CP Phases and Symmetries

C. Hagedorn

 $\mbox{CP}^3\mbox{-}\mbox{Origins},$ University of Southern Denmark

FLASY 2018, 02.07.-05.07.2018, Basel, Switzerland

- scenario with flavor and CP symmetry
- phenomenology for example case
 - CP violation at low energies
 - CP violation at high energies
- conclusions

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \to X_{ij} \phi_i^{\star}$ and $XX^{\dagger} = XX^{\star} = 1$ (Grimus/Rebelo ('95))

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \rightarrow X_{ij} \phi_j^*$ and $XX^\dagger = XX^* = 1$ (Grimus/Rebelo ('95))
- leptonic mixing arises from mismatch of residual symmetries G_e and $\mathsf{CP} \subset G_\nu$

symmetry

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \rightarrow X_{ij} \phi_j^{\star}$ and $XX^{\dagger} = XX^{\star} = 1$ (Grimus/Rebelo ('95))
- leptonic mixing arises from mismatch of residual symmetries G_e and $\mathsf{CP} \subset G_\nu$
- features:

(Feruglio/H/Ziegler ('12,'13))

- prediction of Majorana phases becomes possible
- at the same time lepton mixing angles are less constrained and non-trivial Dirac phase is possible
- all angles and CP phases depend on one free parameter θ
- ($\mu- au$ reflection symmetry: Harrison/Scott ('02,'04), Grimus/Lavoura ('03))

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \rightarrow X_{ij} \phi_j^{\star}$ and $XX^{\dagger} = XX^{\star} = 1$ (Grimus/Rebelo ('95))
- leptonic mixing arises from mismatch of residual symmetries G_e and $\mathsf{CP} \subset G_\nu$
- high energy CP phases are constrained by residual symmetries as well

symmetry

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \rightarrow X_{ij} \phi_j^{\star}$ and $XX^{\dagger} = XX^{\star} = 1$ (Grimus/Rebelo ('95))
- leptonic mixing arises from mismatch of residual symmetries G_e and $\mathsf{CP} \subset G_\nu$
- high energy CP phases are constrained by residual symmetries as well
- features:

(H/Molinaro ('16))

correlation between low and high energy CP phases

symmetry

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \rightarrow X_{ij} \phi_j^{\star}$ and $XX^{\dagger} = XX^{\star} = 1$ (Grimus/Rebelo ('95))
- leptonic mixing arises from mismatch of residual symmetries G_e and $\mathsf{CP} \subset G_\nu$
- high energy CP phases are constrained by residual symmetries as well
- features:

(H/Molinaro ('16))

- unflavored leptogenesis: $Y_B \propto \kappa^2$ and sign fixed
- flavored leptogenesis: $Y_B \propto \kappa$
- flavored leptogenesis: $Y_B \not\propto \kappa$
- (κ symmetry breaking parameter)

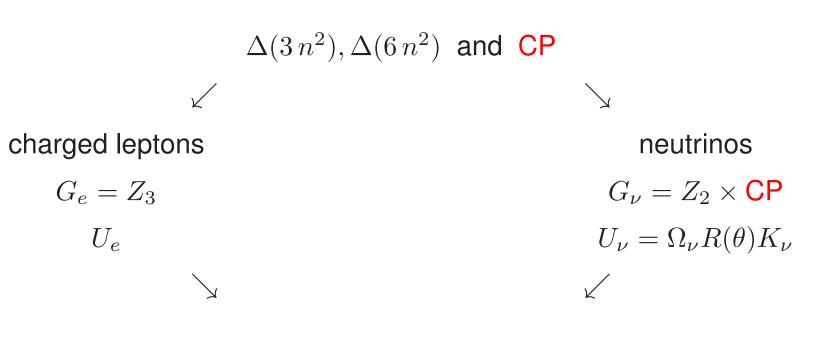
symmetry

- generations of LH leptons are assigned to 3
- impose flavor and CP symmetry in fundamental theory
- CP symmetry acts non-trivially on flavor space $\phi_i \rightarrow X_{ij} \phi_j^{\star}$ and $XX^{\dagger} = XX^{\star} = 1$ (Grimus/Rebelo ('95))
- leptonic mixing arises from mismatch of residual symmetries G_e and $\mathsf{CP} \subset G_\nu$
- high energy CP phases are constrained by residual symmetries as well
- in a theory with G_f and CP certain conditions have to be fulfilled

(Feruglio/H/Ziegler ('12,'13), Holthausen et al. ('12), Chen et al. ('14))

Phenomenology for example case

(H/Meroni/Molinaro ('14); see also Ding et al. ('14))



 $U_{PMNS} = U_e^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}$

four different types of mixing patterns with different characteristics example: Case 2) with CP transformations X(u, v)

Case 2)

(H/Meroni/Molinaro ('14))

- one column is trimaximal, i.e. $\sin^2 \theta_{12} \gtrsim \frac{1}{3}$
- smallness of θ_{13} constrains θ and u/n

Case 2)

(H/Meroni/Molinaro ('14))

- one column is trimaximal, i.e. $\sin^2 \theta_{12} \gtrsim \frac{1}{3}$
- smallness of θ_{13} constrains θ and u/n
- two sum rules for mixing angles

$$\sin^2\theta_{12} = \frac{1}{3\,\cos^2\theta_{13}}$$

Case 2)

(H/Meroni/Molinaro ('14))

- one column is trimaximal, i.e. $\sin^2 \theta_{12} \gtrsim \frac{1}{3}$
- smallness of θ_{13} constrains θ and u/n
- two sum rules for mixing angles

$$6 \sin^2 \theta_{23} \cos^2 \theta_{13} = 3 \pm \sqrt{3} \tan \phi - 3 \left(1 \pm \sqrt{3} \tan \phi \right) \sin^2 \theta_{13}$$

with

$$\phi = \frac{\pi u}{n} + \sigma \frac{\pi}{3} \quad \text{and} \quad \sigma = 0, \, 1, \, -1$$

(see also e.g. *Ding/King ('14)*)

Case 2)

(H/Meroni/Molinaro ('14))

- one column is trimaximal, i.e. $\sin^2 \theta_{12} \gtrsim \frac{1}{3}$
- smallness of θ_{13} constrains θ and u/n
- Dirac phase is function of u/n
- Majorana phase β depends on u/n as well
- value of Majorana phase α is (mainly) fixed by v/n

Case 2) with n = 10 and u = 4

- (H/Meroni/Molinaro ('14))
- results for mixing angles (as example $\theta_{23} > \pi/4$)

 $0.340 \lesssim \sin^2 \theta_{12} \lesssim 0.342$ $0.0187 \lesssim \sin^2 \theta_{13} \lesssim 0.0250$ $0.558 \lesssim \sin^2 \theta_{23} \lesssim 0.559$

 Dirac phase and Majorana phase β are constrained as (one fixed combination of CP parities)

 $\begin{array}{l} 0.83 \lesssim \sin\beta \lesssim 0.94 \\ -0.86 \lesssim \sin\delta \lesssim -0.80 \end{array}$

(H/Meroni/Molinaro ('14))

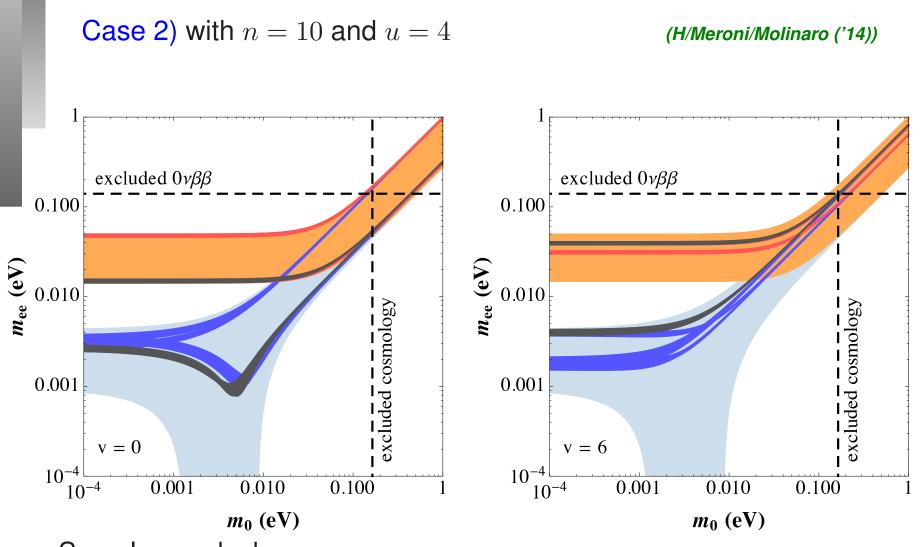
Case 2) with n = 10 and u = 4

• results for mixing angles (as example $\theta_{23} > \pi/4$)

 $0.340 \lesssim \sin^2 \theta_{12} \lesssim 0.342$ $0.0187 \lesssim \sin^2 \theta_{13} \lesssim 0.0250$ $0.558 \lesssim \sin^2 \theta_{23} \lesssim 0.559$

• Majorana phase α can take several values

v	0	6, 24	12, 18
$\sin \alpha$	$-0.035 \div -0.028$	$0.94 \div 0.96$	$-0.62 \div -0.56$



See also works by Ding, King, Neder.

CP violation at high energies

- type-1 seesaw mechanism
- three RH neutrinos N_i forming 3
- baryogenesis through leptogenesis

$$Y_B \approx 10^{-3} \sum_{\alpha,i,j} \epsilon^{\alpha}_i \eta^{\alpha}_{ij}$$

 ϵ_i^{α} : CP asymmetry from N_i decays to charged lepton flavor α η_{ij}^{α} : efficiency factor

CP violation at high energies

- type-1 seesaw mechanism
- three RH neutrinos N_i forming 3
- flavor and CP symmetries
 - $G_e = Z_3$ for charged leptons
 - $G_{\nu} = Z_2 \times \mathbf{CP}$ for neutrinos

(H/Molinaro ('16))

CP violation at high energies

- type-1 seesaw mechanism
- three RH neutrinos N_i forming 3
- flavor and CP symmetries
 - $G_e = Z_3$ for charged leptons
 - $G_{\nu} = Z_2 \times \mathbf{CP}$ for neutrinos
 - two realizations
 - 1. Y_D invariant under G_f and CP, M_R under $CP \subset G_{\nu}$
 - **2.** Y_D and M_R both invariant under $CP \subset G_{\nu}$

(H/Molinaro ('16))

(H/Molinaro ('16))

- charged lepton mass matrix m_e is invariant under $G_e = Z_3$
- light neutrino mass matrix is invariant under $G_{\nu} = Z_2 \times CP$
 - Y_D is invariant under G_f and CP

$$Y_D = y_0 \, 1$$

• lepton mixing encoded in RH neutrino mass matrix M_R , M_R is invariant under $G_{\nu} = Z_2 \times CP$

 $U_R^T M_R U_R = \text{diag} (M_1, M_2, M_3)$ with $U_R = \Omega_{\nu} R_{ij}(\theta) K_{\nu}$

(H/Molinaro ('16))

- charged lepton mass matrix m_e is invariant under $G_e = Z_3$
- light neutrino mass matrix is invariant under $G_{\nu} = Z_2 \times CP$
- we find
 - seesaw relation of light and heavy neutrino masses

$$m_i \propto \frac{1}{M_i}$$

• PMNS mixing matrix is given by

$$U_{PMNS} = U_{\nu} = U_R = \Omega_{\nu} R_{ij}(\theta) K_{\nu}$$

• however, CP asymmetries for unflavored leptogenesis

$$\epsilon_i = -\frac{1}{8\pi} \sum_{j \neq i} \frac{\operatorname{Im}\left((\hat{Y}_D^{\dagger} \hat{Y}_D)_{ij}^2 \right)}{(\hat{Y}_D^{\dagger} \hat{Y}_D)_{ii}} f(M_j/M_i)$$

vanish,

since

$$\hat{Y}_D^{\dagger} \, \hat{Y}_D \propto 1$$

known in flavor symmetry-only context (*Jenkins/Manohar ('08), Bertuzzo et al. ('09), H/Molinaro/Petcov ('09), Aristizabal Sierra et al. ('09)*) in particular

$$\hat{Y}_D = Y_D \, U_R$$

should get corrections,

i.e.

$$\hat{Y}_D = Y_D U_R = \left(Y_D^0 + \delta Y_D\right) \left(U_R^0 \,\delta U_R\right)$$

in particular

$$\hat{Y}_D = Y_D \, U_R$$

should get corrections,

i.e.

$$\hat{Y}_D = Y_D U_R = \left(Y_D^0 + \delta Y_D\right) \left(U_R^0 \,\delta U_R\right)$$

- notice δU_R can only be effective, if there is also δY_D
- we focus on $\delta Y_D \neq 0$

• we get then

$$\hat{Y}_D^{\dagger}\hat{Y}_D \approx U_R^{\dagger} \left((Y_D^0)^{\dagger} Y_D^0 + (\delta Y_D)^{\dagger} Y_D^0 + (Y_D^0)^{\dagger} \delta Y_D \right) U_R$$

- the first term is irrelevant, since $(Y_D^0)^{\dagger}Y_D^0 \propto 1$
- the second and third term depend in general not only on CP phases contained in U_R, but also on phases encoded in correction δY_D
- four instances in which phases of δY_D become irrelevant ...

• we get then

$$\hat{Y}_D^{\dagger}\hat{Y}_D \approx U_R^{\dagger} \left((Y_D^0)^{\dagger} Y_D^0 + (\delta Y_D)^{\dagger} Y_D^0 + (Y_D^0)^{\dagger} \delta Y_D \right) U_R$$

- the first term is irrelevant, since $(Y_D^0)^{\dagger}Y_D^0 \propto 1$
- the second and third term depend in general not only on CP phases contained in U_R, but also on phases encoded in correction δY_D
- four instances in which phases of δY_D become irrelevant ...
 - i) $(Y_D^0)^{\dagger} \delta Y_D$ is real
 - ii) $(Y_D^0)^{\dagger} \delta Y_D$ is imaginary
 - iii) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and symmetric
 - iv) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and antisymmetric

• we get then

$$\hat{Y}_D^{\dagger}\hat{Y}_D \approx U_R^{\dagger} \left((Y_D^0)^{\dagger} Y_D^0 + (\delta Y_D)^{\dagger} Y_D^0 + (Y_D^0)^{\dagger} \delta Y_D \right) U_R$$

- the first term is irrelevant, since $(Y_D^0)^{\dagger}Y_D^0 \propto 1$
- the second and third term depend in general not only on CP phases contained in U_R, but also on phases encoded in correction δY_D
- four instances in which phases of δY_D become irrelevant ...
 - i) $(Y_D^0)^{\dagger} \delta Y_D$ is real
 - ii) $(Y_D^0)^{\dagger} \delta Y_D$ is imaginary
 - iii) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and symmetric
 - iv) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and antisymmetric

- four instances in which phases of δY_D become irrelevant ...
 - i) $(Y_D^0)^{\dagger} \delta Y_D$ is real
 - ii) $(Y_D^0)^{\dagger} \delta Y_D$ is imaginary
 - iii) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and symmetric
 - iv) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and antisymmetric
- condition iii) can naturally be realized

- four instances in which phases of δY_D become irrelevant ...
 - i) $(Y_D^0)^{\dagger} \delta Y_D$ is real
 - ii) $(Y_D^0)^{\dagger} \delta Y_D$ is imaginary
 - iii) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and symmetric
 - iv) $(Y_D^0)^{\dagger} \delta Y_D$ is complex and antisymmetric
- condition iii) can naturally be realized
 - $Y_D^0 \propto 1$ at leading order
 - δY_D flavor diagonal, since invariant under $G_e = Z_3$ δY_D has two (in general complex) parameters
 - $\delta Y_D \propto \kappa$ (κ symmetry breaking parameter)

• size of ϵ_i : for $\delta Y_D \propto \kappa$ we find

 $\epsilon_i \propto \kappa^2$

that leads for $\kappa \sim 10^{-(2 \div 3)}$ to correct size of Y_B ,

taking into account size of Yukawa coupling y_0 and RH neutrino masses M_i

```
as well as efficiency factor
```

```
known in flavor symmetry-only context
```

(Jenkins/Manohar ('08), Bertuzzo et al. ('09), H/Molinaro/Petcov ('09),

```
Aristizabal Sierra et al. ('09))
```

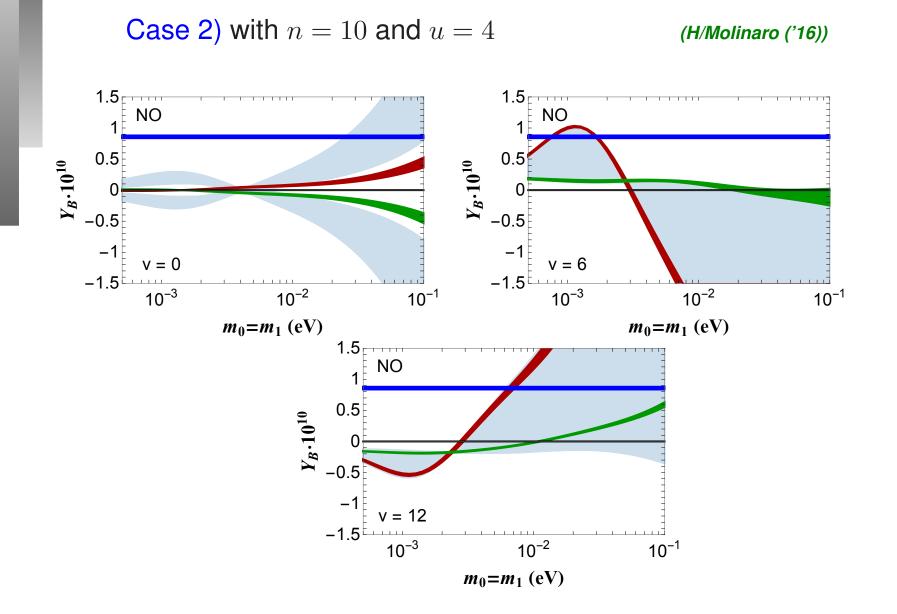
Results for Case 2)

• CP asymmetries ϵ_i read, e.g.

$$\epsilon_{1} \approx \frac{\kappa^{2}}{6\pi} \left[(-1)^{k_{1}} f\left(\frac{m_{1}}{m_{2}}\right) \left(\left[\cos\left(\phi + 2\zeta\right) + \cos 2\theta \right] \sin \phi_{v} - \sin\left(\phi + 2\zeta\right) \sin 2\theta \cos \phi_{v} \right) \right. \\ \left. + (-1)^{k_{2}+1} f\left(\frac{m_{1}}{m_{3}}\right) \sin 2\left(\phi - \zeta\right) \sin 2\theta \right] \\ \left. = -\frac{3\kappa^{2}}{2\pi} \left[I_{1}\left(\phi \rightarrow \phi + 2\zeta\right) f\left(\frac{m_{1}}{m_{2}}\right) + I_{2}\left(\phi \rightarrow \phi - \zeta\right) f\left(\frac{m_{1}}{m_{3}}\right) \right] \right]$$

with

$$I_{1} = \operatorname{Im}[U_{\text{PMNS},12}^{2}(U_{\text{PMNS},11}^{\star})^{2}] = \sin^{2}\theta_{12}\cos^{2}\theta_{12}\cos^{4}\theta_{13}\sin\alpha,$$
$$I_{2} = \operatorname{Im}[U_{\text{PMNS},13}^{2}(U_{\text{PMNS},11}^{\star})^{2}] = \sin^{2}\theta_{13}\cos^{2}\theta_{12}\cos^{2}\theta_{13}\sin\beta$$



however, CP asymmetries for flavored leptogenesis

$$\epsilon_i^{\alpha} = -\frac{1}{8\pi (\hat{Y}_D^{\dagger} \hat{Y}_D)_{ii}} \sum_{j \neq i} \left\{ \operatorname{Im} \left((\hat{Y}_D^{\dagger} \hat{Y}_D)_{ij} (\hat{Y}_D)_{\alpha i}^{\star} (\hat{Y}_D)_{\alpha j} \right) f(M_j/M_i) \right. \\ \left. + \operatorname{Im} \left((\hat{Y}_D^{\dagger} \hat{Y}_D)_{ji} (\hat{Y}_D)_{\alpha i}^{\star} (\hat{Y}_D)_{\alpha j} \right) g(M_j/M_i) \right\},$$

vanish,

since

$$\hat{Y}_D^{\dagger}\,\hat{Y}_D\propto 1$$

known in flavor symmetry-only context (Bertuzzo et al. ('09))

• size of ϵ^{lpha}_i : for $\delta Y_D \propto \kappa$ we find

$$\epsilon_i^{\alpha} \propto \kappa$$

so that correct size of Y_B is combination of size of κ , Yukawa coupling y_0 and efficiency factor

Results for Case 2)

• CP asymmetries ϵ_i^{α} read, e.g.

$$\epsilon_{1}^{e} \approx \frac{y_{0} \kappa}{12 \sqrt{3} \pi} \left[f\left(\frac{m_{1}}{m_{2}}\right) \left(\left[\cos\left(\phi + \zeta\right) + \cos\zeta \cos 2\theta \right] \sin \phi_{v} - \sin\left(\phi + \zeta\right) \sin 2\theta \cos \phi_{v} \right) \right. \\ \left. - f\left(\frac{m_{1}}{m_{3}}\right) \sin\left(2\phi - \zeta\right) \sin 2\theta \right] \\ \left. + \frac{y_{0} \kappa}{12 \sqrt{3} \pi} \left[g\left(\frac{m_{1}}{m_{2}}\right) \sin\zeta \sin 2\theta - g\left(\frac{m_{1}}{m_{3}}\right) \sin\zeta \sin 2\theta \right] \right]$$

• sign of ϵ_i^{α} depends in general on ζ as well

(H/Molinaro ('16))

- charged lepton mass matrix m_e is invariant under $G_e = Z_3$
- light neutrino mass matrix is invariant under $G_{\nu} = Z_2 \times CP$
 - Y_D is invariant under G_{ν}

$$Z^{\dagger} Y_D Z = Y_D$$
 and $X^{\star} Y_D X = Y_D^{\star}$

such that

$$Y_D = \Omega_{\nu} R_{ij}(\theta_L) \begin{pmatrix} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_3 \end{pmatrix} R_{ij}(-\theta_R) \Omega_{\nu}^{\dagger}$$

• RH neutrino mass matrix M_R also

 $U_R^T M_R U_R = \text{diag} (M_1, M_2, M_3)$ with $U_R = \Omega_{\nu} R_{ij}(\theta) K_{\nu}$

- CP asymmetries ϵ_i^{α} do not vanish even without δY_D
- however, there is in general no one-to-one correspondence between α , β , δ and sign of Y_B , e.g. we find for Case 2)

$$\epsilon_{1\,(3)}^{\alpha} = \frac{y_1 y_3 (y_{1\,(3)}^2 - y_{3\,(1)}^2) \sin 2(\theta - \theta_R) \sin \left(\phi - \rho_{\alpha} \frac{\pi}{3}\right)}{48 \pi \left(y_{1\,(3)}^2 \cos^2(\theta - \theta_R) + y_{3\,(1)}^2 \sin^2(\theta - \theta_R)\right)} \\ \times \left[(-1)^{k_2} f\left(\frac{M_{3\,(1)}}{M_{1\,(3)}}\right) + g\left(\frac{M_{3\,(1)}}{M_{1\,(3)}}\right) \right]$$

and ϵ_2^{α} vanish

For further studies of flavored leptogenesis in theories with flavor & CP symmetry

See Mohapatra/Nishi ('15), Chen et al. ('16), Yao/Ding ('16)

- flavor and CP symmetries can be powerful in constraining lepton mixing parameters, in particular leptonic CP phases
- series of $\Delta(3 n^2)$ and $\Delta(6 n^2)$, $n \ge 2$, and CP are very interesting
- strong correlation of α , β , δ and Y_B possible in unflavored leptogenesis framework
- in spite of less correlations also flavored leptogenesis can be interesting

Thank you for your attention.