\ell}-C_{L L}^{\ell}\right) . \\
C_{9}^{\prime \ell}=\frac{1}{2}\left(C_{R L}^{\ell}+C_{R R}^{\ell}\right), & C_{10}^{\prime \ell}=\frac{1}{2}\left(C_{R R}^{\ell}-C_{R L}^{\ell}\right)
\end{aligned}
$$

See global fits from D'Amico et al: 1704.05438, Altmannshofer et al.: 1704.05435, ...

* Leptoquarks offer concrete and obvious model opportunities satisfying EFT fits: GH, Nisandzic: $1704.05444+\ldots$

representation $C_{A B}$				Relation
\tilde{S}_{2}	$(3,2,1 / 6)$	$C_{R L}$	$C_{9}^{\prime}=-C_{10}^{\prime}$	$R_{K}<1, R_{K^{*}}>1$
Δ_{3}	$(\overline{3}, 3,1 / 3)$	$C_{L L}^{\text {NP }}$	$C_{9}=-C_{10}$	$R_{K} \simeq R_{K^{*}}<1$.
S_{2}	$(3,2,7 / 6)$	$C_{L R}$	$C_{9}=C_{10}$	$R_{K} \simeq R_{K^{*}} \simeq 1$
\tilde{S}_{1}	$(\overline{3}, 1,4 / 3)$	$C_{R R}$	$C_{9}^{\prime}=C_{10}^{\prime}$	$R_{K} \simeq R_{K^{*}} \simeq 1$

We explore the scalar triplet (see solid red line in figure) today. Also note that vector LQs still viable...

* Note that MANY other models also explored (Z', sterile neutrinos, gauged flavour, B-L, ...)...see e.g. Crivellin, Fuentes-Martin, Greljo, Isidori: 1611.02703 and later talks as well...

[Extending the SM with a scalar leptoquark]

* A phenomenologically viable option is a (Lorentz) scalar (SU(2)) triplet leptoquark:

$$
\Delta_{3} \sim(\overline{3}, 3,1 / 3) \quad \mathcal{L} \supset y_{3, i j}^{L L} \bar{Q}_{L}^{C i, a} \epsilon^{a b}\left(\tau^{k} \Delta_{3}^{k}\right)^{b c} L_{L}^{j, c}+z_{3, i j}^{L L} \bar{Q}^{C i, a} \epsilon^{a b}\left(\left(\tau^{k} \Delta_{3}^{k}\right)^{\dagger}\right)^{b c} Q_{L}^{j, c}+\text { h.c. }
$$

* Decomposing the $\operatorname{SU}(2)$ indices and performing the standard basis transformation, one obtains:

$$
\begin{aligned}
& \mathcal{L} \supset-\left(U_{d}^{T} y_{3}^{L L} U_{\nu}\right)_{i j} \bar{d}_{L}^{C} i \\
& \Delta_{3}^{1 / 3} \nu_{L}^{j}-\sqrt{2}\left(U_{d}^{T} y_{3}^{L L} U_{l}\right)_{i j} \bar{d}_{L}^{C}{ }^{i} \Delta_{3}^{4 / 3} l_{L}^{j}+ \\
&+\sqrt{2}\left(U_{u}^{T} y_{3}^{L L} U_{\nu}\right)_{i j} \bar{u}_{L}^{C i} \Delta_{3}^{-2 / 3} \nu_{L}^{j}-\left(U_{u}^{T} y_{3}^{L L} U_{l}\right)_{i j} \bar{u}_{L}^{C i} \Delta_{3}^{1 / 3} l_{L}^{j}+ \\
&+ \text { h.c. }
\end{aligned}
$$

* Given a particular coupling structure, the dominant decay modes for the different charge states are given by:

$$
\Delta_{3}^{-2 / 3} \rightarrow t \nu \quad \Delta_{3}^{1 / 3} \rightarrow b \nu, t \mu^{-} \quad \Delta_{3}^{4 / 3} \rightarrow b \mu^{-}
$$

[Experimental constraints and signatures]

* Consider the d-l coupling relevant to B decay phenomenology, in the mass basis:

$$
\mathcal{L}_{L Q}^{Y} \supset \bar{E}_{R} m_{l} l_{L}+\bar{d}_{R} m_{d} d_{L}+\bar{d}_{L}^{C} \lambda_{d l} l_{L} \Delta_{3}^{4 / 3}+\text { h.c. } \quad-\sqrt{2}\left(U_{d}^{T} y_{3}^{L L} U_{l}\right) \equiv \lambda_{d l}=\lambda_{0}\left(\begin{array}{ccc}
\lambda_{d e} & \lambda_{d \mu} & \lambda_{d \tau} \\
\lambda_{s e} & \lambda_{s \mu} & \lambda_{s \tau} \\
\lambda_{b e} & \lambda_{b \mu} & \lambda_{b \tau}
\end{array}\right)
$$

* One can constrain the new leptoquark Yukawa couplings with the available B decay data. From $\mathrm{R}_{\mathrm{K}\left({ }^{*}\right)}$ one finds e.g.:

$$
\lambda_{b \mu} \lambda_{s \mu}^{*}-\lambda_{b e} \lambda_{s e}^{*} \simeq 1.1 \frac{M^{2}}{(35 \mathrm{TeV})^{2}}
$$

* Which then points to a rich collider phenomenology: GH, Loose, Nisandzic: hep-ph/1801.09399

: However, no theoretical origin for flavour structure of LQ Yukawa couplings! Can this be constrained/modeled? (see e.g. IdMV, GH: 1503.01084 I GH, Loose, Schonwald: 1609.08895 I GH, Loose, Nisandzic: 1801.09399)
[2] [Residual flavour symmetries]

[Residual flavour symmetries]

٪ The SM (absent Yukawas) is invariant under a global U(3) ${ }^{5}$ flavour symmetry (Chivukula/Georgi):

$$
\begin{array}{r}
S M \sim q_{L}^{i}(3,2)_{+1 / 3}, \quad \frac{\bar{u}_{L}^{i}(\overline{3}, 1)_{-4 / 3},}{}, \frac{\bar{d}_{L}^{i}(\overline{3}, 1)_{+2 / 3},}{}, \frac{l_{L}^{i}(1,2)_{-1}}{}, \frac{\bar{e}_{L}^{i}(1,1)_{+2}}{\mathrm{U}(3)_{\mathrm{d}}} \times \frac{\mathrm{U}(3)_{\mathbf{1}}}{\mathrm{U}(3)_{\mathrm{e}}} \\
\mathrm{U}(3)^{5}
\end{array}
$$

* This symmetry can be preserved by promoting Yukawa couplings to spurions (cf. MFV), or by introducing new flavons...
* In broken phase, consider the Yukawa sector for SM leptons with Majorana neutrinos:

$$
\mathcal{L}_{\mathrm{mass}}=\frac{g}{\sqrt{2}} \bar{l}_{L} U_{P M N S} \gamma^{\mu} \nu_{L} W_{\mu}^{+}+\bar{E}_{R} m_{l} l_{L}+\frac{1}{2} \bar{\nu}_{L}^{c} m_{\nu} \nu_{L}+\ldots+\text { h.c. }
$$

* Neutrino mass term is still invariant under a $Z_{2} \times Z_{2}$ Klein symmetry (Lam):

$$
\nu \rightarrow T_{\nu i} \nu, \quad m_{\nu} \rightarrow T_{\nu i}^{T} m_{\nu} T_{\nu i}=m_{\nu} \quad T_{\nu 1}=\operatorname{diag}(1,-1,-1), \quad T_{\nu 2}=\operatorname{diag}(-1,1,-1)
$$

* While the charged leptons (and quarks) are still subject to the standard $U(1)^{3}$:

$$
l_{L} \rightarrow T_{l} l_{L}, \quad E_{R} \rightarrow T_{l} E_{R}, \quad T_{l}=\operatorname{diag}\left(e^{2 \pi i \frac{a}{m}}, e^{2 \pi i \frac{b}{m}}, e^{2 \pi i \frac{c}{m}}\right)
$$

* We interpret these residual flavour symmetries generated by T_{i} as remnant signatures of the parent flavour group. They are present regardless of the dynamics of the flavour model!

[Residual symmetries with a scalar leptoquark]

* These symmetries are well understood for the SM fermions. What happens when we include the d-I leptoquark coupling?

$$
\begin{gathered}
\mathcal{L}_{L Q}^{Y} \supset \bar{E}_{R} m_{l} l_{L}+\bar{d}_{R} m_{d} d_{L}+\bar{d}_{L}^{C} \lambda_{d l} l_{L} \Delta_{3}^{4 / 3}+\text { h.c. } \\
\downarrow
\end{gathered}
$$

* There are very few interesting solutions to this equation!
'Isolation patterns'

$$
\lambda_{d l}^{[e]} \sim\left(\begin{array}{ccc}
\lambda_{d e} & 0 & 0 \\
\lambda_{s e} & 0 & 0 \\
\lambda_{b e} & 0 & 0
\end{array}\right), \quad \lambda_{d l}^{[\mu]} \sim\left(\begin{array}{ccc}
0 & \lambda_{d \mu} & 0 \\
0 & \lambda_{s \mu} & 0 \\
0 & \lambda_{b \mu} & 0
\end{array}\right), \quad \lambda_{d l}^{[\tau]} \sim\left(\begin{array}{ccc}
0 & 0 & \lambda_{d \tau} \\
0 & 0 & \lambda_{s \tau} \\
0 & 0 & \lambda_{b \tau}
\end{array}\right)
$$

${ }^{\prime}$ TWO column patterns $\quad \lambda_{d l}^{[e \mu]} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ \lambda_{s e} & \lambda_{s \mu} & 0 \\ \lambda_{b e} & \lambda_{b \mu} & 0\end{array}\right), \quad \lambda_{d l}^{[e \tau]} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ \lambda_{s e} & 0 & \lambda_{s \tau} \\ \lambda_{b e} & 0 & \lambda_{b \tau}\end{array}\right), \quad \lambda_{d l}^{[\mu \tau]} \sim\left(\begin{array}{cc}0 & 0 \\ 0 & 0 \\ \lambda_{s \mu} & \lambda_{s \tau} \\ 0 & \lambda_{b \mu} \\ \lambda_{b \tau}\end{array}\right)$

[Including the additional q-I couplings]

: But we must consider the Yukawa sector appended by all of the scalar states:

$$
\begin{aligned}
\mathcal{L}_{L Q}^{Y} \supset & \frac{1}{2} \bar{\nu}_{L}^{c} m_{\nu} \nu_{L}+\bar{E}_{R} m_{l} l_{L}+\bar{d}_{R} m_{d} d_{L}+\bar{u}_{R} m_{u} u_{L} \\
& +\bar{d}_{L}^{C} \lambda_{d l} l_{L} \Delta_{3}^{4 / 3}+\bar{d}_{L}^{C} \lambda_{d \nu} \nu_{L} \Delta_{3}^{1 / 3}+\bar{u}_{L}^{C} \lambda_{u l} l_{L} \Delta_{3}^{1 / 3}+\bar{u}_{L}^{C} \lambda_{u \nu} \nu_{L} \Delta_{3}^{-2 / 3} \\
& + \text { h.c. }
\end{aligned}
$$

* Other charged states are related to the d-I coupling via $S U(2)$ transformations:

$$
\lambda_{d \nu}=\frac{1}{\sqrt{2}} \lambda_{d l} U_{P M N S}, \quad \lambda_{u l}=\frac{1}{\sqrt{2}} U_{C K M}^{\star} \lambda_{d l}, \quad \lambda_{u \nu}=-U_{C K M}^{\star} \lambda_{d l} U_{P M N S}
$$

* All of these terms are *simultaneously* subject to the residual symmetry constraints:

[Model-independent conclusions]

$\div S U(2)$ L simultaneously constrains couplings between other quark and lepton species:

$$
\lambda_{d \nu}^{[I]}=\frac{\lambda_{0}}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
U_{11} \lambda_{s e} & U_{12} \lambda_{s e} & U_{13} \lambda_{s e} \\
U_{11} \lambda_{b e} & U_{12} \lambda_{b e} & U_{13} \lambda_{b e}
\end{array}\right) \quad \lambda_{u l}=\frac{\lambda_{0}}{\sqrt{2}}\left(\begin{array}{ccc}
V_{13} \lambda_{b e}+V_{12} \lambda_{s e} & 0 & 0 \\
V_{23} \lambda_{b e}+V_{22} \lambda_{s e} & 0 & 0 \\
V_{33} \lambda_{b e}+V_{32} \lambda_{s e} & 0 & 0
\end{array}\right)
$$

* Experimental constraints on one of the up-lepton elements permit two up-neutrino couplings

$$
\begin{aligned}
& \lambda_{u \nu}^{\left[I_{1}\right]}=\lambda_{0}\left(\begin{array}{ccc}
0 & 0 & 0 \\
U_{11}\left(\frac{V_{13} V_{22}}{V_{12}}-V_{23}\right) \lambda_{b e} & U_{12}\left(\frac{V_{13} V_{22}}{V_{12}}-V_{23}\right) \lambda_{b e} & 0 \\
U_{11}\left(\frac{V_{13} V_{32}}{V_{12}}-V_{33}\right) \lambda_{b e} & U_{12}\left(\frac{V_{13} V_{32}}{V_{12}}-V_{33}\right) \lambda_{b e} & 0
\end{array}\right) \\
& \lambda_{u \nu}^{\left[I_{2}\right]}=\lambda_{0}\left(\begin{array}{ccc}
U_{11}\left(\frac{V_{12} V_{23}}{V_{22}}-V_{13}\right) \lambda_{b e} & U_{12}\left(\frac{V_{12} V_{23}}{V_{22}}-V_{13}\right) \lambda_{b e} & 0 \\
0 & 0 & 0 \\
U_{11}\left(\frac{V_{23} V_{32}}{V_{22}}-V_{33}\right) \lambda_{b e} & U_{12}\left(\frac{V_{23} V_{32}}{V_{22}}-V_{33}\right) \lambda_{b e} & 0
\end{array}\right)
\end{aligned}
$$

: That is, the residual flavour symmetries of the SM restrict us to two possible patterns!

$$
\left\{\lambda_{d l}, \lambda_{d \nu}, \lambda_{u l}, \lambda_{u \nu}\right\}=\left\{\begin{array}{l}
\left\{\lambda_{d l}^{[e]}, \lambda_{d \nu}^{[I]}, \lambda_{u l}^{\left[I_{1}\right]}, \lambda_{u \nu}^{\left[I_{1}\right]}\right\} \text { with } \beta_{d}=\gamma_{d}=-\alpha_{\nu}=-\beta_{\nu}=-\alpha_{l}=\beta_{u}=\gamma_{u} \\
\left\{\lambda_{d l}^{[e]}, \lambda_{d \nu}^{[I]}, \lambda_{u l}^{\left[I_{2}\right]}, \lambda_{u \nu}^{\left[I_{2}\right]}\right\} \text { with } \beta_{d}=\gamma_{d}=-\alpha_{\nu}=-\beta_{\nu}=-\alpha_{l}=\alpha_{u}=\gamma_{u}
\end{array}\right.
$$

* Similar analyses can be performed for the other permissible down-lepton patterns...
[3] [Guided model building]

[The discrete approach]

Reviews: King, Luhn: hep-ph/1301.1340,

* $U(1)_{\text {FN }}$ symmetries difficult to reconcile with large neutrino mixing -> non-Abelian groups
* Discrete symmetries avoid Goldstone modes that could spoil phenomenology, easily embedded in SUSY GUTs, extra dimensional theories - naturally pumped out of orbifold compactifications!
* Easier facilitation of vacuum alignment than with continuous symmetries
\% Huge literature: Pakvasa, Sugawara (1977) use S3 for Cabibbo angle. Deshpande uses S4 for full CKM and Pakvasa applies S4 to neutrino mass and mixing (1984). Early 90s discussion (Kaplan, Schmaltz; Frampton, Kephart), TBM and GUT models established early-mid 00s (Ma, Rajasekaran; Altarelli, Feruglio, de M. Varzielas, King, Ross +), new flood in 2012/13 after reactor angle...

[Building up non-Abelian discrete groups]

* How does the parent symmetry break to different families?
$\mathcal{G}_{\mathcal{F}} \rightarrow \begin{cases}\mathcal{G}_{\mathcal{L}} & \rightarrow \begin{cases}\mathcal{G}_{\nu} & \mathcal{G}_{\nu}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \\ \mathcal{G}_{\mathrm{e}} & \mathcal{G}_{e}=?\end{cases} \\ \mathcal{G}_{\mathcal{Q}} & \rightarrow \begin{cases}\mathcal{G}_{\mathrm{u}} & \\ \mathcal{G}_{\mathrm{d}} & \end{cases} \end{cases}$

$$
\begin{gathered}
\mathcal{L}_{l, \text { mass }} \sim \frac{\bar{E}_{R} m_{l} l_{L}+h . c .}{\text { Invariant under U(1)3} \text { rotations }} \\
m_{l}^{\dagger} m_{l}=T^{\dagger} m_{l}^{\dagger} m_{l} T \quad T=\operatorname{diag}\left(e^{i \phi_{e}}, e^{i \phi_{\mu}}, e^{i \phi_{\tau}}\right)
\end{gathered}
$$

Discrete phases yield discrete symmetries:

$$
\phi_{i}=2 \pi \frac{k_{i}}{m} \Rightarrow \mathcal{G}_{e}=\mathbb{Z}_{m} \quad m \geq 2,3
$$

* The same is true for the up and down quark mass matrices.
* Hence the parent group can be understood as the closure of the residual generators:

$$
\mathcal{G}_{\mathcal{F}}=\left\{S_{i U}, S_{j U}, T_{k}\right\}
$$

* Multiple scans have been performed searching for symmetries capable of predicting SM quark and lepton mixing.

[Symmetry scans with GAP]

General Approach and Conclusions

* Assume a structure for residual subgroups and/or mixing
* Use Lagrange's Theorem to sift through finite groups up to a specified order
* Assume parent group a subgroup of $\operatorname{SU}(3), \mathrm{SU}(2)$, etc.
* Assume certain types of irreducible representations
* For quarks, no group has been found to reproduce full CKM mixing exactly.
\therefore For quarks, Cabibbo mixing can be (somewhat) realized with simple groups.
* For leptons, no group up to order ($\sim_{\left.10^{3}\right)}$ can fully quantize within 1 sigma
\% For leptons, groups order ($\sim 10^{2}$) can quantize 1 column or full matrix within 3 sigma
\% HOWEVER, note that these scans assume a very specific type of symmetry breaking pattern...
\therefore See talks by Gui-Jun Ding later in the week!

Moving Forward

\% What happens if an additional coupling is present, subject to the above flavour symmetries?

[Bottom-up scans: basic algorithm]

\therefore Assign residual symmetries to each fermion sector: $G_{a} \sim Z_{a}^{n_{a}}$

* Discretize free parameters in mixing matrices:

$$
\Theta_{i} \in\left\{\alpha_{j}^{l}, \alpha_{j}^{d}, \ldots \lambda_{d e}, \lambda_{b \mu}, \ldots\right\}
$$

$$
\Theta_{i} \stackrel{!}{=} \frac{n}{m}, \quad \text { with }\{n, m\} \in \text { Integers }
$$

$$
\Theta_{i} \stackrel{!}{=} \sqrt{\frac{n}{m}}
$$

* Apply experimental constraints to discretized parameters:

$$
\lambda_{b \mu} \lambda_{s \mu}^{*}-\lambda_{b e} \lambda_{s e}^{*} \simeq 1.1 \frac{M^{2}}{(35 \mathrm{TeV})^{2}}
$$

Matrices necessary to go to diagonal LQ basis...
\% Form residual symmetry generators:

$$
\begin{aligned}
& T_{\Delta l}=U_{\lambda \dagger \lambda} T_{l} U_{\lambda^{\dagger \lambda}}^{\dagger} \\
& T_{\Delta \nu}=U_{P M N S} T_{\nu} U_{P M N S}^{\dagger}
\end{aligned}
$$

* Close groups with GAP and apply user-defined preferences:

$$
\begin{array}{ll}
\mathcal{G}_{F} \sim\left\{T_{\Delta d}, T_{\Delta l}, T_{\Delta u}, T_{\Delta \nu}\right\} & \mathcal{G}_{F} \sim\left\{T_{\Delta d}, T_{\Delta l}, T_{\Delta \nu}\right\} \\
\mathcal{G}_{F} \sim\left\{T_{\Delta d}, T_{\Delta l}, T_{\Delta u}\right\} & \mathcal{G}_{F} \sim\left\{T_{\Delta d}, T_{\Delta l}\right\}
\end{array}
$$

$$
\begin{aligned}
& T_{\Delta d}=U_{\lambda \lambda \dagger} T_{d} U_{\lambda \lambda^{\dagger}}^{\dagger}, \\
& T_{\Delta u}=U_{C K M}^{\star} T_{u} U_{C K M}^{T},
\end{aligned}
$$

[Isolation patterns for $R_{K_{(+)}^{*}}$]

* Let us first consider the lepton isolation pattern allowed by the symmetries:

$$
\lambda_{d l}^{[e]} \sim\left(\begin{array}{ccc}
\lambda_{d e} & 0 & 0 \\
\lambda_{s e} & 0 & 0 \\
\lambda_{b e} & 0 & 0
\end{array}\right), \quad \lambda_{[\mu]} \sim\left(\begin{array}{ccc}
0 & \lambda_{d \mu} & 0 \\
0 & \lambda_{s \mu} & 0 \\
0 & \lambda_{b \mu} & 0
\end{array}\right)
$$

* We can translate the experimental constraints from B physics to our parameterization:

$$
\rho_{d}=\lambda_{d l} / \lambda_{b l}, \quad \rho=\lambda_{s l} / \lambda_{b l} \quad \rho_{d} \leq 0.02, \quad 10^{-4} \leq \rho \leq 1, \quad \rho_{d} / \rho \leq 1.6
$$

* We can also find the matrices acting on down quark and charged lepton fields such that these couplings are diagonalized:

$$
U_{\lambda \lambda \dagger}=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{1+\rho_{d}^{2}}} & \frac{\rho_{d}}{\sqrt{1+\rho^{2}+\rho_{d}^{2}}} & -\frac{\rho \rho_{d}}{\sqrt{1+\rho_{d}^{2}} \sqrt{1 \rho^{2}+\rho^{2}+\rho_{d}^{2}}} \\
0 & \frac{\rho}{\sqrt{1+\rho^{2}+\rho_{d}^{2}}} & \frac{\sqrt{1+\rho_{d}^{2}}}{\sqrt{1+\rho^{2}+\rho_{d}^{2}}} \\
\frac{\rho_{d}}{\sqrt{1+\rho_{d}^{2}}} & \frac{1}{\sqrt{1+\rho^{2}+\rho_{d}^{2}}} & -\frac{\sqrt{1+\rho_{d}^{2}} \frac{\rho}{\sqrt{1+\rho^{2}+\rho_{d}^{2}}}}{2}
\end{array}\right), \quad U_{\lambda+\lambda}=\left(\begin{array}{ccc}
e^{2 \pi i / a} & 0 & 0 \\
0 & e^{2 \pi i / b} & 0 \\
0 & 0 & e^{2 \pi i / c}
\end{array}\right)
$$

* These then feed directly into our residual symmetry generators:

$$
T_{\Delta d}=U_{\lambda \lambda^{\dagger}} T_{d} U_{\lambda \lambda^{\dagger}}^{\dagger}, \quad T_{\Delta l}=U_{\lambda^{\dagger \lambda}} T_{l} U_{\lambda^{\dagger} \lambda}^{\dagger}
$$

[Non-Abelian finite groups for $R_{K(*)}$]

* For illustration, we close groups capable of quantizing LQ couplings and TBM leptonic mixing:

$U_{P M N S} \simeq U_{T B M} \equiv\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right)$	Electron Isolation and TBM Lepton Mixing					
	$\{y, x\}$	$T_{l}^{i i}$	$T_{d}^{i i}$	$T_{\nu}^{i i}$	GAP-ID	Group Structure
	$\{1,1\}$	$[-1,1,-1]$	[1, -1, -1]	$[-1,-1,1]$	[24, 12]	S_{4}
	$\{1,1\}$	$[-1, i, i]$	$[1,-1,-1]$	$[-1,-1,1]$	[96, 64]	$\Delta(96)$
	$\{0,1\}$	$[-1,1,-1]$	[1, -1, -1]	$[-1,-1,1]$	$[8,3]$	D_{8}
	$\{0,2\}$	$[-1,1, \mathrm{i}]$	[1, -1, -1]	$[-1,-1,1]$	$[32,11]$	$\Sigma(32)$
	\ldots	...	\ldots	...	\ldots	\ldots

© Similar results for LQ couplings and Cabibbo mixing:
Preliminary!!

* Scans for both quark and lepton mixing also possible (work in progress...)

[Conclusions]

* Representing the action of global SM flavour symmetries via residual group generators, one constrains Yukawa couplings and thereby predicts flavored relationships.
\% The presence of additional leptoquark couplings subject to these symmetries severely restricts the number of predictive patterns allowed.
* We have derived the allowed leptoquark Yukawa textures in a special case, which will have clear experimental signatures in other precision observables.
* Finally, we have shown how such residual symmetry constraints could originate from the breakdown of a non-Abelian discrete symmetry, and further discovered a host of predictive finite groups via a bottom-up numerical scan.

Moving Forward

\% Derive full set of allowed leptoquark Yukawa textures for each permissible d-l pattern.

* Explore the phenomenological signatures of these constraints in other observables.
* Perform a more exhaustive numerical scan of predictive non-Abelian finite groups.

