Three-loop neutrino masses

Systematic classification of three-loop realizations of the Weinberg operator [1807.00629] (work done in collaboration with B. Fonsoca and M. Hirsch)

(work done in collaboration with R. Fonseca and M. Hirsch)

Ricardo Cepedello

Instituto de Física Corpuscular – CSIC Universitat de València, Spain

FLASY 2018 - University of Basel July 3^{rd} 2018

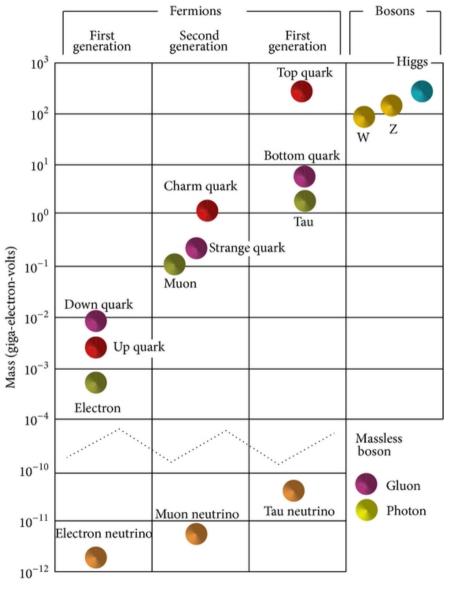
Contents

I. Introduction

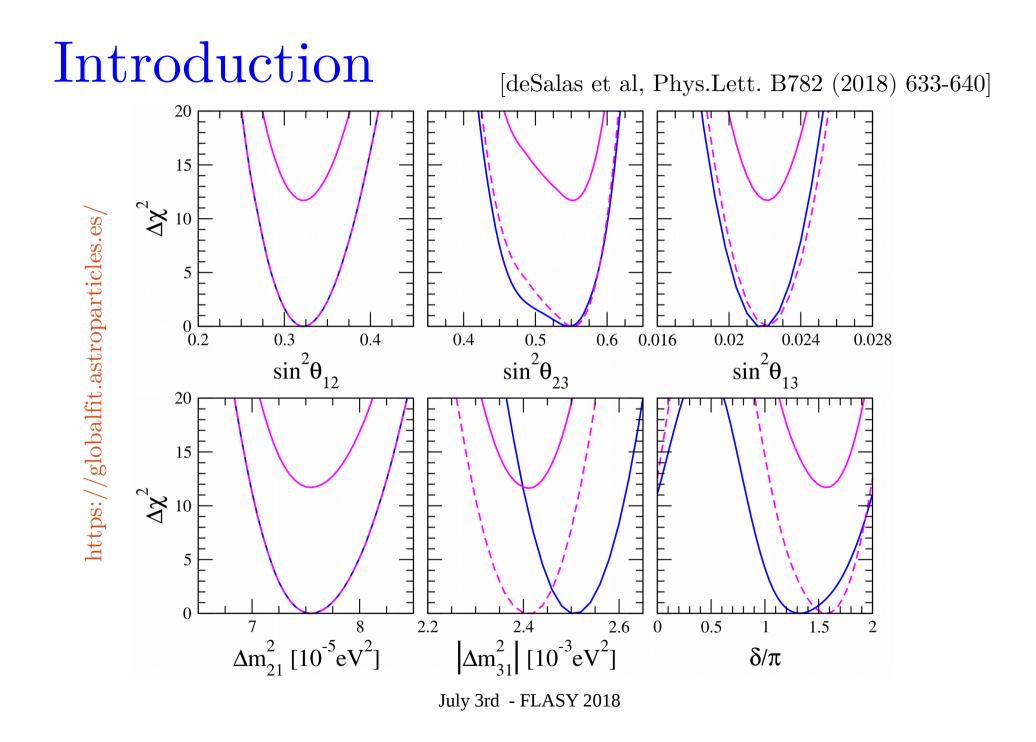
II. Topologies, diagrams and models

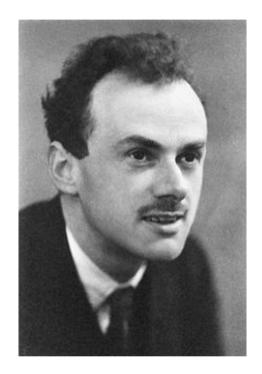
III. Some examples

IV. Conclusion



Neutrinos are much lighter than leptons by at least a factor 10^6



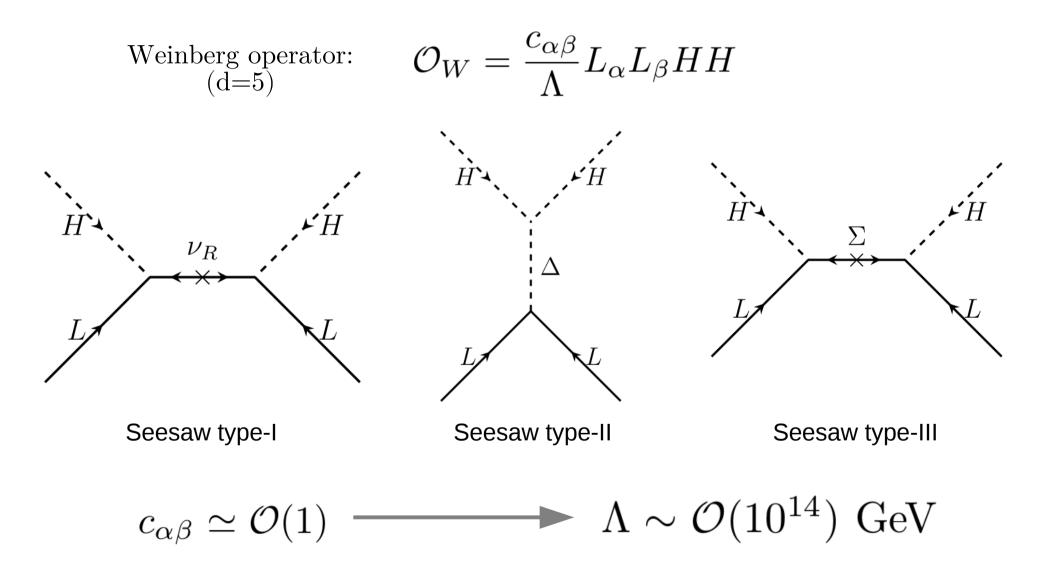


 ${\cal V}_{\sf S}$

 ${\cal V}_{\sf s}$

- Neutrinoless double beta decay
- Lepton Number Violation
- Testable at accelerators

Weinberg operator:
$$\mathcal{O}_W = \frac{c_{\alpha\beta}}{\Lambda} L_{\alpha} L_{\beta} H H$$



July 3rd - FLASY 2018

Weinberg operator:
$$\mathcal{O}_W = \frac{c_{\alpha\beta}}{\Lambda} L_{\alpha} L_{\beta} H H$$

 $C_{\alpha\beta}$ could be naturally much smaller than one:

(i) Higher dimensional operators:[Anamiati et al; 1806.07264][Babu, Nandi, Tavartkiladze; Phys.Rev. D80 (2009) 071702]

[Bonnet et al; JHEP 0910 (2009) 076]

(ii) Radiative neutrino masses:

[Review of Cai et al; Front.in Phys. 5 (2017) 63] [RC, Helo, Hirsch; JHEP 1707 (2017) 079]

(iii) "Nearly" conserved Lepton Number:

[Mohapatra, Valle; Phys. Rev. D34, 1642 (1986)] [Branco, Grimus, Lavoura; Nucl.Phys. B312 (1989) 492-508] $\mathcal{O}_W \times (H^{\dagger}H)^{\frac{d-5}{2}}$

 $c_{\alpha\beta} \propto 1/(16\pi^2)^n$

 $c_{\alpha\beta} < 1$

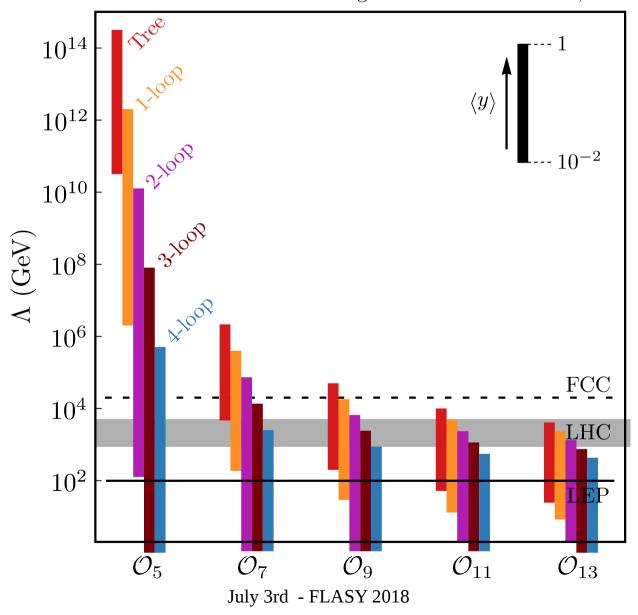


figure from Anamiati et al, 1806.07264

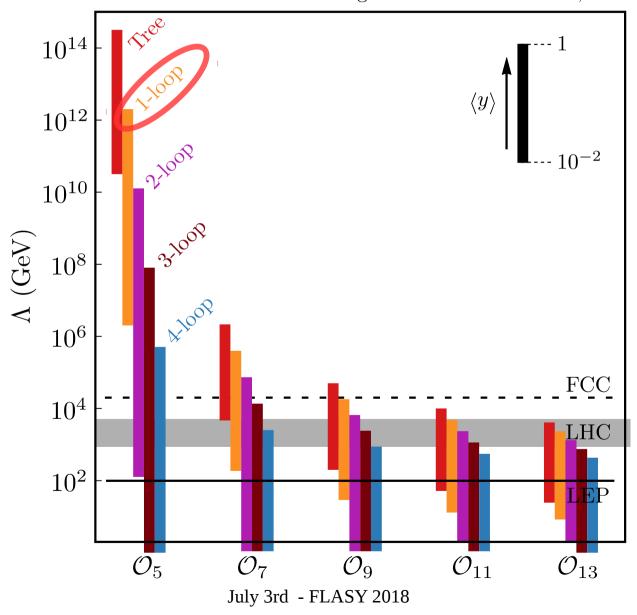
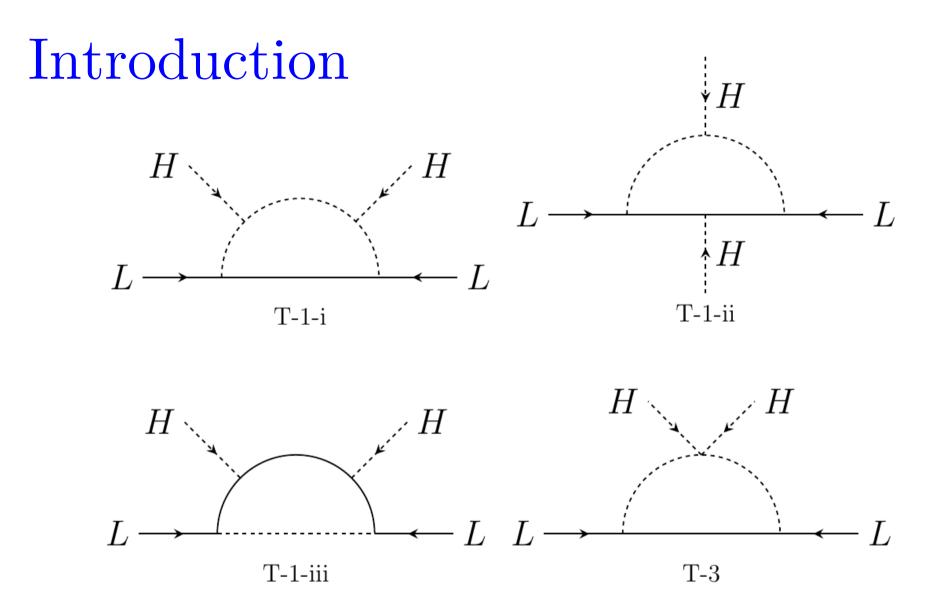


figure from Anamiati et al, 1806.07264



Systematic classification by Bonnet, Hirsch, Ota, Winter [JHEP 1207 (2012) 153]

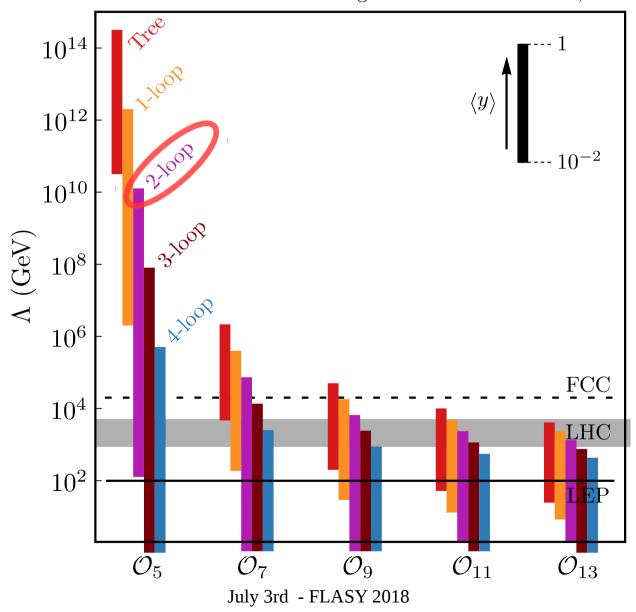
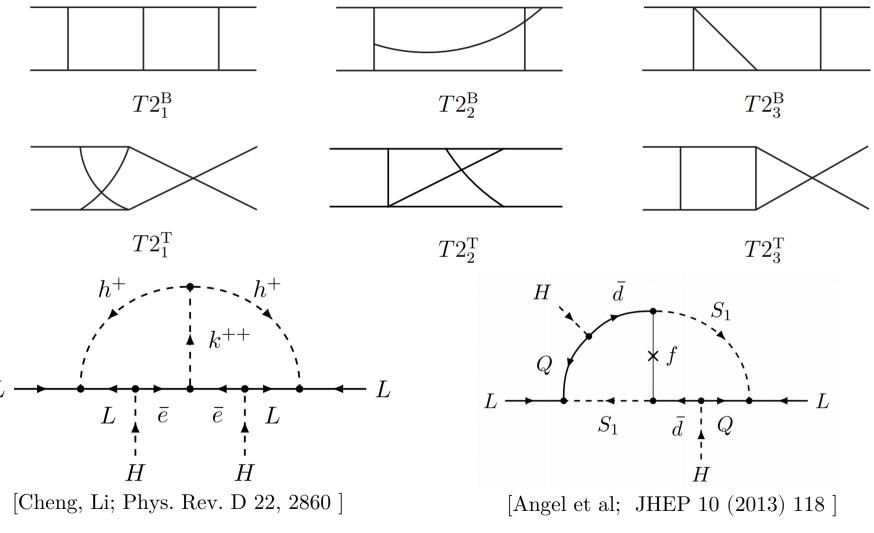
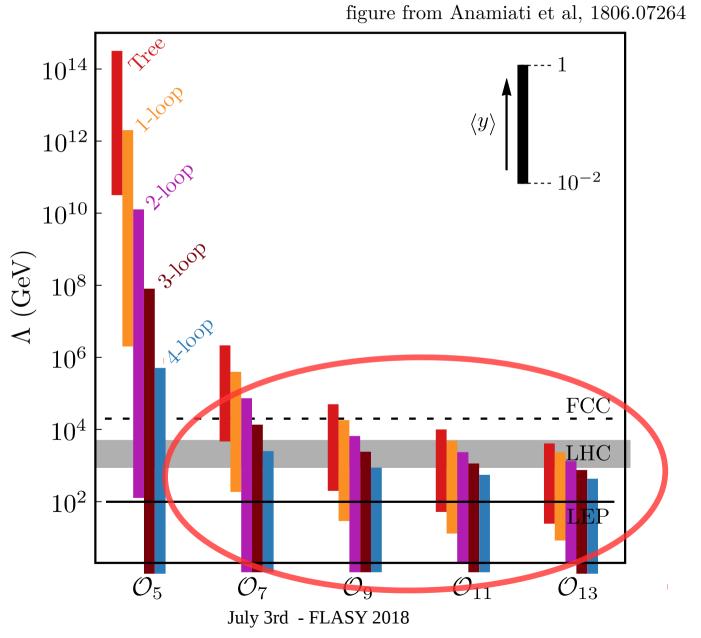
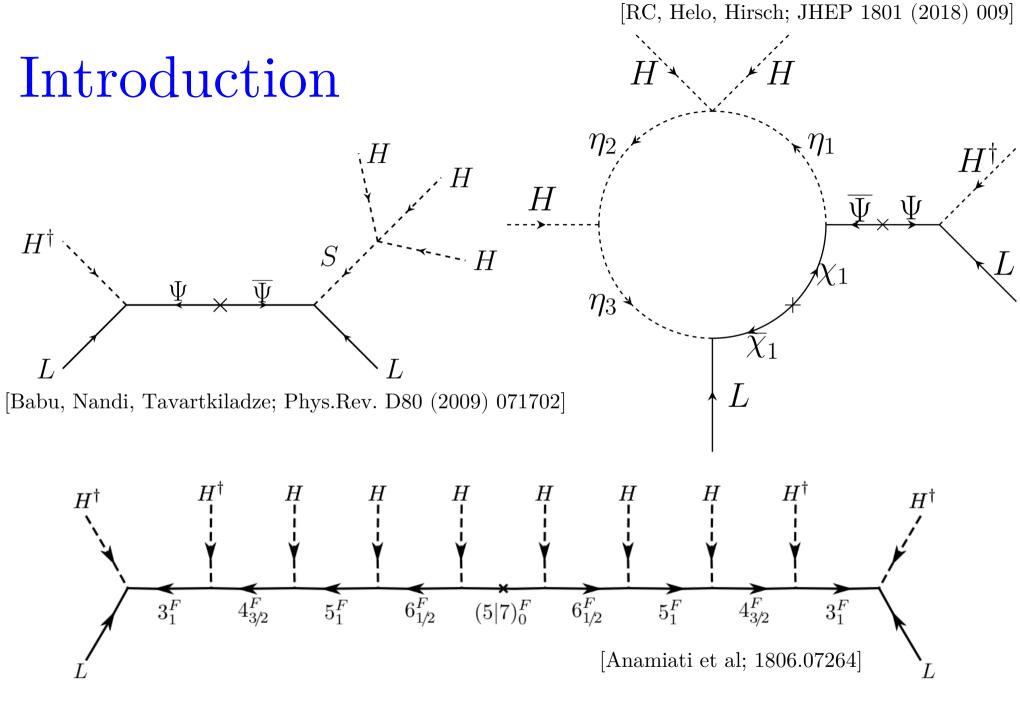


figure from Anamiati et al, 1806.07264

Systematic classification by Aristizabal, Degee, Dorame, Hirsch [JHEP 1503 (2015) 040]







July 3rd - FLASY 2018

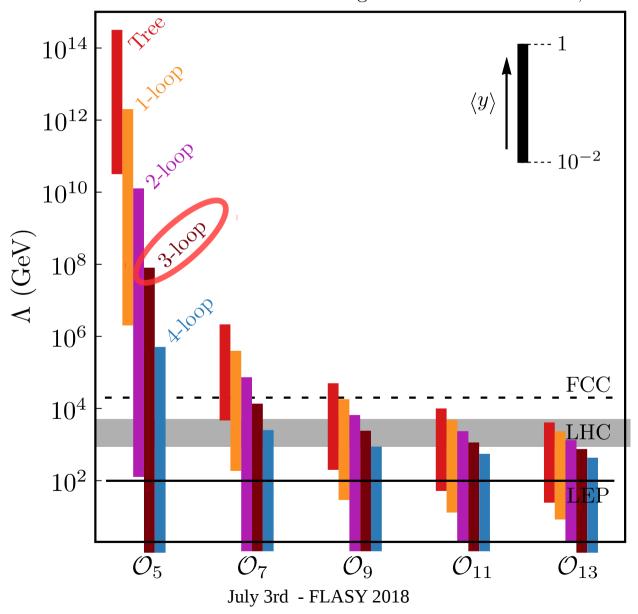
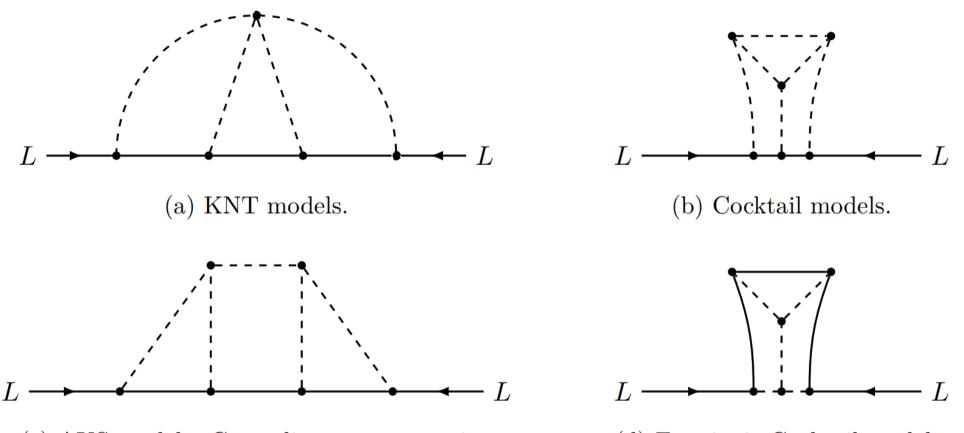


figure from Anamiati et al, 1806.07264



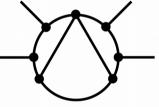
(c) AKS models. Cross diagrams may exist.

(d) Fermionic Cocktail models.

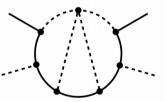
Figures from Cai et al; Front.in Phys. 5 (2017) 63

Topologies, Diagrams and Models Some comments on nomenclature

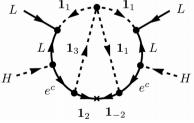
• **TOPOLOGIES:** Feynman diagrams where no property of the fields is considered.



• **DIAGRAMS:** scalars are differentiated from fermions.



• **MODEL-DIAGRAMS:** the quantum numbers for the internal particles are specified.



July 3rd - FLASY 2018

Topologies, Diagrams and Models Some comments on nomenclature

• GENUINENESS:

- a **topology** is said to be genuine if it generates **at least one** modeldiagram which fulfills the following three conditions:
- \succ It is renormalizable
- \succ The leading contribution to neutrino masses arises at 3-loops
- \succ No need for extra symmetries beyond those of the SM

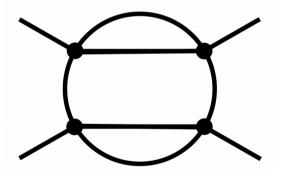
(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

4367 topologies

(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

4367 topologies

(ii) Exclude **non-renormalizable** topologies. <u>3269 topologies</u>

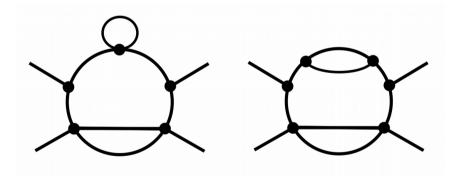


(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

4367 topologies

(ii) Exclude **non-renormalizable** topologies. <u>3269 topologies</u>

(iii) Remove tadpoles and self-energies. 370 topologies



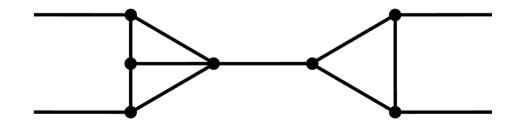
(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

4367 topologies

(ii) Exclude **non-renormalizable** topologies. <u>3269 topologies</u>

(iii) Remove tadpoles and self-energies. 370 topologies

(iv) Eliminate 1-particle reducible topologies. 160 topologies



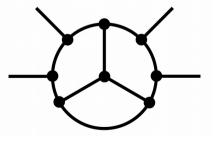
(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

(ii) Exclude **non-renormalizable** topologies. <u>3269 topologies</u>

(iii) Remove tadpoles and self-energies. 370 topologies

(iv) Eliminate 1-particle reducible topologies. 160 topologies

(v) Discard **3-point** loop vertices. 60 topologies



July 3rd - FLASY 2018

Topology level

4367 topologies

(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

(ii) Exclude **non-renormalizable** topologies. <u>3269 topologies</u>

(iii) Remove tadpoles and self-energies. 370 topologies

(iv) Eliminate 1-particle reducible topologies. 160 topologies

(v) Discard **3-point** loop vertices. 60 topologies

Topology level

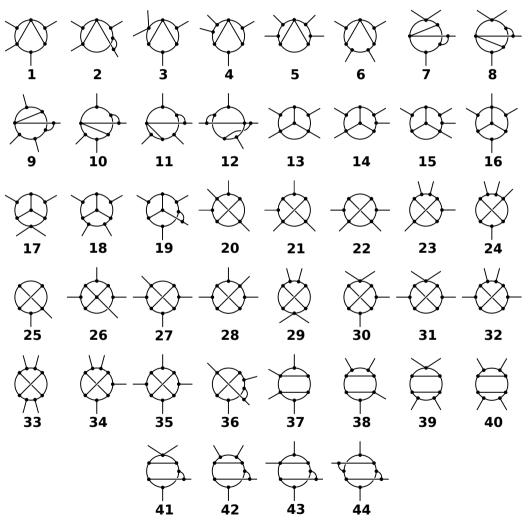
4367 topologies

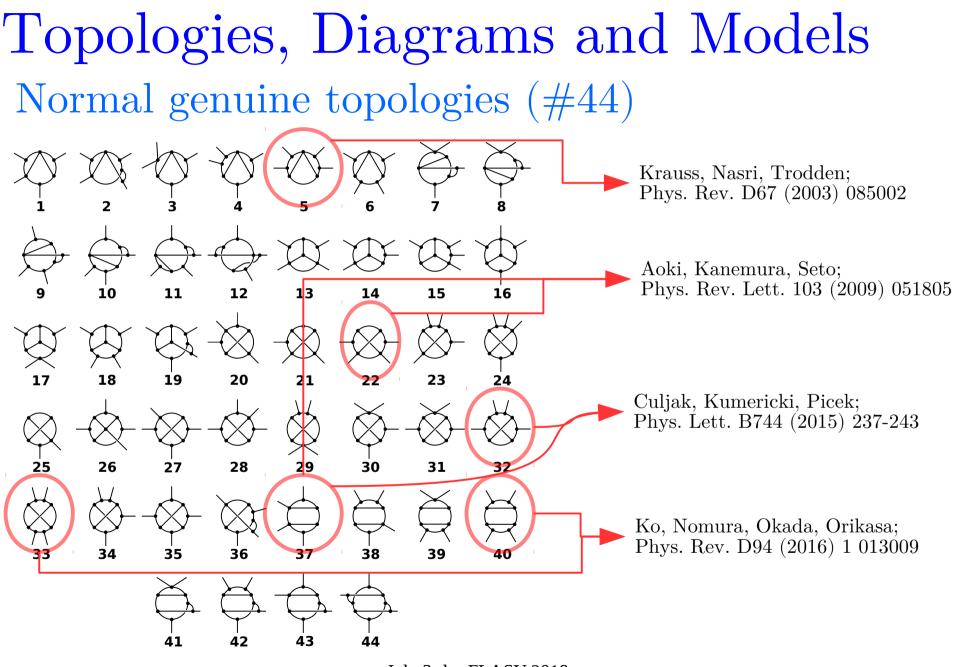
Diagram level

(vi) Remove compressible **4-point** loop vertices, i.e. 4 scalar vertices.

44 topologies

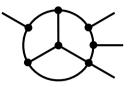
Topologies, Diagrams and Models Normal genuine topologies (#44)



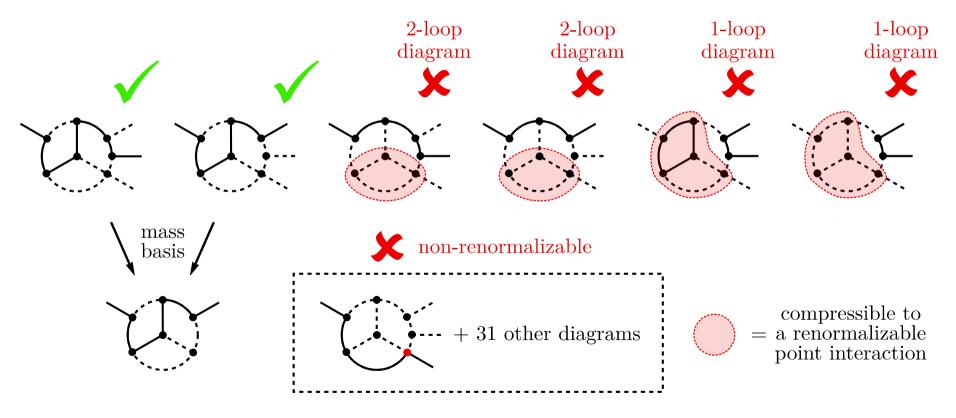


July 3rd - FLASY 2018

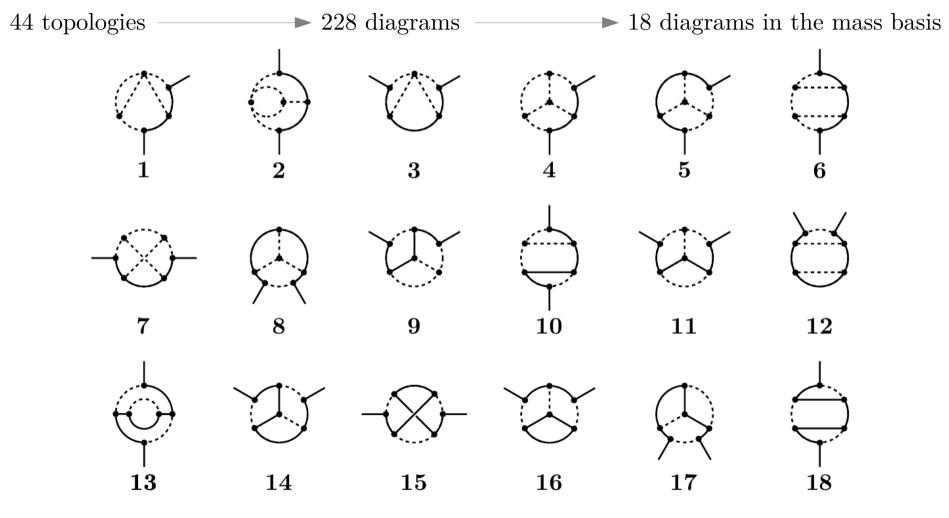
Topologies, Diagrams and Models



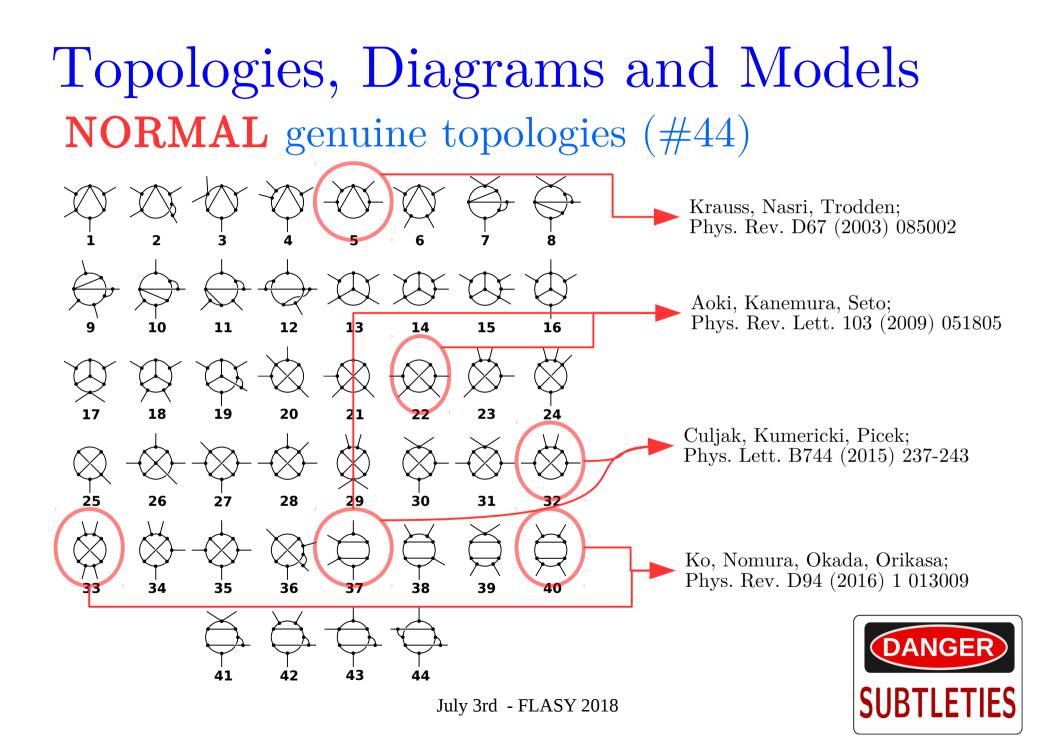
Genuine diagrams with this topology



Topologies, Diagrams and Models Mass diagrams (#18)



July 3rd - FLASY 2018



(i) All connected topologies with 3- and 4- point vertices and 4 external legs.

4367 topologies

Topology level

(ii) Exclude **non-renormalizable** topologies. <u>3269 topologies</u>

(iii) Remove tadpoles and self-energies. 370 topologies

(iv) Eliminate 1-particle reducible topologies. 160 topologies

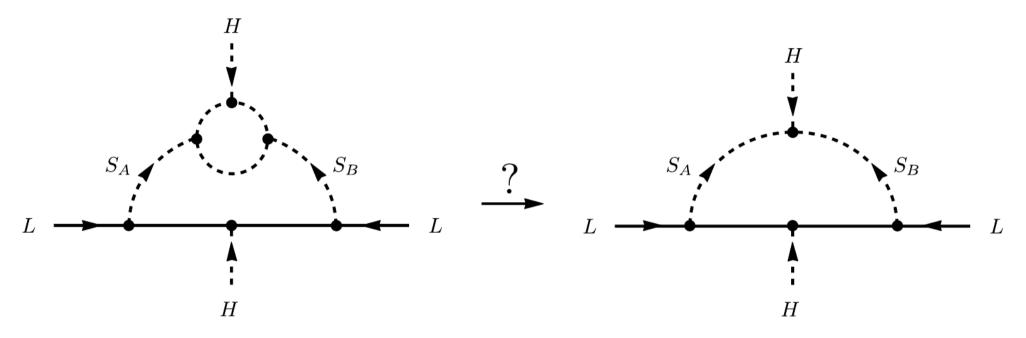
v) Discard **3-point** loop vertices. 60 topologies

(vi) Remove compressible **4-point** loop vertices, i.e. 4 scalar vertices.

44 topologies

DANGER SUBTLETIES

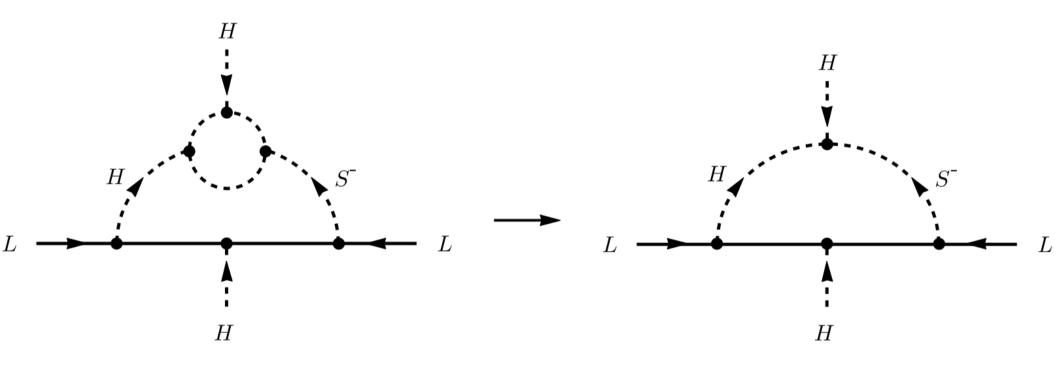
Topologies, Diagrams and Models Loophole



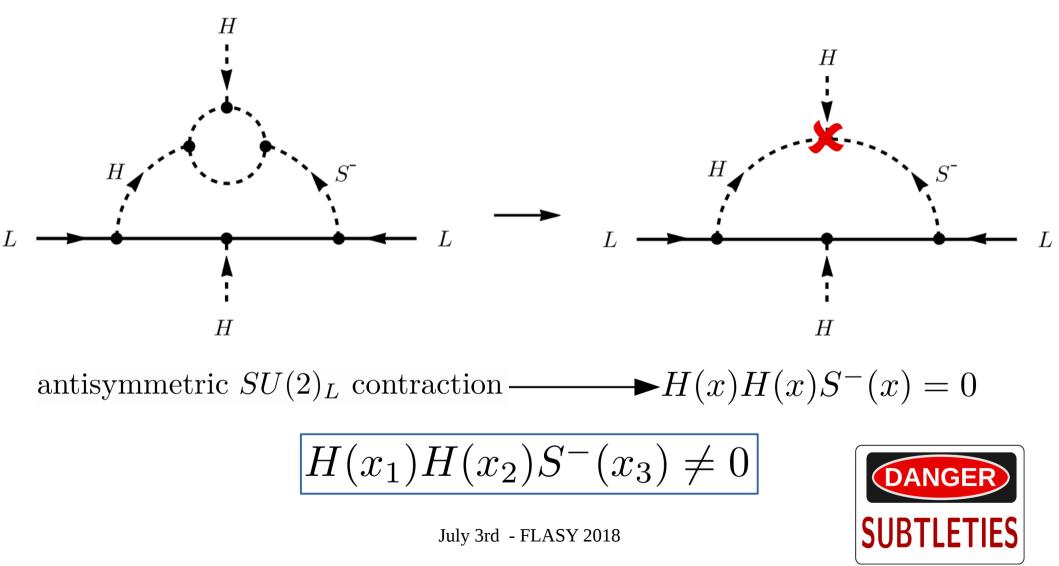
If the loop vertex $H-S_A-S_B$ is allowed by symmetry, so it is the tree level vertex $H-S_A-S_B$

BUT H- S_A - S_B can be identically zero

Topologies, Diagrams and Models Loophole

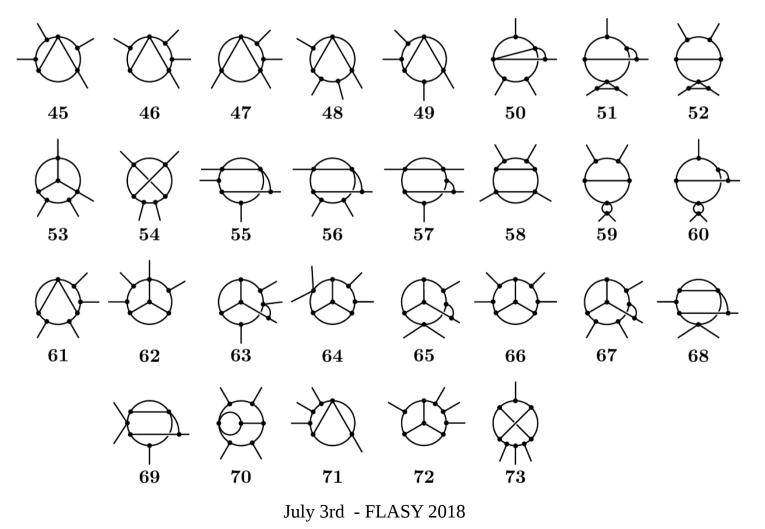


Topologies, Diagrams and Models Loophole



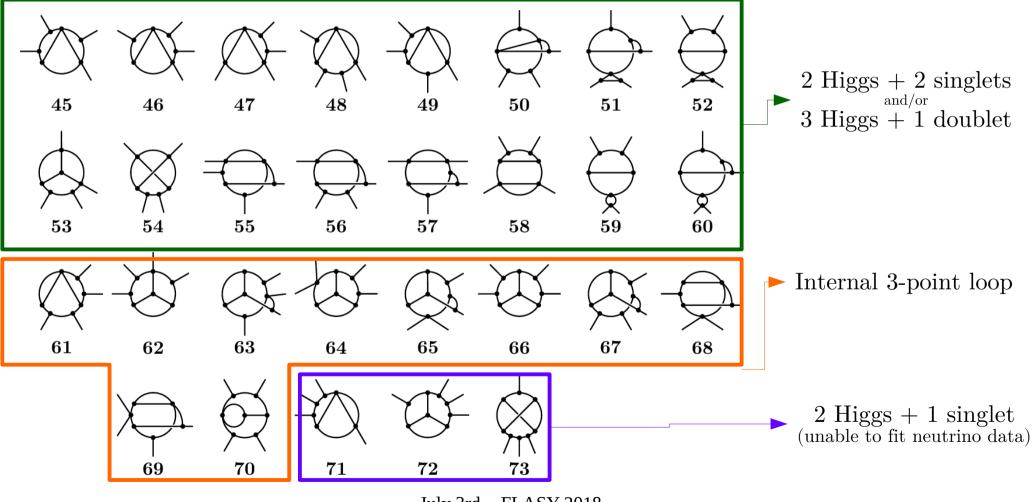
Topologies, Diagrams and Models Special genuine topologies (#29)

They require a special choice of quantum numbers to be genuine

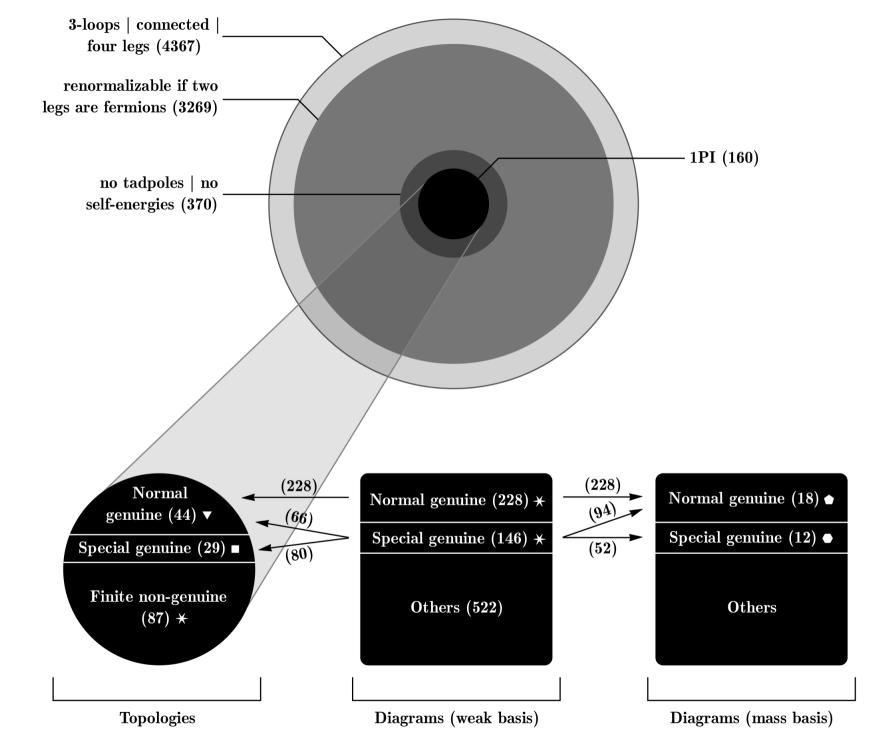


Topologies, Diagrams and Models Special genuine topologies (#29)

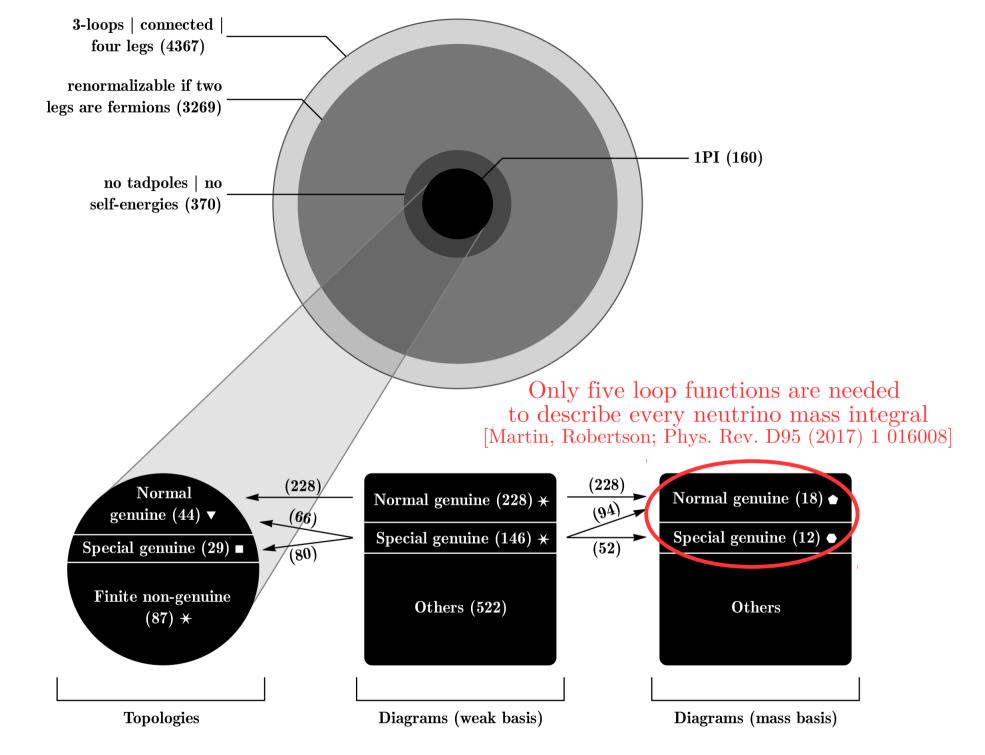
They require a special choice of quantum numbers to be genuine



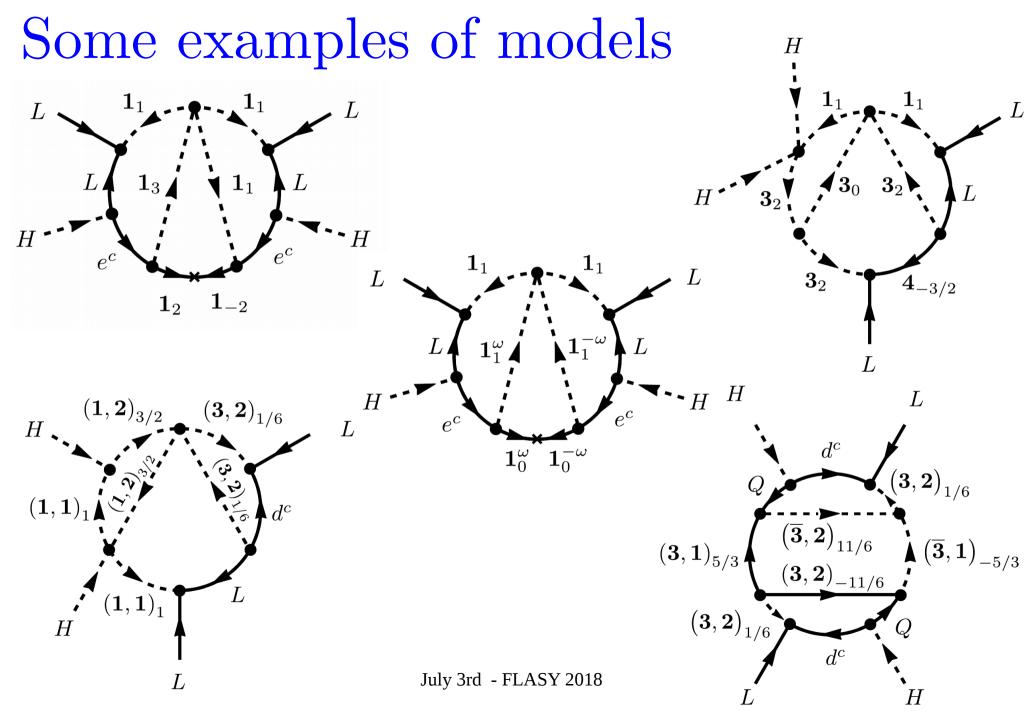
July 3rd - FLASY 2018

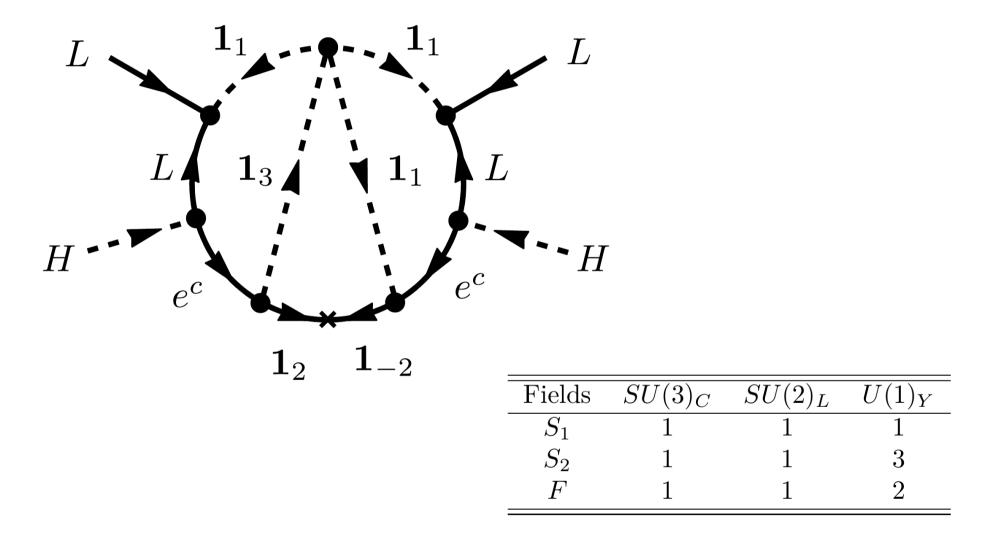


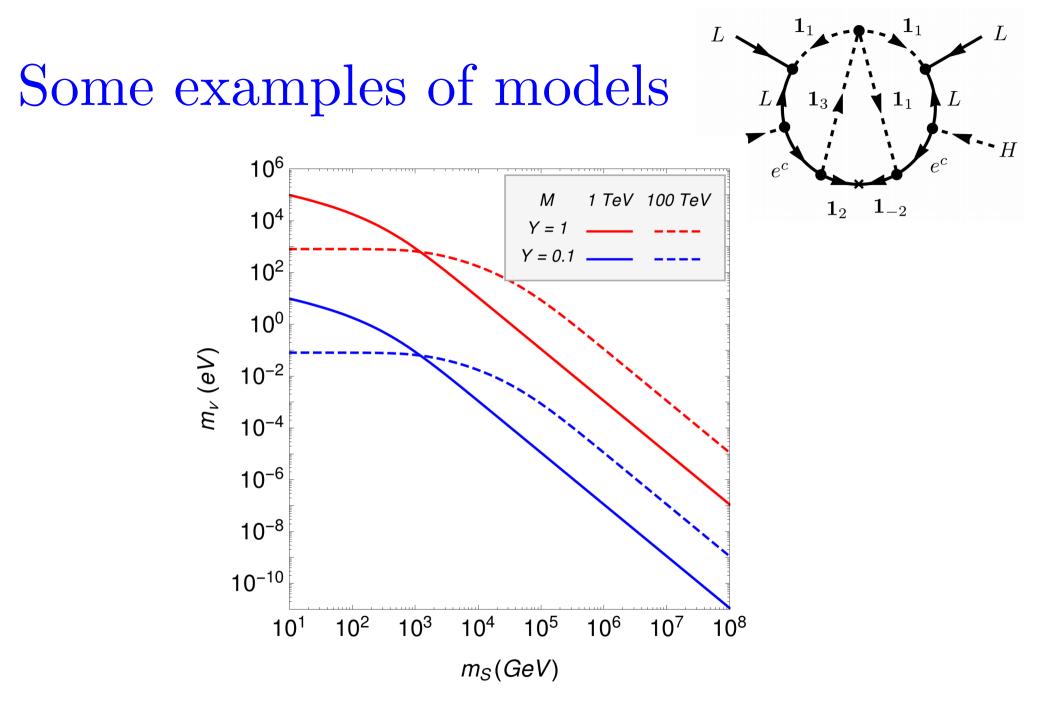
More diagrams on the web page http://renatofonseca.net/3loop-weinberg-operator.php



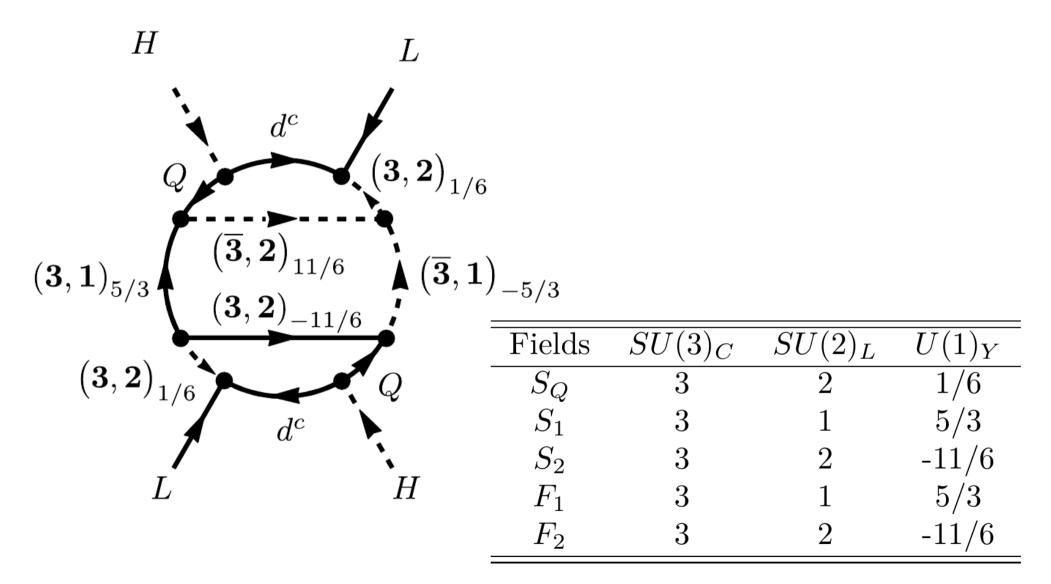
More diagrams on the web page http://renatofonseca.net/3loop-weinberg-operator.php

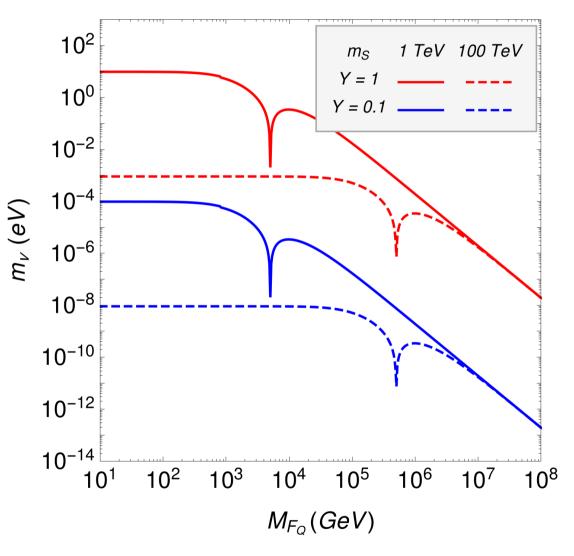






July 3rd - FLASY 2018





H

 $(\mathbf{3},\mathbf{1})_{5/3}$

 $({\bf 3},{\bf 2})_1$

L

H

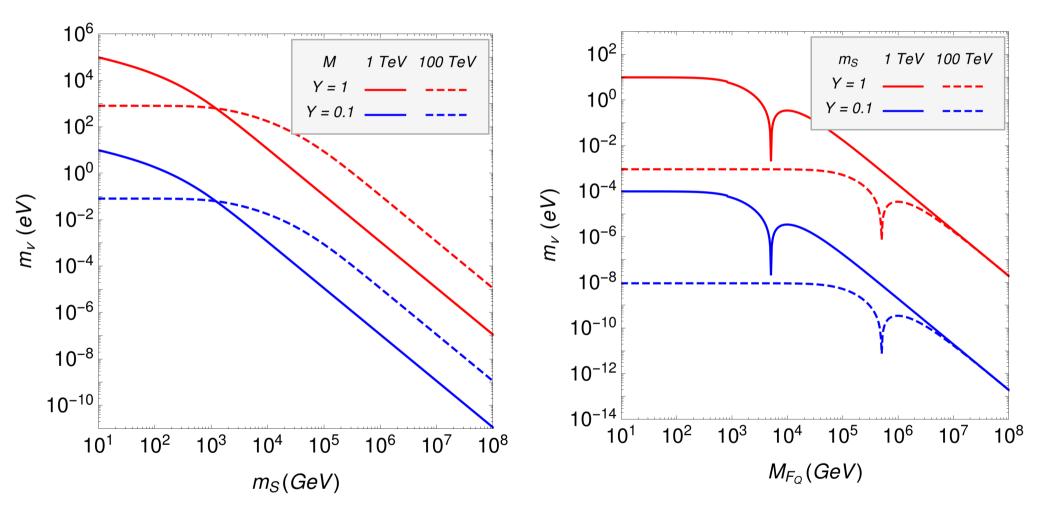
 $({\bf 3},{\bf 2})_{1/6}$

 $\left(\overline{\mathbf{3}},\mathbf{1}
ight)_{-5/3}$

 d^c

 $\left(\overline{\mathbf{3}},\mathbf{2}
ight)_{11/6}$

 $({\bf 3},{\bf 2})_{-11/6}$



July 3rd - FLASY 2018

Conclusions

- We have found **73 topologies** that can generate genuine models in two classes, depending if they need a special combination of fields to be genuine.
 - ◆ 44 normal genuine topologies (228 diagrams + 66 diagrams)
 - ◆ 29 special genuine topologies (80 diagrams)
- We have found that every diagram fall into a set of **30 mass diagrams** after EWSB that they depend on five master integral.
- We have have computed two concrete examples to show the typical parameter range of these models.
 - For order (1 10³) TeV d=5 3-loop models can give a good fit to data.
 - Interesting and partially **testable** in future colliders and LNV searches.

Conclusions

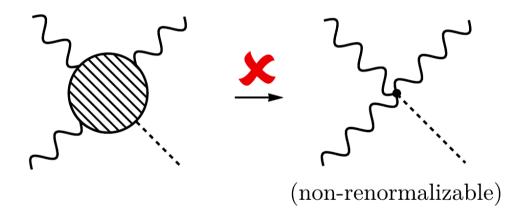
- We have found **73 topologies** that can generate genuine models in two classes, depending if they need a special combination of fields to be genuine.
 - ◆ 44 normal genuine topologies (228 diagrams + 66 diagrams)
 - ◆ 29 special genuine topologies (80 diagrams)
- We have found that every diagram fall into a set of **30 mass diagrams** after EWSB that they depend on five master integral.
- We have have computed two concrete examples to show the typical parameter range of these models.
 - For order (1 10³) TeV d=5 3-loop models can give a good fit to data.
 - Interesting and partially **testable** in future colliders and LNV searches.

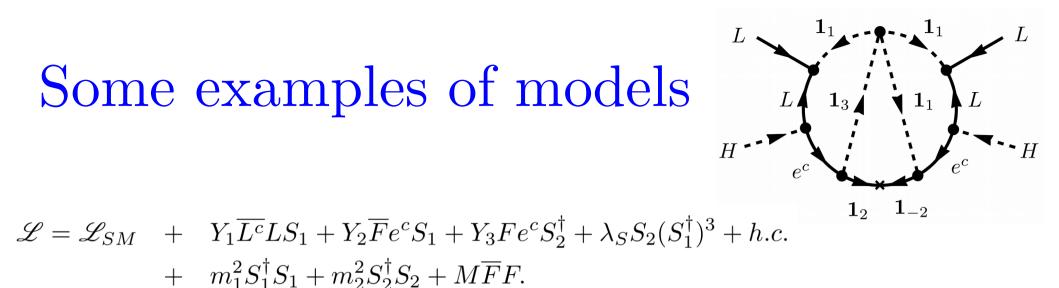
July 3rd - FLASY 2018

More?

Topologies, Diagrams and Models

• We are considering only diagrams with **scalars** and **fermions**. Adding vectors:





$$(M_{\nu})_{\alpha\beta} = -\frac{3!}{(16\pi^2)^3} \lambda_S \frac{m_{\tau}^2}{M} \left[(Y_1)_{\alpha\tau} (Y_2)_{\tau} (Y_3)_{\tau} (Y_1)_{\tau\beta} + (\alpha \leftrightarrow \beta) \right] F_{loop}(x_1, x_2).$$

$$F_{loop}(x_1, x_2) = \iiint_{(k_1, k_2, k_3)} \frac{1}{[k_1^2][k_1^2 - x_1][k_2^2][k_2^2 - x_1][k_3^2 - 1][(k_2 - k_3)^2 - x_1][(k_3 - k_1)^2 - x_2]}.$$

$\begin{array}{c} H & L \\ Q & (\mathbf{3}, \mathbf{2})_{1/6} \\ (\mathbf{3}, \mathbf{1})_{5/3} & (\mathbf{\overline{3}}, \mathbf{2})_{11/6} \\ (\mathbf{3}, \mathbf{2})_{-11/6} & (\mathbf{\overline{3}}, \mathbf{1})_{-5/3} \\ (\mathbf{3}, \mathbf{2})_{1/6} & d^c \\ L & H \end{array}$

$\begin{aligned} \mathscr{L} &= \mathscr{L}_{SM} + Y_1 L d^c S_Q + Y_2 Q F_1 S_2 + Y_3 Q F_2 S_1 + Y_4 \overline{F_1} \, \overline{F_2} S_Q^{\dagger} + \mu_S S_Q^{\dagger} S_1^{\dagger} S_2^{\dagger} + h.c. \\ &+ M_{F_1} \overline{F_1} F_1 + M_{F_2} \overline{F_2} F_2 + m_{S_Q}^2 S_Q^{\dagger} S_Q + m_{S_1}^2 S_1^{\dagger} S_1 + m_{S_2}^2 S_2^{\dagger} S_2. \end{aligned}$

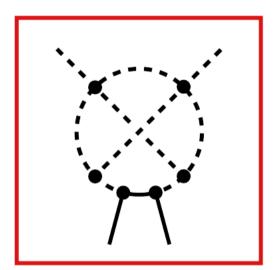
Some examples of models

$$(M_{\nu})_{\alpha\beta} = - \frac{12\mu_S}{(16\pi^2)^3} \frac{m_b^2}{m_{S_Q}^2} \left[(Y_1)_{\alpha b} (Y_2)_b (Y_4) (Y_3)_b (Y_1)_{b\beta} + (\alpha \leftrightarrow \beta) \right] \\ \times \left[F_L(x_1, x_2, x_3, x_4) + F_R(x_1, x_2, x_3, x_4) \right]$$

$$F_L(x_1, x_2, x_3, x_4) = \iiint_{(k_1, k_2, k_3)} \frac{x_1 x_3}{[k_1^2][k_1^2 - 1][k_2^2][k_2^2 - 1][k_3^2 - x_1][k_3^2 - x_2][(k_2 - k_3)^2 - x_3][(k_3 - k_1)^2 - x_4]},$$

$$F_R(x_1, x_2, x_3, x_4) = \iiint_{(k_1, k_2, k_3)} \frac{k_3(k_2 + k_3)}{[k_1^2][k_1^2 - 1][k_2^2][k_2^2 - 1][k_3^2 - x_1][k_3^2 - x_2][(k_2 - k_3)^2 - x_3][(k_3 - k_1)^2 - x_4]},$$

Topologies, Diagrams and Models Loophole



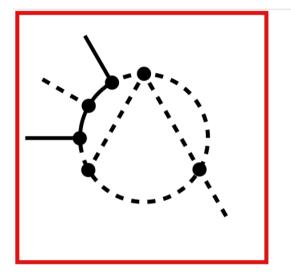
 $H \qquad H \qquad H \qquad \text{otherwise } \dots \qquad \text{otherwise } \dots$

Genuine diagram under special conditions

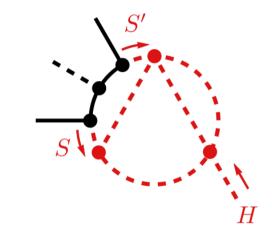
 $H(x_1)H(x_2)S(x_3)S'(x_4) \neq 0$ H(x)H(x)S(x)S'(x) = 0

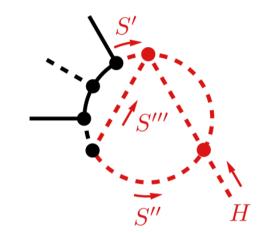
S has to be the SM Higgs, while S' is a doublet with hypercharge -2/3, or viceversa.

Topologies, Diagrams and Models Loophole



Genuine diagram under special conditions





 $S(x_1)S'(x_2)H(x_3) \neq 0$ S(x)S'(x)H(x) = 0

The scalars should be: • S = (1,1,-1)• S' = H• S'' = (1,1,y)• S''' = (1,1,-1-y)

 $S^{++} = (1, 1, -1-y)$ July 3rd - FLASY 2018 $S'(x_1)S''(x_2)S'''(x_1)H(x_2) \neq 0$ S'(x)S''(x)S'''(x)H(x) = 0