

Slepton non-universality in the flavor effective MSSM

Based on: JHEP 1711 (2017) 162 & arXiv:1807.00860

Collaboration with: Ivo de Medeiros Varzielas (IST, Lisboa U.), M. L. López Ibáñez (INFN, RomaTre), M. J. Pérez (Valencia State College), Oscar Vives (IFIC, Valencia U.)

Outlook

- Show results of two representative models with discrete flavor symmetries. Analysis of FV effects in leptonic sector.
- Application to a complete flavor model.

Motivations

Froggatt-Nielsen and flavor symmetries nice way yo explain SM flavor parameters

but...

- Flavor scale Λ_f arbitrarily heavy
- Many possible choices for flavor symmetry

Abelian: U(1), SU(3),...

Non-abelian: A_4 , S_3 , $\Delta(27)$, ...

How to choose?

New flavor observables needed!

New flavor couplings generic feature of many NP models, in SUSY soft breaking terms:

trilinears interactions sfermion soft masses m_0

but...

- If $\mathcal{O}(m_0)$ entries
 - → severe Flavor Violating problems
- LHC won't give stronger mass limits over SUSY sparticles

New ways to restrict parameter space are needed!

What about Flavor symmetries in SUSY?

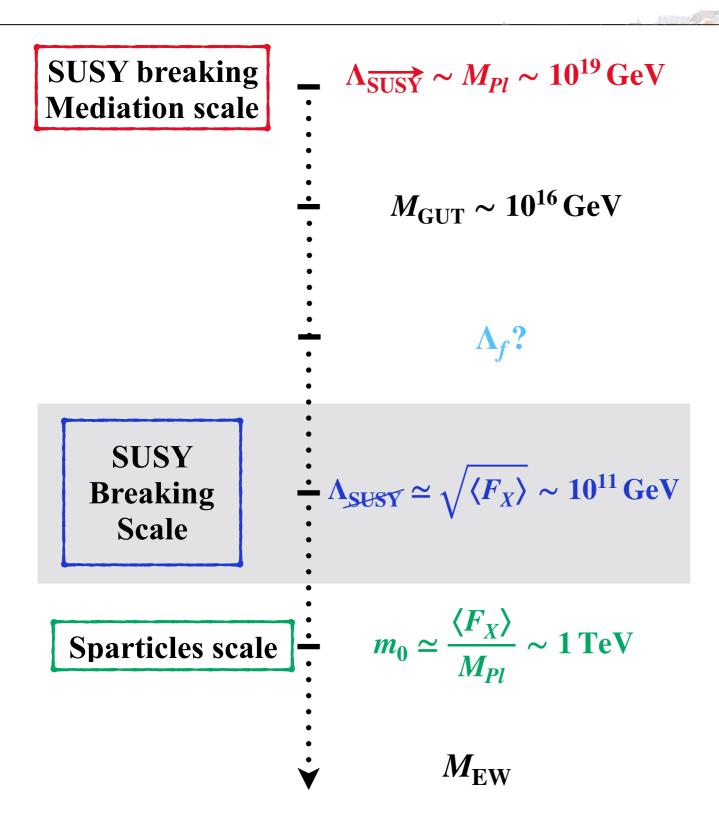
Flavor symmetry relates the structure in Yukawa matrices to the non-universality in Soft breaking terms

FV effects still present but controlled

Phenomenology of flavor symmetries

Constrain the MSSM parameter space

Review of the mechanism



We need: $\Lambda_{\overline{\text{SUSY}}} \gg \Lambda_f$

for example gravity mediation : $\Lambda_{\overline{\text{SUSY}}} \sim M_{Pl}$

X: hidden sector spurion field interacts gravitationally with visible sector let's consider it single and universal

$$\begin{split} \mathcal{L}_{\text{int}} &= \frac{s}{M_{Pl}} X \, W_a^\alpha \, W_\alpha^a + \frac{b}{M_{Pl}} \, X^\dagger \, H_u \, H_d \\ &+ \frac{a_{ij}}{M_{Pl}} X \psi_i \, \overline{\psi}_j \, H_{u,d} + \frac{c_{ij}}{M_{Pl}^2} \, X^\dagger X \psi_i^\dagger \psi_j \, + \, \text{h.c.} \, . \end{split}$$

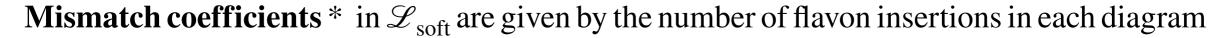
soft breaking interactions must respect G_f different ways to couple the spurion field

 \rightarrow mismatch coefficients : c_{ij} a_{ij} !

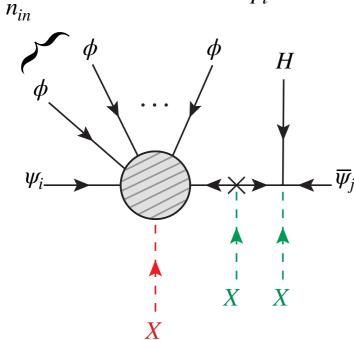
SUSY broken in an Hidden sector by

$$X$$
 getting $\langle F_X \rangle \neq 0$
 $\mathcal{L}_{int} \to \mathcal{L}_{soft}$

Review of the mechanism

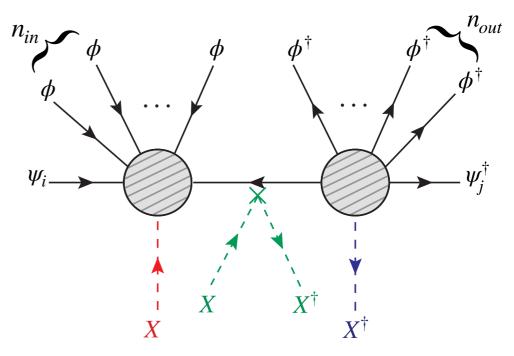


 $\frac{\text{Trilinear terms}}{M_{Pl}}: \frac{a_{ij}}{M_{Pl}} X \psi_i \overline{\psi}_j H_{u,d}$



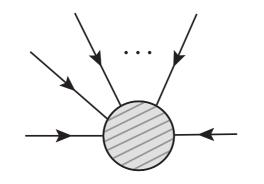
$$A_{ij} = a_0 [(2 n_{in} - 1) + 2] Y_{ij}$$

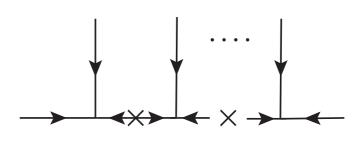
Soft mass terms: $\frac{c_{ij}}{M_{Pl}^2} X^{\dagger} X \psi_i^{\dagger} \psi_j + \text{h.c.}$



$$m_{ij}^2 = m_0^2 \left[(2 n_{in} - 1)(2 n_{out} - 1) + 1 \right] K_{ij}$$

where each bubble is given by:





Bounds on FV processes *

- Lepton FV transitions would be a clear signal of New Physics!
- Variety of channels, most sensitive involving the muon.
- Next decade: several experiments are planned to pursue the search for $\mu \to e\gamma$, $\mu \to eee$, $\mu \to e$ conversion in nuclei, as well as processes involving the τ , to an unprecedented level of precision.

Table 1: Relevant Flavor Violating (FV) processes considered in our analysis.

FV process	Current Bounds	Future Bounds					
$\boxed{ BR(\mu \to e\gamma)}$	$4.2 \times 10^{-13} \; (MEG \; at \; PSI)$	$4 \times 10^{-14} \; (MEG II)$					
$\mid BR(\mu \to eee)$	$1.0 \times 10^{-12} \text{ (SINDRUM)}$	10 ⁻¹⁶ (Mu3e)					
$\operatorname{CR}(\mu - e)_{A_l}$	_	10 ⁻¹⁷ (Mu2e, COMET)					
	$3.3 \times 10^{-8} \; (BaBar)$	$5 \times 10^{-9} \text{ (Belle II)}$					
$ BR(\tau \to \mu \gamma) $	$4.4 \times 10^{-8} \; (BaBar)$	$10^{-9} \text{ (Belle II)}$					
$ BR(\tau \to eee) $	$2.7 \times 10^{-8} \; (Belle)$	$5 \times 10^{-10} \text{ (Belle II)}$					
$\mid BR(\tau \to \mu \mu \mu)$	$2.1 \times 10^{-8} \; (Belle)$	$5 \times 10^{-10} \text{ (Belle II)}$					
ΔM_K	$(52.89 \pm 0.09) \times$	$10^8 h s^{-1} (PDG)$					
ϵ_K	$(2.228 \pm 0.011) \times 10^{-3} \text{ (PDG)}$						

$\ell_i \rightarrow \ell_j \gamma$ in the MIA approximation

$$\frac{BR(\ell_i \to \ell_j \gamma)}{BR(\ell_i \to \ell_j \nu_i \overline{\nu}_j)} = \frac{48\pi^3 \alpha}{G_F^2} \left(|\mathcal{A}_{ij}^L|^2 + |\mathcal{A}_{ij}^R|^2 \right) \sim \frac{\alpha^3}{G_F^2} \frac{\delta_{ij}^2}{m_0^4} \tan \beta^2$$

$$\mathcal{A}_{ij}^{L} = \frac{\alpha_2}{4\pi} \frac{\delta_{\ell,ij}^{LL}}{m_{\tilde{\ell}}^2} \left[f_{1n}(a_2) + f_{1c}(a_2) + \frac{\mu M_2 \tan \beta}{M_2^2 - \mu^2} \left(f_{2n}(a_2, b) + f_{2c}(a_2, b) \right) \right]$$

+
$$\tan \theta_W^2 \left(f_{1n}(a_1) + \mu M_1 \tan \beta \left(\frac{f_{3n}(a_1)}{\tilde{m}_\ell^2} + \frac{f_{2n}(a_1, b)}{\mu^2 - M_1^2} \right) \right) \right]$$

$$+ \frac{\alpha_1}{4\pi} \frac{\boldsymbol{\delta_{\ell,ij}^{RL}}}{m_{\tilde{\ell}}^2} \left(\frac{M_1}{m_{\ell_i}}\right) 2 f_{2n}(a_1)$$

$$\mathcal{A}_{ij}^{R} = \frac{\alpha_{1}}{4\pi} \frac{\delta_{\ell,ij}^{RR}}{m_{\tilde{\ell}}^{2}} \left[4 f_{1n}(a_{1}) + \mu M_{1} \tan \beta \left(\frac{f_{3n}(a_{1})}{\tilde{m}_{\ell}^{2}} - \frac{2f_{2n}(a_{1},b)}{\mu^{2} - M_{1}^{2}} \right) \right]$$

$$+ \frac{\alpha_1}{4\pi} \frac{\boldsymbol{\delta_{\ell,ij}^{LR}}}{m_{\tilde{\ell}}^2} \left(\frac{M_1}{m_{\ell_i}}\right) 2 f_{2n}(a_1)$$

Cancellation

An A_4 model example * : Superpotential

Field	$ u^c $	ℓ	e^c	μ^c	τ^c	H_d	H_u	ϕ_S	ϕ_T	ξ	ξ'	ξ'^{\dagger}
A_4	3	3	1	1	1	1	1	3	3	1	1'	1"
Z_4	-1	i	1	i	-1	1	i	1	i	1	i	-i
$U(1)_R$	1	1	1	1	1	0	0	0	0	0	0	0

Reproduces the **lepton** hierarchies TBM + $\theta_{13}!$ $\sim \mathcal{O}(\varepsilon')$ hierarchies and mixings

Table 1: Transformation of the matter and flavon superfields under $\mathcal{G}_f = A_4 \times Z_4$

Alignment:
$$\frac{\langle \phi_T \rangle}{M} \propto \varepsilon \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \frac{\langle \phi_S \rangle}{M} \propto \varepsilon' \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \frac{\langle \xi \rangle}{M} \propto \varepsilon', \frac{\langle \xi' \rangle}{M} \propto \varepsilon$$

$$A_{ij} = a_0 [(2 n_{in} - 1) + 2] Y_{ij}$$

Superpotential

Superpotential
$$Y_{\ell} \sim \begin{pmatrix} x_{1} \varepsilon^{3} & x_{2} \varepsilon^{3} \varepsilon^{\ell} & x_{3} \varepsilon^{3} \varepsilon^{\ell} \\ x_{4} \varepsilon^{2} \varepsilon^{\ell} & x_{5} \varepsilon^{2} & x_{6} \varepsilon^{2} \varepsilon^{\ell} \\ x_{7} \varepsilon \varepsilon^{\ell} & x_{8} \varepsilon \varepsilon^{\ell} & x_{9} \varepsilon^{3} \varepsilon^{\ell} \end{pmatrix}$$

$$+ \frac{1}{M^{2}} \mu^{c} \left[(\ell \phi_{T}^{2}) + (\ell \phi_{T})'' \xi^{\ell} \right] H_{d}$$

$$+ \frac{1}{M^{3}} e^{c} \left[(\ell \phi_{T}^{3}) + (\ell \phi_{T}^{2})'' \xi^{\ell} + (\ell \phi_{T})' \xi^{\ell^{2}} \right] H_{d} \qquad A_{\ell} \sim a_{0} \begin{pmatrix} \mathbf{7} x_{1} \varepsilon^{3} & \mathbf{9} x_{2} \varepsilon^{3} \varepsilon^{\ell} & \mathbf{9} x_{3} \varepsilon^{3} \varepsilon^{\ell} \\ \mathbf{7} x_{4} \varepsilon^{2} \varepsilon^{\ell} & \mathbf{5} x_{5} \varepsilon^{2} & \mathbf{7} x_{6} \varepsilon^{2} \varepsilon^{\ell} \end{pmatrix}$$

$$\mathbf{NLO:} \ \delta \mathcal{W}_{\ell} = \frac{1}{M^{2}} \tau^{c} \left[(\ell \phi_{T} \phi_{S}) + (\ell \phi_{S})'' \xi^{\ell} \right] H_{d}$$

$$+ \frac{1}{M^{3}} \mu^{c} \left[(\ell \phi_{T}^{2} \phi_{S}) + (\ell \phi_{T} \phi_{S})'' \xi^{\ell} + (\ell \phi_{S})' \xi^{\ell^{2}} \right] H_{d}$$

$$+ \frac{1}{M^{4}} e^{c} \left[(\ell \phi_{T}^{3} \phi_{S}) + (\ell \phi_{T}^{2} \phi_{S})'' \xi^{\ell} + (\ell \phi_{T} \phi_{S})' \xi^{\ell^{2}} + (\ell \phi_{S}) \xi^{\ell^{3}} \right] H_{d}$$

An A_4 model example: Kähler potential

Field	$ u^c $	ℓ	e^c	μ^c	τ^c	H_d	H_u	ϕ_S	ϕ_T	ξ	ξ'	ξ'^{\dagger}
A_4	3	3	1	1	1	1	1	3	3	1	1'	1"
Z_4	-1	i	1	i	-1	1	i	1	i	1	i	-i
$U(1)_R$	1	1	1	1	1	0	0	0	0	0	0	0

Reproduces the **lepton** hierarchies and mixings TBM + θ_{13} !

Table 1: Transformation of the matter and flavon superfields under $\mathcal{G}_f = A_4 \times Z_4$

+ h.c.

Alignment:
$$\frac{\langle \phi_T \rangle}{M} \propto \varepsilon \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\frac{\langle \phi_S \rangle}{M} \propto \varepsilon' \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\frac{\langle \xi \rangle}{M} \propto \varepsilon'$, $\frac{\langle \xi' \rangle}{M} \propto \varepsilon$ $m_{ij}^2 = m_0^2 [(2 n_{in} - 1)(2 n_{out} - 1) + 1] K_{ij}$

(LH) Kähler potential
$$K_{\ell,L} = \ell \ell^{\dagger} + \frac{1}{M^2} \left[(\ell \ell^{\dagger} \phi_S \phi_S^{\dagger}) + (\ell \ell^{\dagger} \phi_S) \xi^{\dagger} \right] + \text{h.c.} \qquad K_{\ell,L} \sim 1 + \begin{pmatrix} \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 & \varepsilon'^2 \\ \varepsilon'^2 & \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 \\ \varepsilon'^2 & \varepsilon'^2 & \varepsilon^2 + \varepsilon'^2 \end{pmatrix}$$

$$m_{\ell,L}^2 \sim m_0^2 1 + 2 m_0^2 \begin{pmatrix} \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 & \varepsilon'^2 \\ \varepsilon'^2 & \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 \\ \varepsilon'^2 & \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 \end{pmatrix}$$

$$(\mathbf{R}\mathbf{H}) \ \mathbf{K\ddot{a}hler \ potential} \\ K_{\ell,R} = e^{c}e^{c\dagger} + \mu^{c}\mu^{c\dagger} + \tau^{c}\tau^{c\dagger} \\ + \frac{1}{M^{2}} \left[e^{c}(\phi_{T}\phi_{S}^{\dagger})\mu^{c\dagger} + \mu^{c}(\phi_{T}\phi_{S}^{\dagger})\tau^{c\dagger} \right] \\ + \frac{1}{M^{3}} e^{c} \left[(\phi_{S}\phi_{T}^{\dagger 2}) + (\phi_{S}\phi_{T}^{\dagger})'\xi'^{\dagger} + \mathrm{h.c.} \right] \tau^{c\dagger} \\ + \mathrm{h.c.} \\ K_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} \varepsilon' \\ \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{K}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' \end{pmatrix} \\ \mathbf{C}_{\ell,R} \sim \mathbb{1} + \begin{pmatrix} \varepsilon^{2} + \varepsilon \varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' \\ \varepsilon^{2}\varepsilon' & \varepsilon \varepsilon' & \varepsilon$$

An A_4 model example: Soft terms in physical basis

- 2 rotations to go to the physical basis
- Canonical rotation: Kähler is the identity
- Mass basis rotation: Yukawas are diagonal

$$K_{\ell,L} \longrightarrow U_{K_L}^\dagger K_{\ell,L} \, U_{K_L} = \mathbb{1} \;\;,\;\; K_{\ell,R} \longrightarrow U_{K_R}^\dagger \, K_{\ell,R} \, U_{K_R} = \mathbb{1} \;\;,\;\; Y_\ell \longrightarrow V_Y^\dagger \, U_{K_L}^\dagger \, Y_\ell \, U_{K_R} \, U_Y = Y_\ell^{(diag)}$$

$$A_{\ell} \longrightarrow V_{Y}^{-1} U_{K_{L}}^{\dagger} A_{\ell} U_{K_{R}} U_{Y} = a_{0} \begin{pmatrix} 7x_{1} \varepsilon^{3} & \left(4x_{2} + 2\frac{x_{1}x_{4}}{x_{5}}\right) \varepsilon^{3} \varepsilon' & \left(6x_{3} + 4\frac{x_{1}x_{7}}{x_{9}}\right) \varepsilon^{3} \varepsilon' \\ 2x_{4} \varepsilon^{2} \varepsilon' & 5x_{5} \varepsilon^{2} & \left(4x_{6} + 2\frac{x_{5}x_{8}}{x_{9}}\right) \varepsilon^{2} \varepsilon' \\ 2x_{7} \varepsilon \varepsilon' & 2x_{8} \varepsilon \varepsilon' & 3x_{9} \varepsilon \end{pmatrix}$$

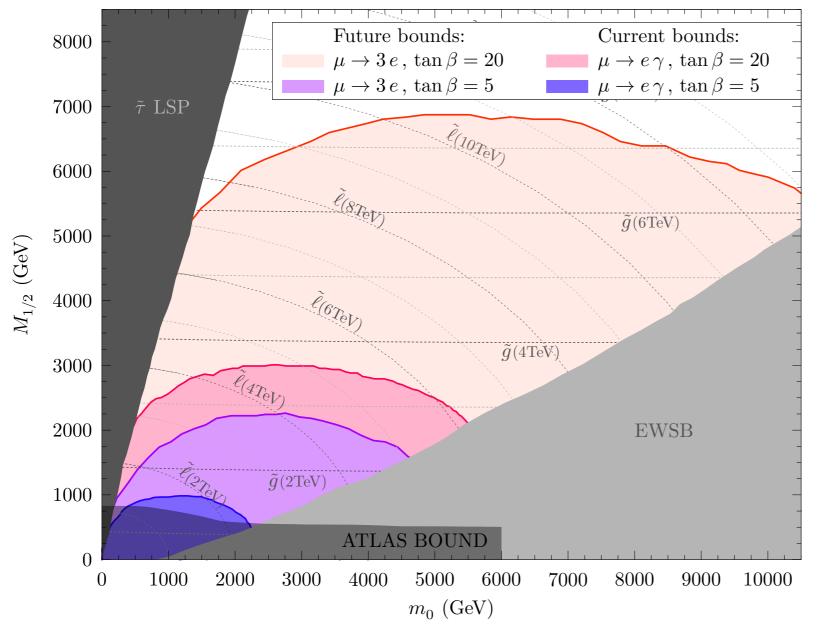
$$m_{\ell,L}^2 \longrightarrow V_Y^{-1} U_{K_L}^{\dagger} m_{\ell,L}^2 U_{K_L} V_Y = m_0^2 \mathbb{1} + m_0^2 \begin{pmatrix} \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 & \varepsilon'^2 \\ \varepsilon'^2 & \varepsilon^2 + \varepsilon'^2 & \varepsilon'^2 \\ \varepsilon'^2 & \varepsilon'^2 & \varepsilon^2 + \varepsilon'^2 \end{pmatrix}$$

$$\begin{array}{c} \mathbf{Do \ not \ get} \\ \mathbf{diagonalized!} \end{array}$$

$$\boldsymbol{m_{\ell,R}^{2}} \longrightarrow U_{Y}^{-1} U_{K_{R}}^{\dagger} m_{\ell,R}^{2} U_{K_{R}} U_{Y} = m_{0}^{2} \mathbb{1} + m_{0}^{2} \left(\begin{array}{ccc} \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \, \varepsilon' & 3 \, \varepsilon^{2} \varepsilon' + \left(\frac{x_{4}}{x_{5}} - \frac{x_{8}}{x_{9}} \right) \varepsilon \, \varepsilon'^{2} \\ \varepsilon \, \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} & \varepsilon \, \varepsilon' \\ 3 \, \varepsilon^{2} \varepsilon' + \left(\frac{x_{4}}{x_{5}} - \frac{x_{8}}{x_{9}} \right) \varepsilon \, \varepsilon'^{2} & \varepsilon \, \varepsilon' & \varepsilon^{2} + \varepsilon'^{2} \end{array} \right)$$

An A_4 model example: FV effects

FIGURE 1: Excluded regions due to $\mu \to e\gamma$ and $\mu \to 3 e$ in A_4



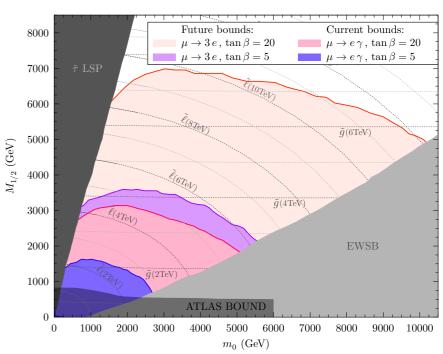


FIGURE 2: Results of an S₃ Model

Running to the EW scale with the SPheno package

Dominant contribution comes from LL - mass insertion

 $\tan \beta$ – enhanced

An $\Delta(27)$ model example * : Superpotential

Field	ℓ, u	ℓ^c, u^c	$H_{u,d}$	Σ	ϕ_{123}	ϕ_1	$ar{\phi}_3$	$ar{\phi}_{23}$	$ar{\phi}_{123}$
$\Delta(27)$	3	3	1	1	3	3	$ar{3}$	$ar{3}$	$ar{3}$
Z_2	1	1	1	1	1	-1	-1	-1	-1
$U(1)_{FN}$	0	0	0	2	-1	-4	0	-1	1
$U(1)_R$	1	1	0	0	0	0	0	0	0

Reproduces the charged lepton and quark hierarchies and mixings CKM + TBM

Table 1: Transformation of matter superfields under $\mathcal{G}_f = \Delta(27) \times Z_2 \times U(1)_{FN}$

$$\textbf{Alignment:} \ \, \frac{\langle \phi_3 \rangle}{M} = \sqrt{y_\tau} \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) \ , \ \, \frac{\langle \phi_{23} \rangle}{M} \ = \ \, \sqrt{y_\tau} \, \varepsilon \, \left(\begin{array}{c} 0 \\ -1 \\ 1 \end{array} \right) \ , \ \, \frac{\langle \phi_{123} \rangle}{M} \ = \ \, \sqrt{y_\tau} \, \varepsilon^2 \, \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \ , \ \, \langle \phi_1 \rangle \ \propto \ \, \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \ , \ \, \frac{\langle \Sigma \rangle}{M} = -3$$

Superpotential

LO:
$$W_{\ell} = \frac{1}{M^2} (\ell \, \bar{\phi}_3) (\ell^c \, \bar{\phi}_3) H_d + \frac{1}{M^2} (\ell \, \bar{\phi}_{23}) (\ell^c \, \bar{\phi}_{123}) H_d + \frac{1}{M^2} (\ell \, \bar{\phi}_{123}) (\ell^c \, \bar{\phi}_{23}) H_d + \frac{1}{M^3} (\ell \, \bar{\phi}_{23}) (\ell^c \, \bar{\phi}_{23}) \Sigma H_d$$

$$Y_{\ell} \sim y_{\tau} \begin{pmatrix} 0 & -x_{2} \varepsilon^{3} & x_{2} \varepsilon^{3} \\ -x_{3} \varepsilon^{3} & 3x_{1} \varepsilon^{2} & -3x_{1} \varepsilon^{2} \\ x_{3} \varepsilon^{3} & -3x_{1} \varepsilon^{2} & 1 \end{pmatrix} \qquad A_{\ell} \sim y_{\tau} a_{0} \begin{pmatrix} 0 & -\mathbf{5} x_{2} \varepsilon^{3} & \mathbf{5} x_{2} \varepsilon^{3} \\ -\mathbf{5} x_{3} \varepsilon^{3} & \mathbf{21} x_{1} \varepsilon^{2} & -\mathbf{21} x_{1} \varepsilon^{2} \\ \mathbf{5} x_{3} \varepsilon^{3} & -\mathbf{21} x_{1} \varepsilon^{2} & \mathbf{5} \end{pmatrix}$$

An $\Delta(27)$ model example: Kähler potential

Field	ℓ, u	ℓ^c, u^c	$H_{u,d}$	Σ	ϕ_{123}	ϕ_1	$ar{\phi}_3$	$ar{\phi}_{23}$	$ar{\phi}_{123}$
$\Delta(27)$	3	3	1	1	3	3	$ar{3}$	$ar{3}$	$ar{3}$
Z_2	1	1	1	1	1	-1	-1	-1	-1
$U(1)_{FN}$	0	0	0	2	-1	-4	0	-1	1
$U(1)_R$	1	1	0	0	0	0	0	0	0

Reproduces the charged lepton and quark hierarchies and mixings CKM + TBM

Table 1: Transformation of matter superfields under $\mathcal{G}_f = \Delta(27) \times Z_2 \times U(1)_{FN}$

$$\textbf{Alignment:} \ \, \frac{\langle \phi_3 \rangle}{M} = \sqrt{y_\tau} \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) \ , \ \, \frac{\langle \phi_{23} \rangle}{M} \ = \ \, \sqrt{y_\tau} \, \varepsilon \, \left(\begin{array}{c} 0 \\ -1 \\ 1 \end{array} \right) \ , \ \, \frac{\langle \phi_{123} \rangle}{M} \ = \ \, \sqrt{y_\tau} \, \varepsilon^2 \, \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \ , \ \, \langle \phi_1 \rangle \ \propto \ \, \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \ , \ \, \frac{\langle \Sigma \rangle}{M} = -3$$

(RH) Kähler potential

$$K_{\ell,R} = \ell^{c}\ell^{c\dagger} + \frac{1}{M^{2}} \left[(\ell^{c}\bar{\phi}_{3})(\bar{\phi}_{3}^{\dagger}\ell^{c\dagger}) + (\ell^{c}\bar{\phi}_{23})(\bar{\phi}_{23}^{\dagger}\ell^{c\dagger}) + (\ell^{c}\bar{\phi}_{123})(\bar{\phi}_{123}^{\dagger}\ell^{c\dagger}) \right]$$

$$+ \frac{1}{M^{3}} \left[(\ell^{c}\bar{\phi}_{23})(\bar{\phi}_{123}^{\dagger}\ell^{c\dagger}) \Sigma + \text{h.c.} \right] + \frac{1}{M^{5}} \left[(\ell^{c}\bar{\phi}_{123})(\bar{\phi}_{23}^{\dagger}\ell^{c\dagger})(\bar{\phi}_{3}\phi_{1}) \Sigma + \text{h.c.} \right]$$

$$\varepsilon_u \neq \varepsilon_d$$
 mediators : LH \gg RH

$$K_{\ell,R} = \mathbb{1} + y_{\tau} \begin{pmatrix} \varepsilon^4 & -3(1+y_{\tau})\varepsilon^3 & 3(1+y_{\tau})\varepsilon^3 \\ -3(1+y_{\tau})\varepsilon^3 & \varepsilon^2 & -\varepsilon^2 \\ 3(1+y_{\tau})\varepsilon^3 & -\varepsilon^2 & 1 \end{pmatrix}$$

$$m_{\ell,R}^2 = m_0^2 \mathbb{1} + m_0^2 y_{\tau} \begin{pmatrix} \mathbf{2} \, \varepsilon^4 & -3 \, (\mathbf{4} + \mathbf{8} \, y_{\tau}) \, \varepsilon^3 & 3 \, (\mathbf{4} + \mathbf{8} \, y_{\tau}) \, \varepsilon^3 \\ -3 \, (\mathbf{4} + \mathbf{8} \, y_{\tau}) \, \varepsilon^3 & \mathbf{2} \, \varepsilon^2 & -\mathbf{2} \, \varepsilon^2 \\ 3 \, (\mathbf{4} + \mathbf{8} \, y_{\tau}) \, \varepsilon^3 & -\mathbf{2} \, \varepsilon^2 & \mathbf{2} \end{pmatrix}$$

An $\Delta(27)$ model example: Soft terms

• Canonical rotation: Kähler is the identity • Mass basis rotation: Yukawas are diagonal

$$K_{\ell,R} \longrightarrow U_{K_R}^\dagger \, K_{\ell,R} \, U_{K_R} = \mathbb{1} \quad , \quad Y_\ell \longrightarrow V_Y^\dagger \, Y_\ell \, U_{K_R} \, U_Y = Y_\ell^{(diag)}$$

$$A_{\ell} \longrightarrow a_0 y_{\tau} \begin{pmatrix} \frac{x_2 x_3}{x_4} \varepsilon^4 & 2 x_2 \varepsilon^3 & -2 \frac{x_2}{x_5} \varepsilon^3 \\ 2 x_2 \varepsilon^3 & 24 x_4 \varepsilon^2 & -6 x_4 \varepsilon^2 \\ -2 x_2 \varepsilon^3 & -6 x_4 \varepsilon^2 & 5 \end{pmatrix}$$
 Do not get diagonalized!

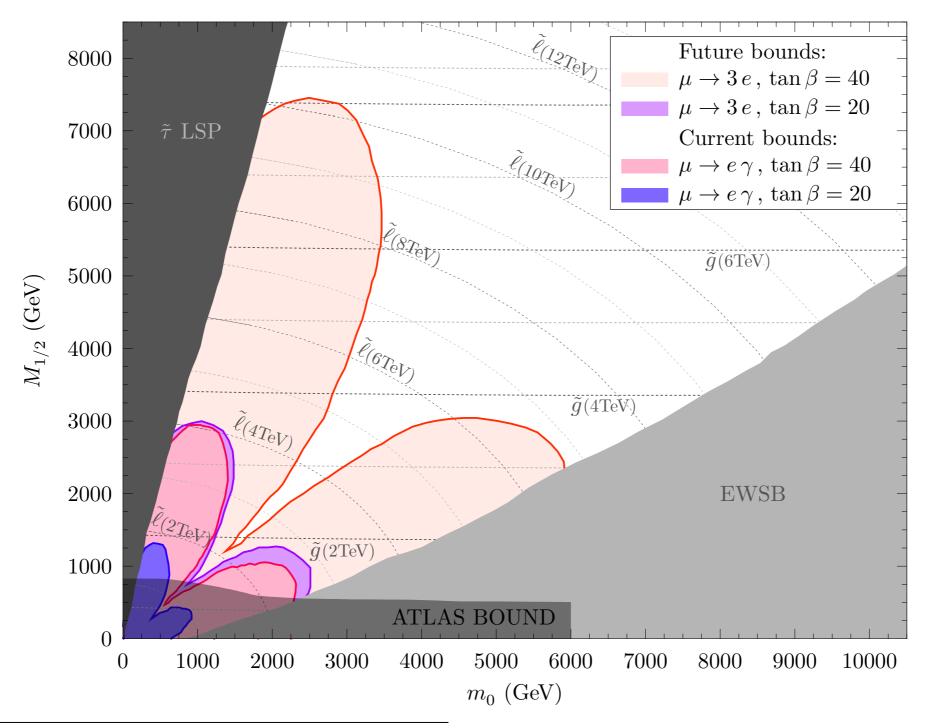
$$m_{\ell,R}^{2} \longrightarrow m_{0}^{2} \mathbb{1} + m_{0}^{2} y_{\tau}$$

$$\begin{pmatrix}
0 & -3 (3 + 7y_{\tau}) \varepsilon^{3} & 3 \left(3 + \frac{11}{2} y_{\tau} - \frac{x_{2}}{3 x_{4}}\right) \varepsilon^{3} \\
-3 (3 + 7y_{\tau}) \varepsilon^{3} & \varepsilon^{2} & - (1 - 3 x_{4}) \varepsilon^{2}
\end{pmatrix}$$

$$3 \left(3 + \frac{11}{2} y_{\tau} - \frac{x_{2}}{3 x_{4}}\right) \varepsilon^{3} - (1 - 3 x_{4}) \varepsilon^{2}$$

$$1$$

An $\Delta(27)$ model example: FV effects



Field	$\psi_{q,e, u}$	$\psi^c_{q,e, u}$	H_5	Σ	S	θ_3	θ_{23}	θ_{123}	θ	θ_X
$\Delta(27)$	3	3	100	100	100	$\bar{3}$	$ar{3}$	$ar{3}$	$\bar{3}$	3
Z_N	0	0	0	2	-1	0	-1	2	0	X

Table 1: Transformation of the matter superfields under $\mathcal{G}_f = \Delta(27) \times Z_N$

Appealing flavor model *

small group with $3, \overline{3}$: consistent with underlying SO(10) grand unification accommodates **quark and lepton** mass hierarchies, mixing angles and CP phases Dirac and Majorana mass matrices have a nice unified texture zero in (1,1)

$$Y_a = y_{3,a} \begin{pmatrix} \mathbf{0} & x_{1,a} \, e^{i\,\gamma_a} \, \varepsilon_a^3 & x_{1,a} \, e^{i\,\gamma_a} \, \varepsilon_a^3 \\ x_{1,a} \, e^{i\,\gamma_a} \, \varepsilon_a^3 & x_{2,a} \, r_a \, e^{i\delta_a} \, \varepsilon_a^2 & x_{2,a} \, r_a \, e^{i\delta_a} \, \varepsilon_a^2 \\ x_{1,a} \, e^{i\,\gamma_a} \, \varepsilon_a^3 & x_{2,a} \, r_a \, e^{i\delta_a} \, \varepsilon_a^2 & 1 \end{pmatrix}$$

$$- \text{Gatto - Sartori - Tonin relation } \sin_{\theta_c} = |\sqrt{\frac{m_d}{m_s}} - e^{i\delta} \sqrt{\frac{m_u}{m_c}}| \qquad y_3 = \{y_\tau, y_t, y_b\}$$

$$- \text{natural departure of } \theta_{13}^\ell \text{ angle}$$

Superpotential:
$$W_{\psi} = \frac{1}{M^2} (\psi \theta_3) (\psi^c \theta_3) H_5 + \frac{1}{M^3} (\psi \theta_{23}) (\psi^c \theta_{23}) \Sigma H_5 + \frac{1}{M^3} (\psi \theta_{23}) (\psi^c \theta_{123}) S H_5 + \frac{1}{M^3} (\psi \theta_{123}) (\psi^c \theta_{23}) S H_5$$

Kahler potential:
$$\mathcal{K}_{\psi^c} = \psi^c \psi^{c\dagger} + \frac{1}{M^2} \left[(\psi^c \theta_3)(\theta_3^{\dagger} \psi^{c\dagger}) + (\psi^c \theta_{23})(\theta_{23}^{\dagger} \psi^{c\dagger}) + (\psi^c \theta_{123})(\theta_{123}^{\dagger} \psi^{c\dagger}) \right] + \frac{1}{M^3} \left[(\psi^c \theta_3)(\theta_{23}^{\dagger} \psi^{c\dagger}) S + \text{h.c.} \right] + \frac{1}{M^3} \left[(\psi^c \theta_3)(\theta_{123}^{\dagger} \psi^{c\dagger}) \Sigma + \text{h.c.} \right]$$

Typical Alignment:
$$\langle \theta_3 \rangle \propto \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 , $\langle \theta_{23} \rangle \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\langle \theta_{123} \rangle \propto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$Y_a = \mathbf{y_{3,a}} \left(\begin{array}{ccc} \mathbf{0} & x_{1,a} \, e^{i \, \gamma_a} \, \varepsilon_a^3 & x_{1,a} \, e^{i \, \gamma_a} \, \varepsilon_a^3 \\ x_{1,a} \, e^{i \, \gamma_a} \, \varepsilon_a^3 & x_{2,a} \, r_a \, e^{i \delta_a} \, \varepsilon_a^2 & x_{2,a} \, r_a \, e^{i \delta_a} \, \varepsilon_a^2 \\ x_{1,a} \, e^{i \, \gamma_a} \, \varepsilon_a^3 & x_{2,a} \, r_a \, e^{i \delta_a} \, \varepsilon_a^2 & 1 \end{array} \right)$$

$$K_{R,a} = \mathbb{1} + y_{3,a} \begin{pmatrix} \varepsilon_a^{2\alpha} & \varepsilon_a^{2\alpha} & e^{i(\gamma_a - \frac{\delta_a}{2})} r_a \varepsilon_a^{\alpha} + \varepsilon_a^{2\alpha} \\ \text{c.c.} & \varepsilon_a^{2\alpha} & e^{i(\gamma_a - \frac{\delta_a}{2})} r_a \varepsilon_a^{\alpha} + \varepsilon_a^{2\alpha} \\ \text{c.c.} & \text{c.c.} & 1 \end{pmatrix}$$

VEV alignment prefers small values of α

Some freedom in VEV
$$\frac{\langle \theta_{23} \rangle \langle \theta_{123} \rangle \langle S \rangle}{M_{123,a}^3} \frac{M_{3,a}^2}{\langle \theta_3 \rangle^2} \propto e^{i \gamma_a} \varepsilon_a^3 : \frac{\langle \theta_{123} \rangle}{M_a} = \sqrt{y_{3,a}} e^{i (\gamma_a - \delta_a/2)} \varepsilon_a^{\alpha} \text{ with } \alpha \in [0,1]$$

$$15/19$$

Soft matrices in the physical basis

Kahler + Yukawa diagonalization + re-phasing of the CKM + re-phasing for real Yukawas

Leptonic sector

$$A_{e} \longrightarrow a_{0} y_{\tau} \begin{pmatrix} -7 \frac{x_{1,e}^{2}}{r_{e} x_{2,e}} \varepsilon_{e}^{4} & 0 & 0 \\ 0 & -7 r_{e} x_{2,e} \varepsilon_{e}^{2} & 2 e^{i \delta_{e}} r_{e} x_{2,e} \varepsilon_{e}^{2} \\ 0 & -2 r_{e} x_{2,e} \varepsilon_{e}^{2} & 5 \end{pmatrix} \begin{array}{c} \varepsilon_{12} & \varepsilon_{13} \\ \text{Trilinears block diagonalized} \\ \text{(CCB : } a_{0} \leq \sqrt{3} m_{0} / 7) \\ \mu \rightarrow e : \end{pmatrix}$$

$$m_{R,e}^{2} \longrightarrow m_{0}^{2} \mathbb{1} + m_{0}^{2} y_{\tau} \begin{pmatrix} \varepsilon_{e}^{2\alpha} & -e^{2i(\gamma_{e} - \delta_{e})} \varepsilon_{e}^{2\alpha} & 3e^{3i(\gamma_{e} - \frac{\delta_{e}}{2})} r_{e} \varepsilon_{e}^{\alpha} + \varepsilon_{e}^{2\alpha} \\ \text{c.c.} & \varepsilon_{e}^{2\alpha} & 3e^{i(\gamma_{e} - \frac{\delta_{e}}{2})} r_{e} \varepsilon_{e}^{\alpha} + \varepsilon_{e}^{2\alpha} \\ \text{c.c.} & \text{c.c.} & 1 \end{pmatrix} \begin{pmatrix} \delta_{e,12}^{RR} \sim \varepsilon^{2\alpha} \\ \sim y_{\tau} [0.02 \div 0.15] \\ \tau \to e \& \tau \to \mu : \end{pmatrix}$$

Down quark sector

$$m_{R,d}^{2} \longrightarrow m_{0}^{2} \mathbb{1} + m_{0}^{2} y_{b} \begin{pmatrix} \varepsilon_{d}^{2\alpha} & -e^{i \left(\gamma_{d} - \delta_{d}\right)} \varepsilon_{d}^{2\alpha} & 3 e^{i \left(2\gamma_{d} - \frac{3\delta_{d}}{2}\right)} r_{d} \varepsilon_{d}^{\alpha} + \varepsilon_{d}^{2\alpha} \\ \text{c.c.} & \varepsilon_{d}^{2\alpha} & 3 e^{i \left(\gamma_{d} - \frac{\delta_{d}}{2}\right)} r_{d} \varepsilon_{d}^{\alpha} + \varepsilon_{d}^{2\alpha} \end{pmatrix} \quad \begin{array}{c} \sim & y_{\tau} \left[0.15 \div 1 \right] \\ \epsilon_{K} : \\ S\left[\delta_{d,12}^{RR}\right] \sim e^{i \left(\gamma_{d} - \delta_{d}\right)} \\ S\left[\delta_{d,12}^{RR}\right] \sim e^{i \left(\gamma_{d} - \delta_{d}\right)} \\ \end{array}$$

$$\delta_{e,12}^{RL} \sim \delta_{e,13}^{RL} \sim 0$$
Trilinears block diagonalized
(CCB: $a_0 \leq \sqrt{3} m_0/7$)

$$\delta_{e,12}^{RR} \sim \varepsilon^{2\alpha}$$

$$\sim y_{\tau}[0.02 \div 0.15]$$

$$au
ightarrow e \ \& \ au
ightarrow \mu :$$
 $\delta_{e,13}^{RR} \sim \delta_{e,23}^{RR} \sim arepsilon^{lpha}$

$$v_{\tau,13} \quad v_{e,23} \quad v_{\tau} \quad v_{\tau}$$

$$\epsilon_K$$
:
$$\Im[\delta_{d,12}^{RR}] \sim e^{i (\gamma_d - \delta_d)}$$

FIGURE 4: Excluded regions of the MSSM parameter space due to LFV constraints.

Blue shape: current bound on $BR(\mu \to e \gamma)$. Green shape: current bound on ϵ_K .

Red shape: future sensitivity on $BR(\mu \to 3e)$. Orange shape: future sensitivity on $CR(\mu - e)_{Al}$.

Future sensitivity on $BR(\mu \to e\gamma)$ excludes a region similar to $BR(\mu \to 3e)$.

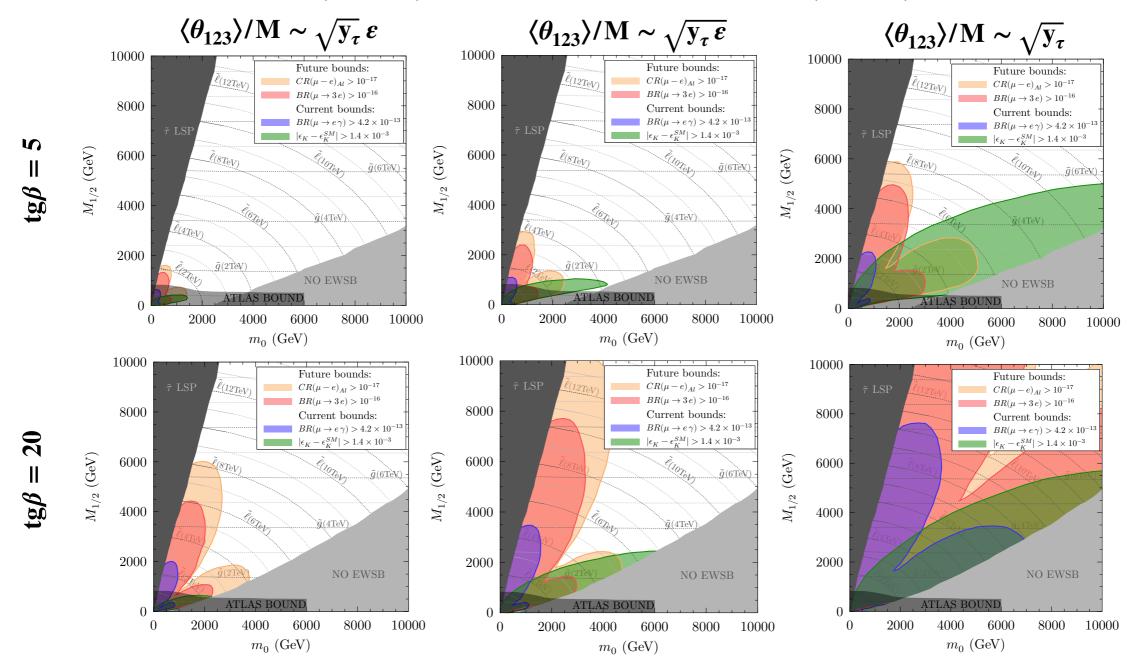
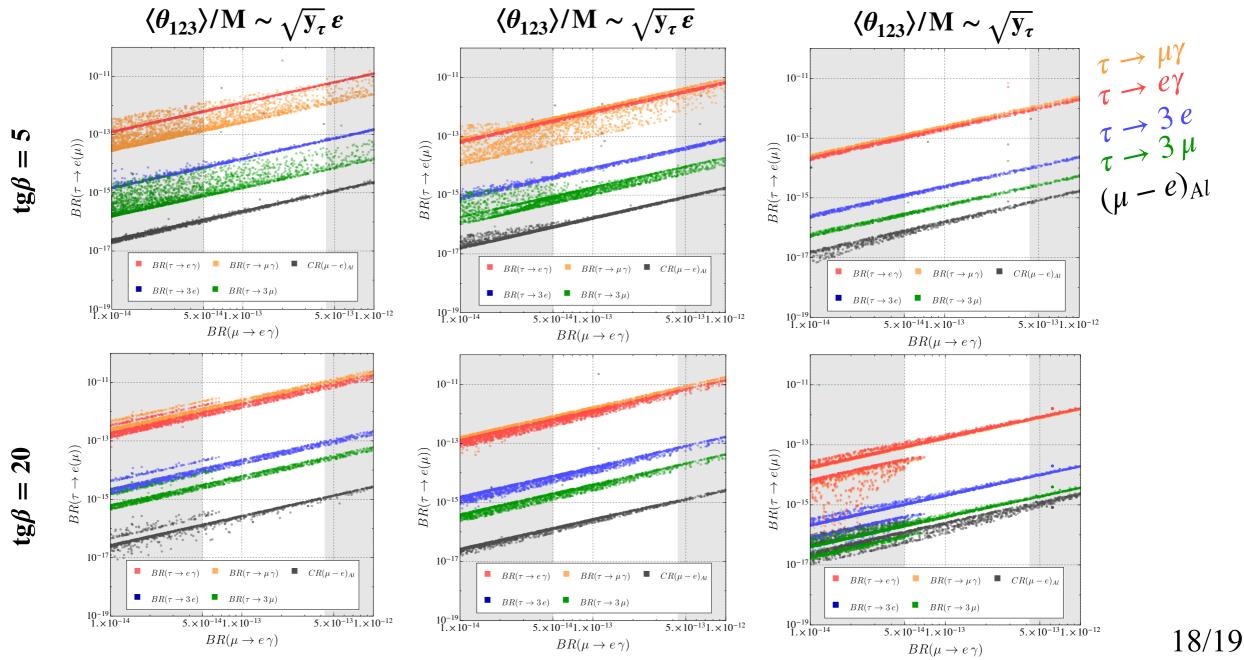


FIGURE 5: FV τ -decays as a function of $BR(\mu \to e \gamma)$.

White region: future accessible sensitivity for $BR(\mu \to e \gamma)$ (between blue - red shapes in Figure 4).

Gray region: future accessible sensitivity for $CR(\mu - e)_{Al}$ (yellow shape in Figure 4).

Predictions out of reach for the near future experiments (future limits on τ -decays are $\sim 10^{-10}$)



Conclusions

We have

- performed an analysis of lepton and quark FV-processes in the MSSM enlarged with a flavor symmetry
- shown that **non-universality** of soft breaking matrices (trilinears & soft masses) is generally present **← easily calculable**
- shown the predictivity of flavor models in SUSY
- demonstrated that non-universality remembers the details of the flavor model and its breaking easy to (dis)prove the model: correlation between observables in different sectors!

This analysis allow to

- **constrain** sparticle masses well above the LHC reach, strongest bounds from $\mu \rightarrow e$ and ϵ_K
- even distinguish flavor models!

A $\Delta(27)$ unified model: fit results

	Uncortainties on HV Mixing Observables											
Uncertainties on UV Mixing Observables												
$(\mu = M_X)$	$\sin \theta_{12}^q$	$\sin \theta_{23}^q$	$\sin \theta_{13}^q$	$\sin \delta_{ ext{CP}}^q$	$\sin \theta_{12}^l$	$\sin \theta_{23}^l$	$\sin \theta_{13}^l$	$\sin \delta_{ ext{CP}}^l$				
Upper	.228	.0468	.00508	1.000	.588	.800	.155	_				
Lower	.226	.0220	.00169	.186	.520	.620	.139	-				
Universal Texture Zero Mixing Predictions												
	1						I					

Universal Texture Zero Mixing Predictions											
$(\mu = M_X)$	$(\mu = M_X)$ $\sin \theta_{12}^q \left \sin \theta_{23}^q \right \sin \theta_{13}^q \left \sin \delta_{CP}^q \right \sin \theta_{12}^l \left \sin \theta_{23}^l \right \sin \theta_{13}^l \left \sin \delta_{CP}^l \right $										
L.O. Prediction	.226	.0191	.0042	.561	.554	.778	.152	905			
H.O. Prediction	.226	.0313	.00307	.788	.543	.751	.153	925			

	.974	.226	.00307	١
$ V_{\rm CKM} ^{\rm HO} =$.226	.974	.0313	۱
	(.00574)	.0309	.9995 /	•

 $\mathcal{J}_{\mathrm{CKM}}^{\mathrm{HO}} = 1.665 \times 10^{-5}$

	Uncertainties on UV Mass Ratios										
Upper	.00031	.061	8.91×10^{-6}	.0027	.0012	.021	.0336				
Lower $.00022$ $.048$ 1.68×10^{-6} $.00084$ $.00035$ $.008$ $.021$											
Universal Texture Zero Mass Predictions											

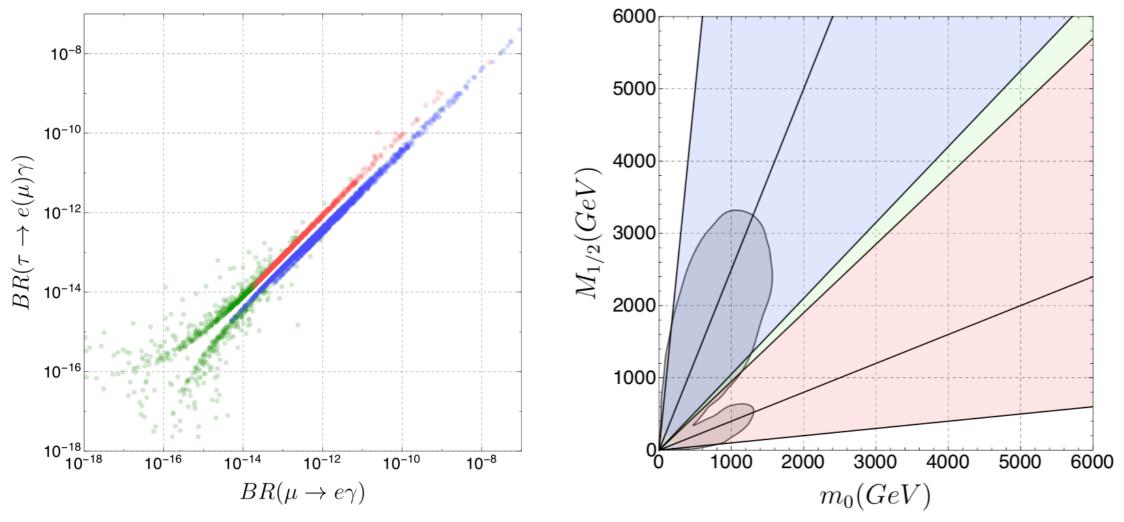
Universal Texture Zero Mass Predictions											
$(\mu = M_X)$ m_e/m_{τ} m_{μ}/m_{τ} m_u/m_t m_c/m_t m_d/m_b m_s/m_b $\Delta m_{\rm sol}^2/\Delta m_{\rm atm}^2$											
L.O. Prediction	.00031	.055	7.16×10^{-6}	.0027	.00090	.020	.0213				
H.O. Prediction	.00026	.049	7.89×10^{-6}	.0025	.0010	.020	.0213				

$$|V_{\text{PMNS}}|^{\text{HO}} = \begin{pmatrix} .830 .536 .153 \\ .405 .534 .742 \\ .384 .654 .652 \end{pmatrix}$$

$$\mathcal{J}_{\mathrm{PMNS}}^{\mathrm{HO}} = -.0311$$

The H.O. predictions are within the 3σ - uncertainty bounds

A $\Delta(27)$ unified model: understanding the results



In some cases, particularly in the $\tan \beta = 20$ panels, for each branching ratio a second line becomes visible, and the two lines correspond to the maximum directions of growth in the $\{m_0, M_{1/2}\}$ planes of Fig. 5. This is caused by a misalignment of the cancellation region with respect to the one of $\mu \to e \, \gamma$, which results in two distinct directions of growth. The misalignment stems from additional contributions, deriving mainly from the inclusion of the two mass insertions $\delta_{ik}^{RR} \delta_{kj}^{RR}$

An S_3 model example

Field	$ u^c $	ν_3^c	e	e^c	ℓ	ℓ^c	$H_{u,d}$	ϕ	χ	ξ	χ'	χ'^{\dagger}
S_3	2	1'	1	1	2	2	1	2	1	2	1'	1'
Z_6	ω	ω	1	ω^3	ω^5	ω^3	1	ω^4	ω^4	ω^4	ω^5	ω^{-5}
Z_3	1	1	1	ω	1	ω^2	1	ω	ω	1	1	1
$U(1)_R$	1	1	1	1	1	1	0	0	0	0	0	0

Reproduces the charged **lepton & quark** hierarchies and mixings $CKM + TBM + \theta_{13}!$

Table 1: Transformation of the matter superfields under the $\mathcal{G}_f = S_3 \times Z_6 \times Z_3$.

$$\ell = \begin{pmatrix} \tau \\ \mu \end{pmatrix}, \ell^c = \begin{pmatrix} \mu^c \\ \tau^c \end{pmatrix}$$

Alignment:
$$\frac{\langle \phi \rangle}{M} \propto \varepsilon \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{\langle \xi \rangle}{M} \propto \varepsilon \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \frac{\langle \chi \rangle}{M} \propto \varepsilon, \frac{\langle \chi' \rangle}{M} \propto \varepsilon'$$

Superpotential

$$\mathbf{LO} \ \mathcal{W}_{\ell} = \frac{1}{M} \left[\left(\ell^{c} \ell \phi \right) + \left(\ell^{c} \ell \right) \chi \right] H_{d} + \frac{1}{M^{2}} \left(\ell^{c} \ell \phi \right)' \chi' H_{d}$$

$$Y_{\ell} \sim \begin{pmatrix} x_1 \, \varepsilon^2 \, \varepsilon'^3 & x_2 \, \varepsilon \, \varepsilon' & -x_2 \, \varepsilon \, \varepsilon' \\ x_3 \, \varepsilon^2 \, \varepsilon'^2 & x_4 \, \varepsilon & x_5 \, \varepsilon \\ x_6 \, \varepsilon^2 \, \varepsilon'^2 & x_5 \, \varepsilon & x_4 \, \varepsilon \end{pmatrix}$$

NLO
$$\delta W_{\ell} = \frac{1}{M^4} e^c \left[(\ell \xi^2) \chi^2 + (\ell \phi \xi^2) \chi + (\ell \phi^2 \xi^2) \right] H_d$$

$$+ \frac{1}{M^5} e^c e \left[(\phi \xi^2)' \chi' \chi + (\phi^2 \xi^2)' \chi' \right] H_d \qquad A_{\ell} \sim a_0 \begin{pmatrix} \mathbf{11} x_1 \varepsilon^2 \varepsilon'^3 & \mathbf{5} x_2 \varepsilon \varepsilon' & -\mathbf{5} x_2 \varepsilon \varepsilon' \\ \mathbf{9} x_3 \varepsilon^2 \varepsilon'^2 & \mathbf{3} x_4 \varepsilon & \mathbf{3} x_5 \varepsilon \\ \mathbf{9} x_6 \varepsilon^2 \varepsilon'^2 & \mathbf{3} x_5 \varepsilon & \mathbf{3} x_4 \varepsilon \end{pmatrix}$$

An S_3 model example

Field	ν^c	ν_3^c	e	e^c	ℓ	ℓ^c	$H_{u,d}$	ϕ	χ	ξ	χ'	χ'^{\dagger}
S_3	2	1'	1	1	2	2	1	2	1	2	1'	1'
Z_6	ω	ω	1	ω^3	ω^5	ω^3	1	ω^4	ω^4	ω^4	ω^5	ω^{-5}
Z_3	1	1	1	ω	1	ω^2	1	ω	ω	1	1	1
$U(1)_R$	1	1	1	1	1	1	0	0	0	0	0	0

Reproduces the charged lepton and quark hierarchies and mixings $CKM + TBM + \theta_{13}!$

Table 1: Transformation of the matter superfields under the $\mathcal{G}_f = S_3 \times Z_6 \times Z_3$.

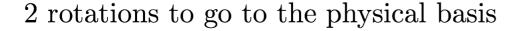
Alignment:
$$\frac{\langle \phi \rangle}{M} \propto \varepsilon \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{\langle \xi \rangle}{M} \propto \varepsilon \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \frac{\langle \chi \rangle}{M} \propto \varepsilon, \frac{\langle \chi' \rangle}{M} \propto \varepsilon'$$

(LH) Kähler potential

(RH) Kähler potential

$$(\mathbf{RH}) \ \textbf{K\"{a}hler potential} \\ K_{\ell,R} \ = \ \ell^c \ell^{c\dagger} \ + \ e^c e^{c\dagger} \\ + \ \frac{1}{M^2} \bigg[\left(\ell^c \ell^{c\dagger} \phi \phi^\dagger \right) + \left(\ell^c \ell^{c\dagger} \phi \right) \chi^\dagger + \left(\ell^c \xi \phi^\dagger \right) e^{c\dagger} + \text{h.c.} \bigg] + \text{h.c.} \\ m_{\ell,R}^2 \ \sim \ m_0^2 \, \mathbb{1} + \mathbf{2} \, m_0^2 \, \bigg(\begin{array}{ccc} \varepsilon^2 + \varepsilon'^2 & \varepsilon \varepsilon' & \varepsilon \varepsilon' \\ \varepsilon \varepsilon' & \varepsilon^2 + \varepsilon'^2 & \varepsilon^2 \\ \varepsilon \varepsilon' & \varepsilon^2 & \varepsilon^2 + \varepsilon'^2 \end{array} \bigg) \\ \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' \\ \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' \\ \varepsilon \varepsilon' & \varepsilon \varepsilon' & \varepsilon \varepsilon' + \varepsilon'^2 \end{array} \bigg) \\$$

An S_3 model example



- Canonical rotation: Kähler is the identity
- Mass basis rotation: Yukawas are diagonal

$$K_{\ell,L} \longrightarrow U_{K_L}^\dagger K_{\ell,L} \, U_{K_L} = \mathbb{1} \;\;,\;\; K_{\ell,R} \longrightarrow U_{K_R}^\dagger \, K_{\ell,R} \, U_{K_R} = \mathbb{1} \;\;,\;\; Y_\ell \longrightarrow V_Y^\dagger \, U_{K_L}^\dagger \, Y_\ell \, U_{K_R} \, U_Y = Y_\ell^{(diag)}$$

$$\mathbf{A}_{\ell} \longrightarrow V_{Y}^{-1} U_{K_{L}}^{\dagger} A_{\ell} U_{K_{R}} U_{Y} = a_{0} \begin{bmatrix} 11 x_{1} \varepsilon^{2} \varepsilon'^{3} & \left(-\frac{5}{\sqrt{2}} x_{2} + \frac{3\sqrt{2}x_{2}x_{5}}{x_{4} + x_{5}} \right) \varepsilon \varepsilon' & -2\sqrt{2} x_{2} \varepsilon \varepsilon' \\ \frac{9}{\sqrt{2}} (x_{6} + x_{3}) \varepsilon^{2} \varepsilon'^{2} & 3 (x_{5} - x_{4}) \varepsilon & -3 x_{5} \varepsilon^{3} \\ \frac{9}{\sqrt{2}} (x_{6} - x_{3}) \varepsilon^{2} \varepsilon'^{2} & -3 x_{5} \varepsilon^{3} & -3 (x_{5} + x_{4}) \varepsilon \end{bmatrix}$$

$$m{m_{\ell,L}^2} \ \longrightarrow \ V_Y^{-1} \, U_{K_L}^\dagger m_{\ell,L}^2 \, U_{K_L} V_Y = m_0^2 \, \mathbb{1} + m_0^2 \left(egin{array}{ccc} arepsilon^2 + arepsilon'^2 & rac{1}{\sqrt{2}} arepsilon'^2 & -rac{1}{\sqrt{2}} arepsilon'^2 \ rac{1}{\sqrt{2}} arepsilon'^2 & 2 \, arepsilon^2 + arepsilon'^2 & 3 \, arepsilon^2 arepsilon'^2 \ -rac{1}{\sqrt{2}} arepsilon'^2 & 3 \, arepsilon^2 arepsilon'^2 & arepsilon'^2 \end{array}
ight) \qquad \qquad \mathbf{D}$$

Do not get diagonalized!

$$m{m_{\ell,R}^2} \longrightarrow U_Y^{-1} U_{K_R}^{\dagger} m_{\ell,R}^2 U_{K_R} U_Y = m_0^2 \mathbb{1} + m_0^2 \begin{pmatrix} \varepsilon^2 + \varepsilon'^2 & \sqrt{2} \varepsilon \varepsilon' & 0 \\ \sqrt{2} \varepsilon \varepsilon' & 2 \varepsilon^2 + \varepsilon'^2 & 0 \\ 0 & 0 & \varepsilon'^2 \end{pmatrix}$$