

Slepton non-universality in the flavor effective MSSM

Based on : JHEP 1711 (2017) 162 \& arXiv:1807.00860
Collaboration with : Ivo de Medeiros Varzielas (IST, Lisboa U.), M. L. López Ibáñez (INFN, RomaTre) , M. J. Pérez (Valencia State College), Oscar Vives (IFIC,Valencia U.)

Outlook

- Show results of two representative models with discrete flavor symmetries. Analysis of FV effects in leptonic sector.
- Application to a complete flavor model.

Motivations

Froggatt-Nielsen and flavor symmetries nice way yo explain SM flavor parameters
but...

- Flavor scale $\boldsymbol{\Lambda}_{f}$ arbitrarily heavy
- Many possible choices for flavor symmetry Abelian: $U(1), S U(3), \ldots$
Non-abelian: $A_{4}, S_{3}, \Delta(27), \ldots$
How to choose?
New flavor observables needed!

New flavor couplings generic feature of many NP models, in SUSY soft breaking terms:
trilinears interactions $\}$ sfermion soft masses $\}$ fixed by m_{0}
but...

- If $\mathcal{O}\left(m_{0}\right)$ entries
\rightarrow severe Flavor Violating problems
- LHC won't give stronger mass limits over SUSY sparticles

New ways
to restrict parameter space are needed!

What about Flavor symmetries in SUSY?
Flavor symmetry relates the structure in Yukawa matrices to
the non-universality in Soft breaking terms
FV effects still present but controlled

Review of the mechanism

SUSY breaking Mediation scale	$-\Lambda_{\overrightarrow{\mathrm{SUSY}}} \sim M_{P l} \sim 10^{19} \mathrm{GeV}$
	$\vdots \quad M_{\text {GUT }} \sim 1 \mathbf{1 0}^{\mathbf{1 6}} \mathbf{G e V}$
SUSY Breaking Scale	$\Lambda_{\text {SHSY }} \simeq \sqrt{\left\langle F_{X}\right\rangle} \sim 10^{11} \mathrm{GeV}$
Sparticles scale	$m_{0} \simeq \frac{\left\langle F_{X}\right\rangle}{M_{P l}} \sim 1 \mathrm{TeV}$

We need : $\Lambda_{\overrightarrow{\text { SUSY }}} \gg \Lambda_{f}$
for example gravity mediation : $\Lambda_{\overrightarrow{\mathrm{SUSY}}} \sim M_{P l}$
X : hidden sector spurion field
interacts gravitationally with visible sector let's consider it single and universal

$$
\begin{aligned}
\mathscr{L}_{\text {int }}= & \frac{s}{M_{P l}} X W_{a}^{\alpha} W_{\alpha}^{a}+\frac{b}{M_{P l}} X^{\dagger} H_{u} H_{d} \\
& +\frac{\boldsymbol{a}_{i j}}{M_{P l}} X \psi_{i} \bar{\psi}_{j} H_{u, d}+\frac{\boldsymbol{c}_{i j}}{M_{P l}^{2}} X^{\dagger} X \psi_{i}^{\dagger} \psi_{j}+\text { h.c. } .
\end{aligned}
$$

soft breaking interactions must respect G_{f} different ways to couple the spurion field
\rightarrow mismatch coefficients : $c_{i j} a_{i j}$!
SUSY broken in an Hidden sector by

$$
\begin{gathered}
X \text { getting }\left\langle F_{X}\right\rangle \neq 0 \\
\mathscr{L}_{\text {int }} \rightarrow \mathscr{L}_{\text {soft }}
\end{gathered}
$$

Review of the mechanism

Mismatch coefficients* in $\mathscr{L}_{\text {soft }}$ are given by the number of flavon insertions in each diagram

$\boldsymbol{A}_{i j}=a_{0}\left[\left(2 n_{i n}-1\right)+2\right] Y_{i j}$

Soft mass terms $: \frac{c_{i j}}{M_{P l}^{2}} X^{\dagger} X \psi_{i}^{\dagger} \psi_{j}+$ h.c.

$$
\boldsymbol{m}_{i j}^{2}=m_{0}^{2}\left[\left(2 n_{\text {in }}-1\right)\left(2 n_{\text {out }}-1\right)+1\right] K_{i j}
$$

where each bubble is given by :

Bounds on FV processes *

- Lepton FV transitions would be a clear signal of New Physics!
- Variety of channels, most sensitive involving the muon.
- Next decade: several experiments are planned to pursue the search for $\boldsymbol{\mu} \rightarrow \boldsymbol{e} \gamma, \boldsymbol{\mu} \rightarrow \boldsymbol{e} \boldsymbol{e}, \boldsymbol{\mu} \boldsymbol{\mu} \boldsymbol{e}$ conversion in nuclei, as well as processes involving the τ, to an unprecedented level of precision.

Table 1: Relevant Flavor Violating (FV) processes considered in our analysis.

FV process	Current Bounds	Future Bounds
$\mathrm{BR}(\mu \rightarrow e \gamma)$	4.2×10^{-13} (MEG at PSI)	$4 \times 10^{-14}($ MEG II)
$\mathrm{BR}(\mu \rightarrow e e e)$	$1.0 \times 10^{-12}($ SINDRUM)	10^{-16} (Mu3e)
$\mathrm{CR}(\mu-e)_{A_{l}}$		10^{-17} (Mu2e, COMET)
$\operatorname{BR}(\tau \rightarrow e \gamma)$	$3.3 \times 10^{-8}(\mathrm{BaBar})$	5×10^{-9} (Belle II)
$\operatorname{BR}(\tau \rightarrow \mu \gamma)$	4.4×10^{-8} (BaBar)	10^{-9} (Belle II)
$\operatorname{BR}(\tau \rightarrow e e e)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
$\mathrm{BR}(\tau \rightarrow \mu \mu \mu)$	2.1×10^{-8} (Belle)	5×10^{-10} (Belle II)
ΔM_{K}	$\begin{gathered} (52.89 \pm 0.09) \times 10^{8} \hbar s^{-1}(\mathrm{PDG}) \\ (2.228 \pm 0.011) \times 10^{-3}(\mathrm{PDG}) \end{gathered}$	
ϵ_{K}		

$\ell_{i} \rightarrow \ell_{j} \gamma$ in the MIA approximation

$$
\begin{aligned}
& \frac{B R\left(\ell_{i} \rightarrow \ell_{j} \gamma\right)}{B R\left(\ell_{i} \rightarrow \ell_{j} \nu_{i} \bar{\nu}_{j}\right)}=\frac{48 \pi^{3} \alpha}{G_{F}^{2}}\left(\left|\mathcal{A}_{i j}^{L}\right|^{2}+\left|\mathcal{A}_{i j}^{R}\right|^{2}\right) \sim \frac{\alpha^{3}}{G_{F}^{2}} \frac{\delta_{i j}^{2}}{m_{0}^{4}} \tan \beta^{2} \\
& \mathcal{A}_{i j}^{L}=\frac{\alpha_{2}}{4 \pi} \frac{\delta_{\ell, i j}^{L L}}{m_{\overparen{\ell}}^{2}}\left[f_{1 n}\left(a_{2}\right)+f_{1 c}\left(a_{2}\right)+\frac{\mu M_{2} \tan \beta}{M_{2}^{2}-\mu^{2}}\left(f_{2 n}\left(a_{2}, b\right)+f_{2 c}\left(a_{2}, b\right)\right)\right. \\
& \left.+\tan \theta_{W}^{2}\left(f_{1 n}\left(a_{1}\right)+\mu M_{1} \tan \beta\left(\frac{f_{3 n}\left(a_{1}\right)}{\tilde{m}_{\ell}^{2}}+\frac{f_{2 n}\left(a_{1}, b\right)}{\mu^{2}-M_{1}^{2}}\right)\right)\right] \\
& +\frac{\alpha_{1}}{4 \pi} \frac{\delta_{\ell, i j}^{R L}}{m_{\overparen{\ell}}^{2}}\left(\frac{M_{1}}{m_{\ell_{i}}}\right) 2 f_{2 n}\left(a_{1}\right) \\
& \mathcal{A}_{i j}^{R}=\frac{\alpha_{1}}{4 \pi} \frac{\boldsymbol{\delta}_{\ell, i j}^{R R}}{m_{\tilde{\ell}}^{2}}[4 f_{1 n}\left(a_{1}\right)+\mu M_{1} \tan \beta(\frac{f_{3 n}\left(a_{1}\right)}{\tilde{m}_{\ell}^{2}} \underbrace{\frac{2 f_{2 n}\left(a_{1}, b\right)}{\mu^{2}-M_{1}^{2}}})] \\
& +\frac{\alpha_{1}}{4 \pi} \frac{\delta_{\ell,, j}^{L R}}{m_{\overparen{\ell}}^{2}}\left(\frac{M_{1}}{m_{\ell_{i}}}\right) 2 f_{2 n}\left(a_{1}\right) \\
& \text { Cancellation }
\end{aligned}
$$

An A_{4} model example * : Superpotential

Field	ν^{c}	ℓ	e^{c}	μ^{c}	τ^{c}	H_{d}	H_{u}	ϕ_{S}	ϕ_{T}	ξ	ξ^{\prime}	$\xi^{\prime \dagger}$
A_{4}	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}^{\prime \prime}$
Z_{4}	-1	i	1	i	-1	1	i	1	i	1	i	-i
$U(1)_{R}$	1	1	1	1	1	0	0	0	0	0	0	0

Reproduces the lepton hierarchies and mixing TBA $+\boldsymbol{\theta}_{13}$!

Table 1: Transformation of the matter and flavor superfields under $\mathcal{G}_{f}=A_{4} \times Z_{4}$
Alignment: $\frac{\left\langle\phi_{T}\right\rangle}{M} \propto \varepsilon\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \frac{\left\langle\phi_{S}\right\rangle}{M} \propto \varepsilon^{\prime}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{\langle\xi\rangle}{M} \propto \varepsilon^{\prime}, \frac{\left\langle\xi^{\prime}\right\rangle}{M} \propto \varepsilon$

$$
A_{i j}=a_{0}\left[\left(2 \mathbf{n}_{\text {in }}-1\right)+2\right] Y_{i j}
$$

$$
\begin{aligned}
& \text { Superpotential } \\
& \text { LO: } \mathcal{W}_{\ell}=\frac{1}{M} \tau^{c}\left(\ell \phi_{T}\right) H_{d} \\
& +\frac{1}{M^{2}} \mu^{c}\left[\left(\ell \phi_{T}^{2}\right)+\left(\ell \phi_{T}\right)^{\prime \prime} \xi^{\prime}\right] H_{d} \\
& +\frac{1}{M^{3}} e^{c}\left[\left(\ell \phi_{T}^{3}\right)+\left(\ell \phi_{T}^{2}\right)^{\prime \prime} \xi^{\prime}+\left(\ell \phi_{T}\right)^{\prime} \xi^{\prime 2}\right] H_{d} \\
& A_{\ell} \sim a_{0}\left(\begin{array}{ccc}
\mathbf{7} x_{1} \varepsilon^{3} & \mathbf{9} x_{2} \varepsilon^{3} \varepsilon^{\prime} & \mathbf{9} x_{3} \varepsilon^{3} \varepsilon^{\prime} \\
\mathbf{7} x_{4} \varepsilon^{2} \varepsilon^{\prime} & \mathbf{5} x_{5} \varepsilon^{2} & \mathbf{7} x_{6} \varepsilon^{2} \varepsilon^{\prime} \\
\mathbf{5} x_{7} \varepsilon \varepsilon^{\prime} & \mathbf{5} x_{8} \varepsilon \varepsilon^{\prime} & \mathbf{3} x_{9} \varepsilon
\end{array}\right) \\
& \text { iLO: } \delta \mathcal{W}_{\ell}=\frac{1}{M^{2}} \tau^{c}\left[\left(\ell \phi_{T} \phi_{S}\right)+\left(\ell \phi_{S}\right)^{\prime \prime} \xi^{\prime}\right] H_{d} \\
& +\frac{1}{M^{3}} \mu^{c}\left[\left(\ell \phi_{T}^{2} \phi_{S}\right)+\left(\ell \phi_{T} \phi_{S}\right)^{\prime \prime} \xi^{\prime}+\left(\ell \phi_{S}\right)^{\prime} \xi^{\prime 2}\right] H_{d} \\
& +\frac{1}{M^{4}} e^{c}\left[\left(\ell \phi_{T}^{3} \phi_{S}\right)+\left(\ell \phi_{T}^{2} \phi_{S}\right)^{\prime \prime} \xi^{\prime}+\left(\ell \phi_{T} \phi_{S}\right)^{\prime} \xi^{\prime 2}+\left(\ell \phi_{S}\right) \xi^{\prime 3}\right] H_{d}
\end{aligned}
$$

An A_{4} model example : Kähler potential

Field	ν^{c}	ℓ	e^{c}	μ^{c}	τ^{c}	H_{d}	H_{u}	ϕ_{S}	ϕ_{T}	ξ	ξ^{\prime}	$\xi^{\prime \dagger}$
A_{4}	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}^{\prime \prime}$
Z_{4}	-1	i	1	i	-1	1	i	1	i	1	i	-i
$U(1)_{R}$	1	1	1	1	1	0	0	0	0	0	0	0

Reproduces the lepton hierarchies and mixings TBM $+\boldsymbol{\theta}_{13}$!

Table 1: Transformation of the matter and flavon superfields under $\mathcal{G}_{f}=A_{4} \times Z_{4}$
Alignment: $\frac{\left\langle\phi_{T}\right\rangle}{M} \propto \varepsilon\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \frac{\left\langle\phi_{S}\right\rangle}{M} \propto \varepsilon^{\prime}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{\langle\xi\rangle}{M} \propto \varepsilon^{\prime}, \frac{\left\langle\xi^{\prime}\right\rangle}{M} \propto \varepsilon \quad \boldsymbol{m}_{i j}^{\mathbf{2}}=\boldsymbol{m}_{\mathbf{0}}^{\mathbf{2}}\left[\left(\mathbf{2} \boldsymbol{n}_{\boldsymbol{i n}}-\mathbf{1}\right)\left(\mathbf{2} \boldsymbol{n}_{\text {out }}-\mathbf{1}\right)+\mathbf{1}\right] \boldsymbol{K}_{\boldsymbol{i j}}$

(LH) Kähler potential

$$
K_{\ell, L}=\ell \ell^{\dagger}+\frac{1}{M^{2}}\left[\left(\ell \ell^{\dagger} \phi_{S} \phi_{S}^{\dagger}\right)+\left(\ell \ell^{\dagger} \phi_{S}\right) \xi^{\dagger}\right]+\text { h.c. }
$$

$$
K_{\ell, L} \sim \mathbb{1}+\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{\prime 2} & \varepsilon^{\prime 2} \\
\varepsilon^{\prime 2} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{\prime 2} \\
\varepsilon^{\prime 2} & \varepsilon^{\prime 2} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right)
$$

$$
m_{\ell, L}^{2} \sim m_{0}^{2} \mathbb{1}+\mathbf{2} m_{0}^{2}\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{\prime 2} & \varepsilon^{\prime 2} \\
\varepsilon^{\prime 2} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{\prime 2} \\
\varepsilon^{\prime 2} & \varepsilon^{\prime 2} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right)
$$

(RH) Kähler potential

$$
\begin{aligned}
& K_{\ell, R}=e^{c} e^{c \dagger}+\mu^{c} \mu^{c \dagger}+\tau^{c} \tau^{c \dagger} \\
& +\frac{1}{M^{2}}\left[e^{c}\left(\phi_{T} \phi_{S}^{\dagger}\right) \mu^{c \dagger}+\mu^{c}\left(\phi_{T} \phi_{S}^{\dagger}\right) \tau^{c \dagger}\right] \\
& +\frac{1}{M^{3}} e^{c}\left[\left(\phi_{S} \phi_{T}^{\dagger 2}\right)+\left(\phi_{S} \phi_{T}^{\dagger}\right)^{\prime} \xi^{\prime \dagger}+\text { h.c. }\right] \tau^{c \dagger} \\
& + \text { h.c. }
\end{aligned}
$$

$$
\begin{array}{r}
K_{\ell, R} \sim \mathbb{1}+\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} & \varepsilon^{2} \varepsilon^{\prime} \\
\varepsilon \varepsilon^{\prime} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} \\
\varepsilon^{2} \varepsilon^{\prime} & \varepsilon \varepsilon^{\prime} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right) \\
m_{\ell, R}^{2} \sim m_{0}^{2} \mathbb{1}+m_{0}^{2}\left(\begin{array}{ccc}
\mathbf{2}\left(\varepsilon^{2}+\varepsilon^{\prime 2}\right) & \mathbf{2} \varepsilon \varepsilon^{\prime} & \mathbf{4} \varepsilon^{2} \varepsilon^{\prime} \\
\mathbf{2} \varepsilon \varepsilon^{\prime} & \mathbf{2}\left(\varepsilon^{2}+\varepsilon^{\prime 2}\right) & \mathbf{2} \varepsilon \varepsilon^{\prime} \\
\mathbf{4} \varepsilon^{2} \varepsilon^{\prime} & \mathbf{2} \varepsilon \varepsilon^{\prime} & \mathbf{2}\left(\varepsilon^{2}+\varepsilon^{\prime 2}\right)
\end{array}\right)
\end{array}
$$

An A_{4} model example : Soft terms in physical basis

2 rotations to go to the physical basis

- Canonical rotation: Kähler is the identity
- Mass basis rotation: Yukawas are diagonal

$$
K_{\ell, L} \longrightarrow U_{K_{L}}^{\dagger} K_{\ell, L} U_{K_{L}}=\mathbb{1}, K_{\ell, R} \longrightarrow U_{K_{R}}^{\dagger} K_{\ell, R} U_{K_{R}}=\mathbb{1}, \quad Y_{\ell} \longrightarrow V_{Y}^{\dagger} U_{K_{L}}^{\dagger} Y_{\ell} U_{K_{R}} U_{Y}=Y_{\ell}^{(d i a g)}
$$

$$
\begin{aligned}
& \boldsymbol{A}_{\boldsymbol{\ell}} \rightarrow V_{Y}^{-1} U_{K_{L}}^{\dagger} A_{\ell} U_{K_{R}} U_{Y}=a_{0}\left(\begin{array}{cc}
7 x_{1} \varepsilon^{3} & \left(4 x_{2}+2 \frac{x_{1} x_{4}}{x_{5}}\right) \varepsilon^{3} \varepsilon^{\prime} \\
2 x_{4} \varepsilon^{2} \varepsilon^{\prime} & 5 x_{5} \varepsilon^{2} \\
2 x_{7} \varepsilon \varepsilon^{\prime} & 2 x_{8} \varepsilon \varepsilon^{\prime}
\end{array}\left(\begin{array}{c}
\left.6 x_{3}+4 \frac{x_{1} x_{7}}{x_{9}}\right) \varepsilon^{3} \varepsilon^{\prime} \\
\left.4 x_{6}+2 \frac{x_{5} x_{8}}{x_{9}}\right) \varepsilon^{2} \varepsilon^{\prime} \\
3 x_{9} \varepsilon
\end{array}\right)\right. \\
& \boldsymbol{m}_{\ell, L}^{2} \rightarrow V_{Y}^{-1} U_{K_{L}}^{\dagger} m_{\ell, L}^{2} U_{K_{L}} V_{Y}=m_{0}^{2} \mathbb{I}+m_{0}^{2}\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{\prime 2} & \varepsilon^{\prime 2} \\
\varepsilon^{\prime 2} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{\prime \prime} \\
\varepsilon^{\prime 2} & \varepsilon^{\prime 2} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right) \\
& \text { Do not get } \\
& \text { diagonalized! } \\
& \boldsymbol{m}_{\ell, R}^{2} \longrightarrow U_{Y}^{-1} U_{K_{R}}^{\dagger} m_{\ell, R}^{2} U_{K_{R}} U_{Y}=m_{0}^{2} \mathbb{1}+m_{0}^{2}\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} & 3 \varepsilon^{2} \varepsilon^{\prime}+\left(\frac{x_{4}}{x_{5}}-\frac{x_{8}}{x_{9}}\right) \varepsilon \varepsilon^{\prime 2} \\
\varepsilon \varepsilon^{\prime} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} \\
3 \varepsilon^{2} \varepsilon^{\prime}+\left(\frac{x_{4}}{x_{5}}-\frac{x_{8}}{x_{9}}\right) \varepsilon \varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right)
\end{aligned}
$$

An A_{4} model example : FV effects

FIGURE 1: Excluded regions due to $\mu \rightarrow e \gamma$ and $\mu \rightarrow \mathbf{~} \boldsymbol{e}$ in \boldsymbol{A}_{4}

FIGURE 2 : Results of an S_{3} Model
Running to the EW scale with the SPheno package

Dominant contribution comes from LL - mass insertion
$\tan \beta-$ enhanced

An $\Delta(27)$ model example * : Superpotential

Field	ℓ, ν	ℓ^{c}, ν^{c}	$H_{u, d}$	Σ	ϕ_{123}	ϕ_{1}	$\bar{\phi}_{3}$	ϕ_{23}	ϕ_{123}
$\Delta(27)$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$
Z_{2}	1	1	1	1	1	-1	-1	-1	-1
$U(1)_{F N}$	0	0	0	2	-1	-4	0	-1	1
$U(1)_{R}$	1	1	0	0	0	0	0	0	0

Reproduces the charged lepton and quark
hierarchies and mixings
CKM + TBM

Table 1: Transformation of matter superfields under $\mathcal{G}_{f}=\Delta(27) \times Z_{2} \times U(1)_{F N}$
Alignment: $\frac{\left\langle\phi_{3}\right\rangle}{M}=\sqrt{y_{\tau}}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \frac{\left\langle\phi_{23}\right\rangle}{M}=\sqrt{y_{\tau}} \varepsilon\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right), \frac{\left\langle\phi_{123}\right\rangle}{M}=\sqrt{y_{\tau}} \varepsilon^{2}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left\langle\phi_{1}\right\rangle \propto\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \frac{\langle\Sigma\rangle}{M}=-3$

Superpotential

LO: $\mathcal{W}_{\ell}=\frac{1}{M^{2}}\left(\ell \bar{\phi}_{3}\right)\left(\ell^{c} \bar{\phi}_{3}\right) H_{d}+\frac{1}{M^{2}}\left(\ell \bar{\phi}_{23}\right)\left(\ell^{c} \bar{\phi}_{123}\right) H_{d}+\frac{1}{M^{2}}\left(\ell \bar{\phi}_{123}\right)\left(\ell^{c} \bar{\phi}_{23}\right) H_{d}+\frac{1}{M^{3}}\left(\ell \bar{\phi}_{23}\right)\left(\ell^{c} \bar{\phi}_{23}\right) \Sigma H_{d}$
$Y_{\ell} \sim y_{\tau}\left(\begin{array}{ccc}0 & -x_{2} \varepsilon^{3} & x_{2} \varepsilon^{3} \\ -x_{3} \varepsilon^{3} & 3 x_{1} \varepsilon^{2} & -3 x_{1} \varepsilon^{2} \\ x_{3} \varepsilon^{3} & -3 x_{1} \varepsilon^{2} & 1\end{array}\right) \quad A_{\ell} \sim y_{\tau} a_{0}\left(\begin{array}{ccc}0 & -\mathbf{5} x_{2} \varepsilon^{3} & \mathbf{5} x_{2} \varepsilon^{3} \\ -\mathbf{5} x_{3} \varepsilon^{3} & \mathbf{2 1} x_{1} \varepsilon^{2} & -\mathbf{2 1} x_{1} \varepsilon^{2} \\ \mathbf{5} x_{3} \varepsilon^{3} & -\mathbf{2 1} x_{1} \varepsilon^{2} & \mathbf{5}\end{array}\right)$

An Δ (27) model example : Kähler potential

Field	ℓ, ν	ℓ^{c}, ν^{c}	$H_{u, d}$	Σ	ϕ_{123}	ϕ_{1}	$\bar{\phi}_{3}$	ϕ_{23}	ϕ_{123}
$\Delta(27)$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$
Z_{2}	1	1	1	1	1	-1	-1	-1	-1
$U(1)_{F N}$	0	0	0	2	-1	-4	0	-1	1
$U(1)_{R}$	1	1	0	0	0	0	0	0	0

Reproduces the charged lepton and quark
hierarchies and mixings CKM + TBM

Table 1: Transformation of matter superfields under $\mathcal{G}_{f}=\Delta(27) \times Z_{2} \times U(1)_{F N}$
Alignment: $\frac{\left\langle\phi_{3}\right\rangle}{M}=\sqrt{y_{\tau}}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \frac{\left\langle\phi_{23}\right\rangle}{M}=\sqrt{y_{\tau}} \varepsilon\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right), \frac{\left\langle\phi_{123}\right\rangle}{M}=\sqrt{y_{\tau}} \varepsilon^{2}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left\langle\phi_{1}\right\rangle \propto\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \frac{\langle\Sigma\rangle}{M}=-3$

$$
\begin{aligned}
& \text { (RH) Kähler potential } \\
& K_{\ell, R}=\ell^{c} \ell^{c \dagger}+\frac{1}{M^{2}}\left[\left(\ell^{c} \bar{\phi}_{3}\right)\left(\bar{\phi}_{3}^{\dagger} \ell^{c^{\dagger}}\right)+\left(\ell^{c} \bar{\phi}_{23}\right)\left(\bar{\phi}_{23}^{\dagger} \ell^{c \dagger}\right)+\left(\ell^{c} \bar{\phi}_{123}\right)\left(\bar{\phi}_{123}^{\dagger} \ell^{c \dagger}\right)\right] \\
& +\frac{1}{M^{3}}\left[\left(\ell^{c} \bar{\phi}_{23}\right)\left(\bar{\phi}_{123}^{\dagger} \ell^{c \dagger}\right) \Sigma+\text { h.c. }\right]+\frac{1}{M^{5}}\left[\left(\ell^{c} \bar{\phi}_{123}\right)\left(\bar{\phi}_{23}^{\dagger} \ell^{c \dagger}\right)\left(\bar{\phi}_{3} \phi_{1}\right) \Sigma+\text { h.c. }\right] \\
& K_{\ell, R}=\mathbb{1}+y_{\tau}\left(\begin{array}{ccc}
\varepsilon^{4} & -3\left(1+y_{\tau}\right) \varepsilon^{3} & 3\left(1+y_{\tau}\right) \varepsilon^{3} \\
-3\left(1+y_{\tau}\right) \varepsilon^{3} & \varepsilon^{2} & -\varepsilon^{2} \\
3\left(1+y_{\tau}\right) \varepsilon^{3} & -\varepsilon^{2} & 1
\end{array}\right) \\
& m_{\ell, R}^{2}=m_{0}^{2} \mathbb{1}+m_{0}^{2} y_{\tau}\left(\begin{array}{ccc}
\mathbf{2} \varepsilon^{4} & -3\left(\mathbf{4}+\mathbf{8} y_{\tau}\right) \varepsilon^{3} & 3\left(\mathbf{4}+\mathbf{8} y_{\tau}\right) \varepsilon^{3} \\
-3\left(\mathbf{4}+\mathbf{8} y_{\tau}\right) \varepsilon^{3} & \mathbf{2} \varepsilon^{2} & -\mathbf{2} \varepsilon^{2} \\
3\left(\mathbf{4}+\mathbf{8} y_{\tau}\right) \varepsilon^{3} & -\mathbf{2} \varepsilon^{2} & \mathbf{2}
\end{array}\right)
\end{aligned}
$$

An $\Delta(27)$ model example : Soft terms

2 rotations to go to the physical basis

- Canonical rotation: Kähler is the identity - Mass basis rotation: Yukawas are diagonal

$$
\begin{gathered}
\boldsymbol{K}_{\ell, \boldsymbol{R}} \longrightarrow \boldsymbol{U}_{\boldsymbol{K}_{\boldsymbol{R}}}^{\dagger} \boldsymbol{K}_{\ell, \boldsymbol{R}} \boldsymbol{U}_{\boldsymbol{K}_{\boldsymbol{R}}}=\mathbb{1} \quad, \quad \boldsymbol{Y}_{\boldsymbol{\ell}} \longrightarrow \boldsymbol{V}_{\boldsymbol{Y}}^{\dagger} \boldsymbol{Y}_{\boldsymbol{\ell}} \boldsymbol{U}_{\boldsymbol{K}_{\boldsymbol{R}}} \boldsymbol{U}_{\boldsymbol{Y}}=\boldsymbol{Y}_{\ell}^{(\text {diag })} \\
\boldsymbol{A}_{\boldsymbol{\ell}} \longrightarrow a_{0} y_{\tau}\left(\begin{array}{ccc}
\frac{x_{2} x_{3}}{x_{4}} \varepsilon^{4} & 2 x_{2} \varepsilon^{3} & -2 \frac{x_{2}}{x_{5}} \varepsilon^{3} \\
2 x_{2} \varepsilon^{3} & 24 x_{4} \varepsilon^{2} & -6 x_{4} \varepsilon^{2} \\
-2 x_{2} \varepsilon^{3} & -6 x_{4} \varepsilon^{2} & 5
\end{array}\right) \\
\boldsymbol{m}_{\ell, \boldsymbol{R}}^{2} \longrightarrow m_{0}^{2} \mathbb{1}+m_{0}^{2} y_{\tau}\binom{0}{3\left(3+\frac{11}{2} y_{\tau}-\frac{x_{2}}{3 x_{4}}\right.} \varepsilon^{3} \\
\text { Do not get diagonalized! } \\
\begin{array}{c}
-3\left(3+7 y_{\tau}\right) \varepsilon^{3}
\end{array}
\end{gathered}
$$

An Δ (27) model example : FV effects

FIGURE 3: Excluded regions due to $\mu \rightarrow e \gamma$ and $\mu \rightarrow 3 e$ in $\Delta(27)$

A $\Delta(27)$ unified model with a Universal Texture Zero

Field	$\psi_{q, e, \nu}$	$\psi_{q, e, \nu}^{c}$	H_{5}	Σ	S	θ_{3}	θ_{23}	θ_{123}	θ	θ_{X}
$\Delta(27)$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{\mathbf{0 0}}$	$\mathbf{1}_{\mathbf{0 0}}$	$\mathbf{1}_{\mathbf{0 0}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\mathbf{3}$
Z_{N}	0	0	0	2	-1	0	-1	2	0	x

Table 1: Transformation of the matter superfields under $\mathcal{G}_{f}=\Delta(27) \times Z_{N}$

Appealing flavor model *

small group with $\mathbf{3}, \overline{\mathbf{3}}$: consistent with underlying $S O(10)$ grand unification accommodates quark and lepton mass hierarchies, mixing angles and CP phases

Dirac and Majorana mass matrices have a nice unified texture zero in $(1,1)$

$$
Y_{a}=y_{3, a}\left(\begin{array}{ccc}
\mathbf{0} & x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} & x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} \\
x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} & x_{2, a} r_{a} e^{i \delta_{a}} \varepsilon_{a}^{2} & x_{2, a} r_{a} e^{i \delta_{a}} \varepsilon_{a}^{2} \\
x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} & x_{2, a} r_{a} e^{i \delta_{a}} \varepsilon_{a}^{2} & 1
\end{array}\right)
$$

$$
a=e, u, d
$$

- Gatto - Sartori - Tonin relation $\sin _{\theta_{c}}=\left|\sqrt{\frac{m_{d}}{m_{s}}}-e^{i \delta} \sqrt{\frac{m_{u}}{m_{c}}}\right| \quad y_{3}=\left\{y_{\tau}, y_{t}, y_{b}\right\}$
- natural departure of θ_{13}^{ℓ} angle

A $\Delta(27)$ unified model with a Universal Texture Zero

Superpotential: $\mathcal{W}_{\psi}=\frac{1}{M^{2}}\left(\psi \theta_{3}\right)\left(\psi^{c} \theta_{3}\right) H_{5}+\frac{1}{M^{3}}\left(\psi \theta_{23}\right)\left(\psi^{c} \theta_{23}\right) \Sigma H_{5}$

$$
+\frac{1}{M^{3}}\left(\psi \theta_{23}\right)\left(\psi^{c} \theta_{123}\right) S H_{5}+\frac{1}{M^{3}}\left(\psi \theta_{123}\right)\left(\psi^{c} \theta_{23}\right) S H_{5}
$$

Kahler potential: $\mathcal{K}_{\psi^{c}}=\psi^{c} \psi^{c \dagger}+\frac{1}{M^{2}}\left[\left(\psi^{c} \theta_{3}\right)\left(\theta_{3}^{\dagger} \psi^{c \dagger}\right)+\left(\psi^{c} \theta_{23}\right)\left(\theta_{23}^{\dagger} \psi^{c \dagger}\right)+\left(\psi^{c} \theta_{123}\right)\left(\theta_{123}^{\dagger} \psi^{c \dagger}\right)\right]$

$$
+\frac{1}{M^{3}}\left[\left(\psi^{c} \theta_{3}\right)\left(\theta_{23}^{\dagger} \psi^{c \dagger}\right) S+\text { h.c. }\right]+\frac{1}{M^{3}}\left[\left(\psi^{c} \theta_{3}\right)\left(\theta_{123}^{\dagger} \psi^{c \dagger}\right) \Sigma+\text { h.c. }\right]
$$

Typical Alignment: $\quad\left\langle\theta_{3}\right\rangle \propto\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \quad, \quad\left\langle\theta_{23}\right\rangle \propto\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \quad, \quad\left\langle\theta_{123}\right\rangle \propto\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

$$
\begin{aligned}
& Y_{a}=y_{3, a}\left(\begin{array}{ccc}
\mathbf{0} & x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} & x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} \\
x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} & x_{2, a} r_{a} e^{i \delta_{a}} \varepsilon_{a}^{2} & x_{2, a} r_{a} e^{i \delta_{a}} \varepsilon_{a}^{2} \\
x_{1, a} e^{i \gamma_{a}} \varepsilon_{a}^{3} & x_{2, a} r_{a} e^{i \delta_{a}} \varepsilon_{a}^{2} & 1
\end{array}\right) \\
& K_{R, a}=\mathbb{1}+y_{3, a}\left(\begin{array}{ccc}
\varepsilon_{a}^{2 \alpha} & \varepsilon_{a}^{2 \alpha} & e^{i\left(\gamma_{a}-\frac{\delta_{a}}{2}\right)} r_{a} \varepsilon_{a}^{\alpha}+\varepsilon_{a}^{2 \alpha} \\
\text { c.c. } & \varepsilon_{a}^{2 \alpha} & e^{i\left(\gamma_{a}-\frac{\delta_{a}}{2}\right)} r_{a} \varepsilon_{a}^{\alpha}+\varepsilon_{a}^{2 \alpha} \\
\text { c.c. } & \text { c.c. } & 1
\end{array}\right)
\end{aligned}
$$

VEV alignment prefers small values of α

Some freedom in VEV $\frac{\left\langle\theta_{23}\right\rangle\left\langle\theta_{123}\right\rangle\langle S\rangle}{M_{123, a}^{3}} \frac{M_{3, a}^{2}}{\left\langle\theta_{3}\right\rangle^{2}} \propto e^{i \gamma_{a}} \varepsilon_{a}^{3}: \frac{\left\langle\theta_{123}\right\rangle}{M_{a}}=\sqrt{y_{3, a}} e^{i\left(\gamma_{a}-\delta_{a} / 2\right)} \varepsilon_{a}^{\alpha} \quad$ with $\alpha \in[0,1]$

A $\Delta(27)$ unified model with a Universal Texture Zero

Soft matrices in the physical basis
Kahler + Yukawa diagonalization + re-phasing of the CKM + re-phasing for real Yukawas

$$
\begin{aligned}
& A_{e} \longrightarrow a_{0} y_{\tau}\left(\begin{array}{ccc}
-7 \frac{x_{1, e}^{2}}{r_{e} x_{2, e}} \varepsilon_{e}^{4} & 0 & 0 \\
0 & -7 r_{e} x_{2, e} \varepsilon_{e}^{2} & 2 e^{i \delta_{e}} r_{e} x_{2, e} \varepsilon_{e}^{2} \\
0 & -2 r_{e} x_{2, e} \varepsilon_{e}^{2} & 5
\end{array}\right) \\
& m_{R, e}^{2} \longrightarrow m_{0}^{2} \mathbb{1}+m_{0}^{2} y_{\tau}\left(\begin{array}{ccc}
\varepsilon_{e}^{2 \alpha} & -e^{2 i\left(\gamma_{e}-\delta_{e}\right)} \varepsilon_{e}^{2 \alpha} & 3 e^{3 i\left(\gamma_{e}-\frac{\delta_{e}}{2}\right)} r_{e} \varepsilon_{e}^{\alpha}+\varepsilon_{e}^{2 \alpha} \\
\text { c.c. } & \varepsilon_{e}^{2 \alpha} & 3 e^{i\left(\gamma_{e}-\frac{\delta_{e}}{2}\right)} r_{e} \varepsilon_{e}^{\alpha}+\varepsilon_{e}^{2 \alpha} \\
\text { c.c. } & \text { c.c. } & 1
\end{array}\right) \\
& \delta_{e, 12}^{R R} \sim \varepsilon^{2 \alpha} \\
& \sim \mathrm{y}_{\tau}[0.02 \div 0.15] \\
& \tau \rightarrow e \& \tau \rightarrow \mu: \\
& \text { Down quark sector } \\
& \delta_{e, 12}^{R L} \sim \delta_{e, 13}^{R L} \sim 0 \\
& \text { Trilinears block } \\
& \text { diagonalized } \\
& \text { (CCB : } a_{0} \leq \sqrt{3} m_{0} / 7 \text {) } \\
& \mu \rightarrow e: \\
& \delta_{e, 12}^{R R} \sim \varepsilon^{2 \alpha} \\
& \delta_{e, 13}^{R R} \sim \delta_{e, 23}^{R R} \sim \varepsilon^{\alpha} \\
& \sim \mathrm{y}_{\tau}[0.15 \div 1] \\
& \begin{array}{l}
\epsilon_{K}: \\
\mathfrak{J}\left[\delta_{d, 12}^{R R}\right] \sim e^{i\left(\gamma_{d}-\delta_{d}\right)}
\end{array} \\
& \text { 16/19 }
\end{aligned}
$$

A $\Delta(27)$ unified model with a Universal Texture Zero

FIGURE 4: Excluded regions of the MSSM parameter space due to LFV constraints. Blue shape: current bound on $B R(\mu \rightarrow e \gamma)$. Green shape: current bound on ϵ_{K}. Red shape: future sensitivity on $B R(\mu \rightarrow 3 e)$. Orange shape: future sensitivity on $C R(\mu-e)_{A l}$. Future sensitivity on $B R(\mu \rightarrow e \gamma)$ excludes a region similar to $B R(\mu \rightarrow 3 e)$.

A $\Delta(27)$ unified model with a Universal Texture Zero

FIGURE 5: FV $\boldsymbol{\tau}$-decays as a function of $\boldsymbol{B R} \boldsymbol{R}(\boldsymbol{\mu} \rightarrow \boldsymbol{e} \boldsymbol{\gamma})$.

White region: future accessible sensitivity for $B R(\mu \rightarrow e \gamma)$ (between blue - red shapes in Figure 4).
Gray region: future accessible sensitivity for $C R(\mu-e)_{A l}$ (yellow shape in Figure 4).
Predictions out of reach for the near future experiments (future limits on τ-decays are $\sim 10^{-10}$)

Conclusions

We have

- performed an analysis of lepton and quark FV-processes in the MSSM enlarged with a flavor symmetry
- shown that non-universality of soft breaking matrices (trilinears \& soft masses) is generally present \leftarrow easily calculable
- shown the predictivity of flavor models in SUSY
- demonstrated that non-universality remembers the details of the flavor model and its breaking \rightarrow easy to (dis)prove the model: correlation between observables in different sectors!

This analysis allow to

- constrain sparticle masses well above the LHC reach, strongest bounds from $\mu \rightarrow e$ and ϵ_{K}
- even distinguish flavor models!

A $\Delta(27)$ unified model : fit results

Uncertainties on UV Mixing Observables								
$\left(\mu=M_{X}\right)$	$\sin \theta_{12}^{q}$	$\sin \theta_{23}^{q}$	$\sin \theta_{13}^{q}$	$\sin \delta_{\mathrm{CP}}^{q}$	$\sin \theta_{12}^{l}$	$\sin \theta_{23}^{l}$	$\sin \theta_{13}^{l}$	$\sin \delta_{\mathrm{CP}}^{l}$
Upper	.228	.0468	.00508	1.000	.588	.800	.155	-
Lower	.226	.0220	.00169	.186	.520	.620	.139	-

Universal Texture Zero Mixing Predictions								
$\left(\mu=M_{X}\right)$	$\sin \theta_{12}^{q}$	$\sin \theta_{23}^{q}$	$\sin \theta_{13}^{q}$	$\sin \delta_{\mathrm{CP}}^{q}$	$\sin \theta_{12}^{l}$	$\sin \theta_{23}^{l}$	$\sin \theta_{13}^{l}$	$\sin \delta_{\mathrm{CP}}^{l}$
L.O. Prediction	.226	.0191	.0042	.561	.554	.778	.152	-.905
H.O. Prediction	.226	.0313	.00307	.788	.543	.751	.153	-.925

$$
\begin{gathered}
\left|V_{\mathrm{CKM}}\right|^{\mathrm{HO}}=\left(\begin{array}{ccc}
.974 & .226 & .00307 \\
.226 & .974 & .0313 \\
.00574 & .0309 & .9995
\end{array}\right) \\
\mathcal{J}_{\mathrm{CKM}}^{\mathrm{HO}}=1.665 \times 10^{-5}
\end{gathered}
$$

Uncertainties on UV Mass Ratios							
$\left(\mu=M_{X}\right)$	m_{e} / m_{τ}	m_{μ} / m_{τ}	m_{u} / m_{t}	m_{c} / m_{t}	m_{d} / m_{b}	m_{s} / m_{b}	$\Delta m_{\text {sol }}^{2} / \Delta m_{\mathrm{atm}}^{2}$
Upper	.00031	.061	8.91×10^{-6}	.0027	.0012	.021	.0336
Lower	.00022	.048	1.68×10^{-6}	.00084	.00035	.008	.021
Universal Texture Zero Mass Predictions							
$\left(\mu=M_{X}\right)$	m_{e} / m_{τ}	m_{μ} / m_{τ}	m_{u} / m_{t}	m_{c} / m_{t}	m_{d} / m_{b}	m_{s} / m_{b}	$\Delta m_{\text {sol }}^{2} / \Delta m_{\mathrm{atm}}^{2}$
L.O. Prediction	.00031	.055	7.16×10^{-6}	.0027	.00090	.020	.0213
H.O. Prediction	.00026	.049	7.89×10^{-6}	.0025	.0010	.020	.0213

$$
\begin{gathered}
\left|V_{\mathrm{PMNS}}\right|^{\mathrm{HO}}=\left(\begin{array}{ccc}
.830 & .536 & .153 \\
.405 & .534 & .742 \\
.384 & .654 & .652
\end{array}\right) \\
\mathcal{J}_{\mathrm{PMNS}}^{\mathrm{HO}}=-.0311
\end{gathered}
$$

The H.O. predictions are within the 3σ - uncertainty bounds

[^0]
A $\Delta(27)$ unified model : understanding the results

In some cases, particularly in the $\tan \beta=20$ panels, for each branching ratio a second line becomes visible, and the two lines correspond to the maximum directions of growth in the $\left\{m_{0}, M_{1 / 2}\right\}$ planes of Fig. 5. This is caused by a misalignment of the cancellation region with respect to the one of $\mu \rightarrow e \gamma$, which results in two distinct directions of growth. The misalignment stems from additional contributions, deriving mainly from the inclusion of the two mass insertions $\delta_{i k}^{R R} \delta_{k i}^{R R}$

An S_{3} model example

Field	ν^{c}	ν_{3}^{c}	e	e^{c}	ℓ	ℓ^{c}	$H_{u, d}$	ϕ	χ	ξ	χ^{\prime}	$\chi^{\prime \dagger}$
S_{3}	$\mathbf{2}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}^{\prime}$	$\mathbf{1}^{\prime}$
Z_{6}	ω	ω	1	ω^{3}	ω^{5}	ω^{3}	1	ω^{4}	ω^{4}	ω^{4}	ω^{5}	ω^{-5}
Z_{3}	1	1	1	ω	1	ω^{2}	1	ω	ω	1	1	1
$U(1)_{R}$	1	1	1	1	1	1	0	0	0	0	0	0

Reproduces the charged lepton \& quark hierarchies and mixings $\mathrm{CKM}+\mathrm{TBM}+\boldsymbol{\theta}_{\mathbf{1 3}}!$

Table 1: Transformation of the matter superfields under the $\mathcal{G}_{f}=S_{3} \times Z_{6} \times Z_{3}$.

$$
\ell=\binom{\tau}{\mu}, \ell^{c}=\binom{\mu^{c}}{\tau^{c}}
$$

Alignment: $\quad \frac{\langle\phi\rangle}{M} \propto \varepsilon\binom{1}{1}, \frac{\langle\xi\rangle}{M} \propto \varepsilon\binom{0}{1}, \frac{\langle\chi\rangle}{M} \propto \varepsilon, \frac{\left\langle\chi^{\prime}\right\rangle}{M} \propto \varepsilon^{\prime}$

Superpotential

$$
\begin{aligned}
\mathbf{L O} \mathcal{W}_{\ell} & =\frac{1}{M}\left[\left(\ell^{c} \ell \phi\right)+\left(\ell^{c} \ell\right) \chi\right] H_{d} \\
& +\frac{1}{M^{2}}\left(\ell^{c} \ell \phi\right)^{\prime} \chi^{\prime} H_{d}
\end{aligned}
$$

$$
Y_{\ell} \sim\left(\begin{array}{rrr}
x_{1} \varepsilon^{2} \varepsilon^{\prime 3} & x_{2} \varepsilon \varepsilon^{\prime} & -x_{2} \varepsilon \varepsilon^{\prime} \\
x_{3} \varepsilon^{2} \varepsilon^{\prime 2} & x_{4} \varepsilon & x_{5} \varepsilon \\
x_{6} \varepsilon^{2} \varepsilon^{\prime 2} & x_{5} \varepsilon & x_{4} \varepsilon
\end{array}\right)
$$

$$
\mathbf{N L O} \delta \mathcal{W}_{\ell}=\frac{1}{M^{4}} e^{c}\left[\left(\ell \xi^{2}\right) \chi^{2}+\left(\ell \phi \xi^{2}\right) \chi+\left(\ell \phi^{2} \xi^{2}\right)\right] H_{d}
$$

$$
A_{\ell} \sim a_{0}\left(\begin{array}{rrr}
\mathbf{1 1} x_{1} \varepsilon^{2} \varepsilon^{\prime 3} & \mathbf{5} x_{2} \varepsilon \varepsilon^{\prime} & -\mathbf{5} x_{2} \varepsilon \varepsilon^{\prime} \\
\mathbf{9} x_{3} \varepsilon^{2} \varepsilon^{\prime 2} & \mathbf{3} x_{4} \varepsilon & \mathbf{3} x_{5} \varepsilon \\
\mathbf{9} x_{6} \varepsilon^{2} \varepsilon^{\prime 2} & \mathbf{3} x_{5} \varepsilon & \mathbf{3} x_{4} \varepsilon
\end{array}\right)
$$

An S_{3} model example

Field	ν^{c}	ν_{3}^{c}	e	e^{c}	ℓ	ℓ^{c}	$H_{u, d}$	ϕ	χ	ξ	χ^{\prime}	$\chi^{\prime \dagger}$
S_{3}	$\mathbf{2}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}^{\prime}$	$\mathbf{1}^{\prime}$
Z_{6}	ω	ω	1	ω^{3}	ω^{5}	ω^{3}	1	ω^{4}	ω^{4}	ω^{4}	ω^{5}	ω^{-5}
Z_{3}	1	1	1	ω	1	ω^{2}	1	ω	ω	1	1	1
$U(1)_{R}$	1	1	1	1	1	1	0	0	0	0	0	0

Reproduces the charged lepton and quark hierarchies and mixings $\mathrm{CKM}+\mathrm{TBM}+\boldsymbol{\theta}_{\mathbf{1 3}}!$

Table 1: Transformation of the matter superfields under the $\mathcal{G}_{f}=S_{3} \times Z_{6} \times Z_{3}$.
Alignment: $\quad \frac{\langle\phi\rangle}{M} \propto \varepsilon\binom{1}{1}, \frac{\langle\xi\rangle}{M} \propto \varepsilon\binom{0}{1}, \frac{\langle\chi\rangle}{M} \propto \varepsilon, \frac{\left\langle\chi^{\prime}\right\rangle}{M} \propto \varepsilon^{\prime}$

(LH) Kähler potential

(RH) Kähler potential

$$
K_{\ell, R}=\ell^{c} \ell^{c \dagger}+e^{c} e^{c \dagger}
$$

$$
+\frac{1}{M^{2}}\left[\left(\ell^{c} \ell^{c \dagger} \phi \phi^{\dagger}\right)+\left(\ell^{c} \ell^{c \dagger} \phi\right) \chi^{\dagger}+\left(\ell^{c} \xi \phi^{\dagger}\right) e^{c \dagger}+\text { h.c. }\right]+\text { h.c. }
$$

$$
K_{\ell, R} \sim \mathbb{1}+\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} & \varepsilon \varepsilon^{\prime} \\
\varepsilon \varepsilon^{\prime} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{2} \\
\varepsilon \varepsilon^{\prime} & \varepsilon^{2} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right)
$$

$$
m_{\ell, R}^{2} \sim m_{0}^{2} \mathbb{1}+\mathbf{2} m_{0}^{2}\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon \varepsilon^{\prime} & \varepsilon \varepsilon^{\prime} \\
\varepsilon \varepsilon^{\prime} & \varepsilon^{2}+\varepsilon^{\prime 2} & \varepsilon^{2} \\
\varepsilon \varepsilon^{\prime} & \varepsilon^{2} & \varepsilon^{2}+\varepsilon^{\prime 2}
\end{array}\right)
$$

$$
\begin{aligned}
& K_{\ell, L}=\ell \ell^{\dagger}+e e^{\dagger} \\
& +\frac{1}{M^{2}}\left[\left(\ell \ell^{\dagger} \phi \phi^{\dagger}\right)+\left(\ell \ell^{\dagger} \phi\right) \chi^{\dagger}+\chi^{\prime}\left(\ell \xi^{\dagger}\right)^{\prime} e^{\dagger}+\text { h.c. }\right]+\text { h.c. } \\
& m_{\ell, L}^{2} \sim m_{0}^{2} \mathbb{1}+m_{0}^{2}\left(\begin{array}{ccc}
\mathbf{2}\left(\varepsilon^{2}+\varepsilon^{\prime 2}\right) & \mathbf{2} \varepsilon^{\prime 2} & \mathbf{4} \varepsilon^{2} \varepsilon^{\prime} \\
\mathbf{2} \varepsilon^{\prime 2} & \mathbf{2}\left(\varepsilon^{2}+\varepsilon^{\prime 2}\right) & \mathbf{2} \varepsilon^{2} \\
\mathbf{4} \varepsilon^{2} \varepsilon^{\prime} & \mathbf{2} \varepsilon^{2} & \mathbf{2}\left(\varepsilon^{2}+\varepsilon^{\prime 2}\right) 2
\end{array}\right)
\end{aligned}
$$

An S_{3} model example

2 rotations to go to the physical basis

- Canonical rotation: Kähler is the identity
- Mass basis rotation: Yukawas are diagonal

$$
\begin{aligned}
& K_{\ell, L} \longrightarrow U_{K_{L}}^{\dagger} K_{\ell, L} U_{K_{L}}=\mathbb{1} \quad, \quad K_{\ell, R} \longrightarrow U_{K_{R}}^{\dagger} K_{\ell, R} U_{K_{R}}=\mathbb{1} \quad, \quad \boldsymbol{Y}_{\ell} \longrightarrow V_{Y}^{\dagger} \boldsymbol{U}_{K_{L}}^{\dagger} \boldsymbol{Y}_{\ell} U_{K_{R}} U_{Y}=\boldsymbol{Y}_{\ell}^{(d i a g)} \\
& \boldsymbol{A}_{\boldsymbol{\ell}} \longrightarrow V_{Y}^{-1} U_{K_{L}}^{\dagger} A_{\ell} U_{K_{R}} U_{Y}=a_{0}\left(\begin{array}{ccc}
11 x_{1} \varepsilon^{2} \varepsilon^{\prime 3} & \left(-\frac{5}{\sqrt{2}} x_{2}+\frac{3 \sqrt{2} x_{2} x_{5}}{x_{4}+x_{5}}\right) \varepsilon \varepsilon^{\prime} & -2 \sqrt{2} x_{2} \varepsilon \varepsilon^{\prime} \\
\frac{9}{\sqrt{2}}\left(x_{6}+x_{3}\right) \varepsilon^{2} \varepsilon^{\prime 2} & 3\left(x_{5}-x_{4}\right) \varepsilon & -3 x_{5} \varepsilon^{3} \\
\frac{9}{\sqrt{2}}\left(x_{6}-x_{3}\right) \varepsilon^{2} \varepsilon^{\prime 2} & -3 x_{5} \varepsilon^{3} & -3\left(x_{5}+x_{4}\right) \varepsilon
\end{array}\right) \\
& \boldsymbol{m}_{\ell, L}^{2} \longrightarrow V_{Y}^{-1} U_{K_{L}}^{\dagger} m_{\ell, L}^{2} U_{K_{L}} V_{Y}=m_{0}^{2} \mathbb{1}+m_{0}^{2}\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \frac{1}{\sqrt{2}} \varepsilon^{\prime 2} & -\frac{1}{\sqrt{2}} \varepsilon^{\prime 2} \\
\frac{1}{\sqrt{2}} \varepsilon^{\prime 2} & 2 \varepsilon^{2}+\varepsilon^{\prime 2} & 3 \varepsilon^{2} \varepsilon^{\prime 2} \\
-\frac{1}{\sqrt{2}} \varepsilon^{\prime 2} & 3 \varepsilon^{2} \varepsilon^{\prime 2} & \varepsilon^{\prime 2}
\end{array}\right) \quad \text { Do not get } \\
& \boldsymbol{m}_{\ell, R}^{2} \longrightarrow U_{Y}^{-1} U_{K_{R}}^{\dagger} m_{\ell, R}^{2} U_{K_{R}} U_{Y}=m_{0}^{2} \mathbb{1}+m_{0}^{2}\left(\begin{array}{ccc}
\varepsilon^{2}+\varepsilon^{\prime 2} & \sqrt{2} \varepsilon \varepsilon^{\prime} & 0 \\
\sqrt{2} \varepsilon \varepsilon^{\prime} & 2 \varepsilon^{2}+\varepsilon^{\prime 2} & 0 \\
0 & 0 & \varepsilon^{\prime 2}
\end{array}\right)
\end{aligned}
$$

[^0]: (*) JHEP 1803 (2018) 007 [arXiv:1710.01741 [hep-ph]]

