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φi → Xij φ
⋆
j and XX† = XX⋆ = 1 (Grimus/Rebelo (’95))

• leptonic mixing arises from mismatch of residual

symmetries Ge and CP ⊂ Gν

• features: (Feruglio/H/Ziegler (’12,’13))

• prediction of Majorana phases becomes possible

• at the same time lepton mixing angles are less

constrained and non-trivial Dirac phase is possible

• all angles and CP phases depend on one free parameter θ

(µ− τ reflection symmetry: Harrison/Scott (’02,’04), Grimus/Lavoura (’03))
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• generations of LH leptons are assigned to 3

• impose flavor and CP symmetry in fundamental theory

• CP symmetry acts non-trivially on flavor space

φi → Xij φ
⋆
j and XX† = XX⋆ = 1 (Grimus/Rebelo (’95))

• leptonic mixing arises from mismatch of residual

symmetries Ge and CP ⊂ Gν

• high energy CP phases are constrained by

residual symmetries as well

• features: (H/Molinaro (’16))

• unflavored leptogenesis: YB ∝ κ2 and sign fixed

• flavored leptogenesis: YB ∝ κ

• flavored leptogenesis: YB 6∝ κ

(κ symmetry breaking parameter)



Scenario with flavor and CP

symmetry

• generations of LH leptons are assigned to 3

• impose flavor and CP symmetry in fundamental theory

• CP symmetry acts non-trivially on flavor space

φi → Xij φ
⋆
j and XX† = XX⋆ = 1 (Grimus/Rebelo (’95))

• leptonic mixing arises from mismatch of residual

symmetries Ge and CP ⊂ Gν

• high energy CP phases are constrained by

residual symmetries as well

• in a theory with Gf and CP certain conditions

have to be fulfilled

(Feruglio/H/Ziegler (’12,’13), Holthausen et al. (’12), Chen et al. (’14))



Phenomenology for example case

(H/Meroni/Molinaro (’14); see also Ding et al. (’14))

∆(3n2),∆(6n2) and CP

ւ ց

charged leptons

Ge = Z3

Ue

neutrinos

Gν = Z2 × CP

Uν = ΩνR(θ)Kν

ց ւ

UPMNS = U †
eΩνR(θ)Kν

four different types of mixing patterns with different characteristics

example: Case 2) with CP transformations X(u, v)
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CP violation at low energies

Case 2) (H/Meroni/Molinaro (’14))

• one column is trimaximal, i.e. sin2 θ12 & 1
3

• smallness of θ13 constrains θ and u/n

• two sum rules for mixing angles

6 sin2 θ23 cos2 θ13 = 3±
√
3 tanφ− 3

(

1±
√
3 tanφ

)

sin2 θ13

with

φ =
π u

n
+ σ

π

3
and σ = 0, 1, −1

(see also e.g. Ding/King (’14))



CP violation at low energies

Case 2) (H/Meroni/Molinaro (’14))

• one column is trimaximal, i.e. sin2 θ12 & 1
3

• smallness of θ13 constrains θ and u/n

• Dirac phase is function of u/n

• Majorana phase β depends on u/n as well

• value of Majorana phase α is (mainly) fixed by v/n



CP violation at low energies

Case 2) with n = 10 and u = 4 (H/Meroni/Molinaro (’14))

• results for mixing angles (as example θ23 > π/4)

0.340 . sin2 θ12 . 0.342

0.0187 . sin2 θ13 . 0.0250

0.558 . sin2 θ23 . 0.559

• Dirac phase and Majorana phase β are constrained as

(one fixed combination of CP parities)

0.83 . sinβ . 0.94

−0.86 . sin δ . −0.80



CP violation at low energies

Case 2) with n = 10 and u = 4 (H/Meroni/Molinaro (’14))

• results for mixing angles (as example θ23 > π/4)

0.340 . sin2 θ12 . 0.342

0.0187 . sin2 θ13 . 0.0250

0.558 . sin2 θ23 . 0.559

• Majorana phase α can take several values

v 0 6, 24 12, 18

sinα −0.035÷−0.028 0.94÷ 0.96 −0.62÷−0.56



CP violation at low energies

Case 2) with n = 10 and u = 4 (H/Meroni/Molinaro (’14))
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See also works by Ding, King, Neder.



CP violation at high energies

• type-1 seesaw mechanism

• three RH neutrinos Ni forming 3

• baryogenesis through leptogenesis

YB ≈ 10−3
∑

α,i,j

ǫαi ηαij

ǫαi : CP asymmetry from Ni decays to charged lepton flavor α

ηαij : efficiency factor
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CP violation at high energies

• type-1 seesaw mechanism

• three RH neutrinos Ni forming 3

• flavor and CP symmetries (H/Molinaro (’16))

• Ge = Z3 for charged leptons

• Gν = Z2 × CP for neutrinos

• two realizations

1. YD invariant under Gf and CP,

MR under CP ⊂ Gν

2. YD and MR both invariant under CP ⊂ Gν



Realization 1

(H/Molinaro (’16))

• charged lepton mass matrix me is invariant under Ge = Z3

• light neutrino mass matrix is invariant under Gν = Z2 × CP

• YD is invariant under Gf and CP

YD = y0 1

• lepton mixing encoded in RH neutrino mass matrix MR,

MR is invariant under Gν = Z2 × CP

UT
R MR UR = diag (M1,M2,M3) with UR = Ων Rij(θ)Kν



Realization 1

(H/Molinaro (’16))

• charged lepton mass matrix me is invariant under Ge = Z3

• light neutrino mass matrix is invariant under Gν = Z2 × CP

• we find

• seesaw relation of light and heavy neutrino masses

mi ∝
1

Mi

• PMNS mixing matrix is given by

UPMNS = Uν = UR = Ων Rij(θ)Kν



Realization 1

• however, CP asymmetries for unflavored leptogenesis

ǫi = − 1

8π

∑

j 6=i

Im
(

(Ŷ †
DŶD)2ij

)

(Ŷ †
DŶD)ii

f(Mj/Mi)

vanish,

since

Ŷ †
D ŶD ∝ 1

known in flavor symmetry-only context
(Jenkins/Manohar (’08), Bertuzzo et al. (’09), H/Molinaro/Petcov (’09),

Aristizabal Sierra et al. (’09))



Realization 1

• in order to achieve non-zero ǫi further symmetry breaking is

needed,

in particular

ŶD = YD UR

should get corrections,

i.e.

ŶD = YD UR =
(

Y 0
D + δYD

) (

U0
R δUR

)



Realization 1

• in order to achieve non-zero ǫi further symmetry breaking is

needed,

in particular

ŶD = YD UR

should get corrections,

i.e.

ŶD = YD UR =
(

Y 0
D + δYD

) (

U0
R δUR

)

• notice δUR can only be effective, if there is also δYD

• we focus on δYD 6= 0
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• we get then
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• the first term is irrelevant, since (Y 0
D)†Y 0

D ∝ 1

• the second and third term depend in general not only on CP

phases contained in UR,

but also on phases encoded in correction δYD

• four instances in which phases of δYD become irrelevant ...
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Realization 1

• four instances in which phases of δYD become irrelevant ...

i) (Y 0
D)†δYD is real

ii) (Y 0
D)†δYD is imaginary

iii) (Y 0
D)†δYD is complex and symmetric

iv) (Y 0
D)†δYD is complex and antisymmetric

• condition iii) can naturally be realized

• Y 0
D ∝ 1 at leading order

• δYD flavor diagonal, since invariant under Ge = Z3

δYD has two (in general complex) parameters

• δYD ∝ κ (κ symmetry breaking parameter)



Realization 1

• size of ǫi:

for δYD ∝ κ we find

ǫi ∝ κ2

that leads for κ ∼ 10−(2÷3) to correct size of YB,

taking into account size of Yukawa coupling y0 and RH

neutrino masses Mi

as well as efficiency factor

known in flavor symmetry-only context
(Jenkins/Manohar (’08), Bertuzzo et al. (’09), H/Molinaro/Petcov (’09),

Aristizabal Sierra et al. (’09))



Realization 1

Results for Case 2)

• CP asymmetries ǫi read, e.g.

ǫ1 ≈
κ2

6π

[

(−1)k1f
(

m1
m2

)(

[cos (φ+ 2ζ) + cos 2θ] sinφv − sin (φ+ 2ζ) sin 2θ cosφv

)

+(−1)k2+1f
(

m1
m3

)

sin 2 (φ− ζ) sin 2θ

]

= −
3κ2

2π

[

I1 (φ → φ+ 2 ζ) f
(

m1
m2

)

+ I2 (φ → φ− ζ) f
(

m1
m3

)]

with

I1 = Im[U2
PMNS,12(U

⋆
PMNS,11)

2] = sin2 θ12 cos
2 θ12 cos

4 θ13 sinα ,

I2 = Im[U2
PMNS,13(U

⋆
PMNS,11)

2] = sin2 θ13 cos
2 θ12 cos

2 θ13 sinβ



Realization 1

Case 2) with n = 10 and u = 4 (H/Molinaro (’16))
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Realization 1

• however, CP asymmetries for flavored leptogenesis

ǫαi = −
1

8π (Ŷ †
D
ŶD)ii

∑

j 6=i

{

Im
(

(Ŷ †
D
ŶD)ij(ŶD)⋆αi(ŶD)αj

)

f(Mj/Mi)

+ Im
(

(Ŷ †
D
ŶD)ji(ŶD)⋆αi(ŶD)αj

)

g (Mj/Mi)
}

,

vanish,

since

Ŷ †
D ŶD ∝ 1

known in flavor symmetry-only context (Bertuzzo et al. (’09))

• size of ǫαi :

for δYD ∝ κ we find

ǫαi ∝ κ

so that correct size of YB is combination of size of κ, Yukawa

coupling y0 and efficiency factor



Realization 1

Results for Case 2)

• CP asymmetries ǫαi read, e.g.

ǫe1 ≈
y0 κ

12
√
3π

[

f
(

m1
m2

)(

[cos (φ+ ζ) + cos ζ cos 2θ] sinφv − sin (φ+ ζ) sin 2θ cosφv

)

−f
(

m1
m3

)

sin (2φ− ζ) sin 2θ

]

+
y0 κ

12
√
3π

[

g
(

m1
m2

)

sin ζ sin 2θ − g
(

m1
m3

)

sin ζ sin 2θ

]

• sign of ǫαi depends in general on ζ as well



Realization 2

(H/Molinaro (’16))

• charged lepton mass matrix me is invariant under Ge = Z3

• light neutrino mass matrix is invariant under Gν = Z2 × CP

• YD is invariant under Gν

Z† YD Z = YD and X⋆ YD X = Y ⋆
D

such that

YD = Ων Rij(θL)









y1 0 0

0 y2 0

0 0 y3









Rij(−θR)Ω†
ν

• RH neutrino mass matrix MR also

UT
R MR UR = diag (M1,M2,M3) with UR = Ων Rij(θ)Kν



Realization 2

• CP asymmetries ǫαi do not vanish – even without δYD

• however, there is in general no one-to-one correspondence
between α, β, δ and sign of YB , e.g. we find for Case 2)

ǫα1 (3) =
y1 y3 (y21 (3)

− y2
3 (1)

) sin 2 (θ − θR) sin
(

φ− ρα
π
3

)

48π
(

y2
1 (3)

cos2 (θ − θR) + y2
3 (1)

sin2 (θ − θR)
)

×

[

(−1)k2 f

(

M3 (1)

M1 (3)

)

+ g

(

M3 (1)

M1 (3)

)]

and ǫα2 vanish

For further studies of flavored leptogenesis in theories

with flavor & CP symmetry

see Mohapatra/Nishi (’15), Chen et al. (’16), Yao/Ding (’16)



Conclusions

• flavor and CP symmetries can be powerful in

constraining lepton mixing parameters, in particular

leptonic CP phases

• series of ∆(3n2) and ∆(6n2), n ≥ 2, and CP are very

interesting

• strong correlation of α, β, δ and YB possible in unflavored

leptogenesis framework

• in spite of less correlations also flavored leptogenesis can

be interesting

Thank you for your attention.
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