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Precision Era for Neutrino Physics
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Symmetry approach
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predictability

high number of free parameters
- Lowest order Lagrangian parameters
- complicated SB sector
- higher dimensional operators 
- SUSY breaking effects 
- RGE corrections (𝚲UV,mSUSY ,tan𝝱)

vacuum alignment

choice of direction
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One of the few tools we have, but with several obstacles 
reviews:
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Tanimoto, 1402.4271; 
King, 1701.04413 
Hagedorn, 1705.00684; 
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This proposal [1706.08749]

neutrino masses and mixings 
depend on a small number of fields 
[here (τ,𝜑) ]

the functional form of is 
completely determined

the VEVs          are selected by some unknown mechanism

a)

b)

Here: a) + b) + c) from modular invariance as flavour symmetry

dependence of mij on (τ,𝜑) is holomorphic supersymmetric
model

c) flavour symmetry acts non-linearly
[to determine all higher dimensional
operators ]

a) + b) + c)

d)

𝑚%&(𝜏, 𝜑)

+ 𝜏 → 𝐹(𝜏)
𝜑 → 𝐺(𝜏, 𝜑)

(τ,𝜑)

𝑚%&(𝜏, 𝜑)



some results  [Juan Carlos Criado, F.F.]

(𝑌0(𝜏), 𝑌1(𝜏), 𝑌2(𝜏))
completely determined up to 
a common overall constant, 
to any order in 𝜏

contribution to lepton mixing from charged lepton sector
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all dimensionless neutrino data are determined
in terms of 3 vacuum parameters 
no corrections to superpotential in the exact SUSY limit



Fit to Model 1

𝜒;%C1 = 0.4

Inverted mass Ordering

- no SUSY breaking effects
- no RGE corrections

best fit parameters

by reproducing individually
Δ𝑚FGH

1 and Δ𝑚IJ;
1

8 dimensionless physical
quantities independent on
any coupling constant!

close to
the self-dual
critical point



Fit to Model 2

𝜒;%C1 = 9.9

Normal mass Ordering

- no SUSY breaking effects
- no RGE corrections

best fit parameters

by reproducing individually
Δ𝑚FGH

1 and Δ𝑚IJ;
1
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[from pdg 2017]



Modular Invariance as Flavour Symmetry

τ → γτ ≡
aτ + b
cτ + d

a,b,c,d integers
ad-bc=1

τ is a complex field,
Im(τ) > 0

they form the (discrete, infinite) modular group      generated byΓ

discrete shift symmetryduality

modular transformations

e.g.
ϕ (I ) =

e
µ

τ
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the weight,
a real number

unitary representation
of the finite modular group 

most general transformation on a set of N=1 SUSY chiral multiplets φ(I)



focus on Yukawa interactions and N=1 global SUSY
[extension to N=1 SUGRA straightforward]

S invariant if

”minimal” 
Kahler potential  

N=1 SUSY modular invariant theories

field-dependent
Yukawa couplings

modular forms
of level N and weight kY

invariance of w(Φ) guaranteed by an holomorphic Y such that 

the weights sum to zero: 𝑘V 𝑛 + 𝑘XY + ⋯+ 𝑘X[ = 0

the product 𝜌×𝜌XY×	…	×𝜌X[ contains an invariant singlet

1.

2.



Models 1 and 2 are based on Γ3
Why Γ3 ?  Γ3 is isomorphic to A4, smallest group of the ΓN series possessing 

a 3-dimensional irreducible representation

modular invariance
broken by

𝜏

𝜑 = (1,0,𝜑2 )

[Ma, Rajasekaran, 0106291
Babu, Ma, Valle 0206292]

real

[recent extensions to Γ2 and Γ4 in Kobayashi, Tanaka, Tatsuishi, 1803.10391;
Penedo, Petcov 1806.11040]



Modular forms of level 3 [1706.08749]

3 linearly independent modular forms of level 3 and minimal weight kI = 2

can be expressed in terms of 
the Dedekind eta function

they transform in a triplet 3 of Γ3

they generate the whole ring M(Γ(3)) 
any modular form of level 3 and weight 2k can be written as an homogeneous 
polynomial in Yi of degree k

dimension of linear space Mk Γ(3)( ) is (k+1) , k > 0 even integer



Corrections from SUSY breaking
unknown breaking mechanism. Here:

F-component of a chiral supermultiplet, gauge and modular invariant

𝑋 = 𝜗1 𝐹 messenger scale 𝑀

SUSY-breaking scale 𝑚bcbV =
𝐹
𝑀

most general correction term to lepton masses and mixing angles

𝑓 Φ, Φf has dimension 3, determined by gauge invariance and lepton number
conservation (treating Λ	as spurion with L=+2)

𝛿𝒲/𝒲 ≈ 𝛿𝒴/𝒴 ≈
𝑚bcbV

𝑀
𝑚bcbV=10l GeV		
				𝑀 = 100l GeV

tiny, if sufficient gap between
𝑚bcbV and 𝑀

10m0n for



Corrections from RGE

Model 1 (IO)
- 𝑟	and 𝑠𝑖𝑛1𝜗01 mostly affected, at large 𝑡𝑎𝑛𝛽

𝜒;%C1

Model 2 (NO)
negligible corrections for 𝑡𝑎𝑛𝛽	up to 25 and mSUSY as low as 104 GeV 

Λ = 100s GeV



Conclusions

Modular invariance provides strong constraints in SUSY model building:
couplings of τ to matter multiplets are completely fixed to any order in 
the τ power expansion

in a minimal model, level N=3, all dimensionless neutrino physical
quantities independent on any coupling constant!
Once the vacuum is fixed they are all determined.

Model 1 (IO) has an excellent 𝜒;%C1 , 
Model 2 (NO)  has a reasonable 𝜒;%C1

accounting for SUSY breaking and RGE corrections, a finite region of the 
parameter space exists (𝑚bcbV << 𝑀 and t𝑎𝑛𝛽	< 10 for Model 1) 
where data and theory agree

Open questions:
- role of modular symmetry in charged lepton/quark Yukawa couplings
- additional experimental tests to distinguish models (sum rules,…)
- vacuum selection
- …



Backup Slides



L Hu Y
SU(2)×U(1) (2,−1/ 2) (2,+1/ 2) (1, 0)
Γ3 ≡ A4 3 1 3
kI +1 0 +2

if we go 
minimal

the operator

is completely specified up 
to an overall constant

we get
a familiar matrix but 
now Yi are determined
by the choice of τ

by scanning τ VEVs the best agreement is obtained for 

Δmsol
2

Δmatm
2 sin2ϑ12 sin2ϑ13 sin2ϑ 23

δCP
π

α21

π
α31
π

Exp 0.0292 0.297 0.0215 0.5 1.4 − −

1σ 0.0008 0.017 0.0007 0.1 0.2 − −
prediction 0.0292 0.295 0.0447 0.651 1.55 0.22 1.80

many
σ away

2-parameter fit to 5 physical quantities 

8 dimensionless physical
quantities independent on
any coupling constant!





1𝜎 parameter space



Charged Lepton Sector



Fit to Yukawa couplings

Model 1 Model 2



Level N modular forms



Fundamental domain of Γ(3)



Q-expansion

some VEVs



Ring of level-3 modular forms
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i.e. 1 and 2 are, by definition, 
the closest levels

two possibilities: NO and IO

Mixing matrix UPMNS (Pontecorvo,Maki,Nakagawa,Sakata)

standard parametrization

0 ≤ϑ ij ≤ π / 2
0 ≤ δ < 2π

relevant parameters

UPMNS =

c12 c13 s12 c13 s13 e
−iδ
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Majorana phasesLCC = −
g
2
Wµ

− eLγ
µUPMNSνL

ν1 ν2 ν3
νe

νµ

ντ



e.g.
ϕ (I ) =

e
µ

τ
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the weight,
a real number

unitary representation
of the finite modular group 

Action of modular invariance on flavor space

Γ2 Γ3 Γ4 Γ5
S3 A4 S4 A5

if all kI=0, the construction collapses to the well-known models based
on linear, unitary flavor symmetries.

ΓN are finite groups

most general transformation on a set of N=1 SUSY chiral multiplets φ(I)



transformation property under the modular group

q-expansion

ring of modular forms generated by few elements

Few facts about (level-N) Modular Forms

unitary representation of the 
finite modular group 

k < 0 f (τ ) = 0

k = 0 f (τ ) = constant

k > 0 (even
integer)

f (τ )∈Mk Γ(N )( ) finite-dimensional
linear space

an explicit example
in a moment



known since late 1980s

focus on Yukawa interactions and N=1 global SUSY

Kahler potential,
kinetic terms

superpotential, holomorphic function of Φ
Yukawa interactions

S invariant if

invariance of the Kahler potential easy to achieve. For example:  

extension to N=1 SUGRA straightforward: ask invariance of G=K+log|w|2

minimal K

N=1 SUSY modular invariant theories



invariance of the superpotential much less trivial. Expand w(Φ) in powers
of the matter supermultiplets

field-dependent
Yukawa couplings

modular forms
of level N and weight kY

invariance of w(Φ) guaranteed by an holomorphic Y such that 



Variants
neutrino masses from see-saw mechanism

L Nc Hu Y
SU(2)×U(1) (2,−1/ 2) (1, 0) (2,+1/ 2) (1, 0)
Γ3 ≡ A4 3 3 1 3
kI kL +1 ku +2

assignement

1+kL+ku=0

we get the best agreement at

Δmsol
2

Δmatm
2 sin2ϑ12 sin2ϑ13 sin2ϑ 23

δCP
π

α21

π
α31
π

Exp 0.0292 0.297 0.0215 0.5 1.4 − −

1σ 0.0008 0.017 0.0007 0.1 0.2 − −
prediction 0.0280 0.291 0.0486 0.331 1.47 1.83 1.26

Normal mass ordering is predicted


